(a) Represent the data using a diagram.
(b) Find the mode.
Solutions: (b) Mode: ginkgo(a) Find the average (the mean).
(b) Find the median.
Solutions: (a) Mean: 199 cm; (b) median: 201 cm(a) Find the mean.
(b) Find the median.
Solutions: (a) Mean: 3.6 members; (b) median: 3 members(a) Represent the data using different diagrams.
(b) Find the mode, the median and the mean.
Solutions: (b) Mode: 2, median: 3, mean: 2.95(a) Find the median and quartiles.
(b) Represent the results using box and whisker plot.
Solutions: (a) Median: \(M=12\), quartiles: \(Q_1=10.5,~ Q_2=M=12,~ Q_3=14\)(a) Find the mode, the mean and the median.
(b) Represent the results using box and whisker plot.
Solutions: (a) Mode: 500 €, mean: 3 160 €, median: 1 000 €; (b) quartiles: \(Q_1=500,~ Q_2=M=1000,~ Q_3=3000\)(a) Write the table of cumulative frequencies.
(b) Draw the cumulative frequency diagram.
Solutions:(a) Write the table of cumulative frequencies.
(b) Draw the cumulative frequency diagram.
Solutions:(a) Write the table of cumulative frequencies.
(b) Draw the cumulative frequency diagram.
Solutions:(a) Draw the cumulative frequency graph.
(b) Find the median, the quartiles and the interquartile range.
Solutions: (b) Median: \(M=62\); quartiles: \(Q_1=58,~ Q_2=M=62,~ Q_3=71\); interquartile range: \(IQR=13\)(a) Find the mean (for each group separately).
(b) Find the variance and standard deviation (for each group separately).
Solutions: (a) Mean: \(\overline{x}=22\) (for A and for B); (b) Group A: variance: \(Var(x)=0.96\), standard deviation: \(\sigma\approx0.980\); Group B: variance: \(Var(x)=2.72\), standard deviation: \(\sigma\approx1.65\)(a) Find the mean.
(b) Find the variance and standard deviation.
Solutions: (a) Mean: \(\overline{x}=1.8\); (b) variance: \(Var(x)\approx1.69\), standard deviation: \(\sigma\approx1.30\)(a) Find the mean.
(b) Find the standard deviation.
Solutions: (a) Mean: \(\overline{x}=29.85\approx29.9\); (b) standard deviation: \(\sigma\approx0.654\)(a) Find the mean, the standard deviation and the variance.
(b) Find the median and the quartiles.
Solutions: (a) Mean: \(\overline{x}=5\), standard deviation: \(\sigma\approx1.57\), variance: \(\sigma^2\approx2.45\); (b) median: \(Med=5\), quartiles: \(Q_1=4, Q_2=Med=5, Q_3=6\)(a) Find the mean.
(b) Find the standard deviation and the variance.
Solutions: (a) Mean: \(\overline{x}=24\); (b) standard deviation: \(\sigma\approx1.98\), variance: \(\sigma^2\approx3.93\)(a) Find the mean.
(b) Find the standard deviation.
Solutions: (a) Mean: \(\overline{x}\approx50.7\); (b) standard deviation: \(\sigma x\approx9.36\)(a) \(P(X=1)\) and \(P(X=2)\).
(b) \(P(X\leqslant 3)\) and \(P(X\gt 3)\).
(c) \(E(X)\) and \(\sigma\).
Solutions: (a) \(P(X=1)\approx0.269,~ P(X=2)\approx0.296\); (b) \(P(X\leqslant 3)\approx0.875,~ P(X\gt 3)\approx0.125\); (c) \(E(X)=np=2,~ \sigma=\sqrt{np(1-p)}\approx1.29\)(a) \(P(X=7)\), \(P(X\leqslant7)\) and \(P(X\lt7)\).
(b) \(P(7\leqslant X\leqslant 13)\) and \(P(7\lt X\lt 13)\).
(c) \(E(X)\) and \(\sigma\).
Solutions: (a) \(P(X=7)\approx0.0739,~ P(X\leqslant 7)\approx0.132,~ P(X\lt 7)\approx0.0577\); (b) \(P(7\leqslant X\leqslant 13)\approx0.885,~ P(7\lt X\lt 13)\approx0.737\); (c) \(E(X)=np=10,~ \sigma=\sqrt{np(1-p)}\approx2.24\)(a) Find the expected number of defective LCD screens.
(b) Find the probability that there are 3 defective LCD screens.
(c) Find the probability that the number of defective LCD screens is less or equal 4.
(d) Find the probability that the number of defective LCD screens is greater or equal 5.
Solutions: (a) \(E(X)=2\); (b) \(P\approx0.182\); (c) \(P\approx0.948\); (d) \(P\approx0.0515\)(a) Calculate \(P(65\leqslant X\leqslant 75)\).
(b) Calculate \(P(X\leqslant 50)\).
(c) Calculate \(P(X\geqslant 85)\).
(d) Find \(a\) where \(P(X\leqslant a)=0.75\).
Solutions: (a) \(P(65\leqslant X\leqslant 75)\approx0.383\); (b) \(P(X\leqslant 50)\approx0.0228\); (c) \(P(X\geqslant 85)\approx0.0668\); (d) \(a\approx76.7\)(a) Calculate \(P(15\leqslant X\leqslant 20)\).
(b) Calculate \(P(X\geqslant 23)\).
(c) Find \(a\) where \(P(X\leqslant a)=\frac{2}{3}\).
(d) Find \(m\) where \(P(X\geqslant m)=0.45\).
Hint: The notation \(X\sim N(20,25)\) means that \(X\) is normally distributed with the mean \(\mu=20\) and variance \(\sigma^2=25\) (which means that the standard deviation \(\sigma=5\)).(a) Write down \(\mu\) and \(\sigma\).
(b) Calculate \(P(X\leqslant \mu)\) and \(P(X\geqslant \mu)\).
(c) Calculate \(P(\mu\leqslant X\leqslant \mu+\sigma)\) and \(P(X\geqslant \mu+\sigma)\).
(d) Calculate \(P(\mu-\sigma\leqslant X\leqslant \mu+\sigma)\).
Solutions: (a) \(\mu=30,~ \sigma=3\); (b) \(P(X\leqslant \mu)=P(X\geqslant \mu)=0.5=50\%\); (c) \(P(\mu\leqslant X\leqslant \mu+\sigma)\approx0.341\), \(P(X\geqslant \mu+\sigma)\approx0.159\); (d) \(P(\mu-\sigma\leqslant X\leqslant \mu+\sigma)\approx0.683\)(a) Write down \(\mu\) and \(\sigma\).
(b) Calculate \(P(Z\leqslant \mu)\) and \(P(Z\geqslant \mu)\).
(c) Calculate \(P(\mu\leqslant Z\leqslant \mu+\sigma)\) and \(P(Z\geqslant \mu+\sigma)\).
(d) Calculate \(P(\mu-\sigma\leqslant Z\leqslant \mu+\sigma)\).
Solutions: (a) \(\mu=0,~ \sigma=1\); (b) \(P(Z\leqslant \mu)=P(Z\geqslant \mu)=0.5=50\%\); (c) \(P(\mu\leqslant Z\leqslant \mu+\sigma)\approx0.341\), \(P(Z\geqslant \mu+\sigma)\approx0.159\); (d) \(P(\mu-\sigma\leqslant Z\leqslant \mu+\sigma)\approx0.683\)(a) Calculate \(P(X\leqslant 11)\) and \(P(Y\leqslant 39)\).
(b) Calculate \(P(Y\geqslant 30)\) and find the appropriate interval for \(X\).
(c) Find \(a\) where \(P(Y\leqslant a)=\frac{1}{4}\).
(d) Find \(b\) where \(P(33\leqslant Y\leqslant b)=0.3\).
Hint: \(Y=3X+6\) means that the variable \(Y\) has the mean \(\mu=3\cdot 10+6=36\) and standard deviation \(\sigma=3\cdot 2=6\), so \(Y\sim N(36,36)\).(a) \(P(55\leqslant X \leqslant 60)\)
(b) \(P(X\leqslant 20)\)
Hint: The random variable \(Z=\frac{\textstyle X-\mu}{\textstyle\sigma}\) is normally distributed: \(Z\sim N(0,1)\).(a) How many percent of the population have the score greater than 100?
(b) How many percent of the population have the score between 70 and 80?
(c) How many percent of the population have the score smaller than 60?
(d) Find the value \(a\), given that 10% of the population have the score smaller than \(a\).
Solutions: (a) \(P(X \geqslant 100)\approx0.159=15.9\%\); (b) \(P(70\leqslant X\leqslant 80)\approx0.211=21.1\%\); (c) \(P(X\leqslant 60)\approx0.0478=4.78\%\); (d) \(a\approx65.8\)(a) How many percent of the population have the score between \(\mu-\frac{1}{2}\sigma\) and \(\mu+\frac{1}{2}\sigma\)?
(b) Find \(\sigma\), given that only 5% of the population achieved score greater than 120.
Hint: Use \(Z\)-score in part (a). In part (b), first find the value \(a\) so that \(P(Z\geqslant a)=0.05\) and then use \(Z=\frac{\textstyle X-\mu}{\textstyle\sigma}\) to find \(\sigma\).(a) Find the mean and standard deviation for weight and for height.
(b) Find correlation coefficient \(r\).
(c) Draw scatter graph.
(d) Write the equation of the regression line (line of best fit).
Solutions: (a) \(\overline{x}\approx76.3,~\sigma x\approx9.46;~~ \overline{y}\approx178,~ \sigma y\approx4.69\); (b) \(r\approx0.912\); (d) \(y=0.452x+143\)(a) Draw scatter graph.
(b) Find correlation coefficient \(r\).
(c) Write the equation of the regression line.
Solutions: (b) \(r\approx0.648\); (c) \(y=0.507x+2.03\)(a) Draw scatter graph.
(b) Find the correlation coefficient \(r\).
(c) Draw the trend line and write its equation.
Solutions: (b) \(r\approx-0.869\); (c) \(y=-0.00105x+4.93\) (Hint: You can use a thousand as a unit. In this case the equation of the trend line is: \(y=-1.05x+4.93\).)