(a) \(p(2)\)
(b) \(p(-1)\)
(c) \(p(-\frac{1}{2})\)
Rešitev: (a) \(p(2)=20\), (b) \(p(-1)=2\), (c) \(p(-\frac{1}{2})=0\), torej je število \(-\frac{1}{2}\) ničla tega polinoma(a) \(p(x)=x^3-2x^2-9x+18\)
(b) \(p(x)=3x^5-6x^4+12x^3-24x^2\)
(c) \(p(x)=x^5-2x^4-x^3+2x^2-2x+4\)
(d) \(p(x)=x^5-2x^4-3x^3-8x^2+16x+24\)
Rešitev: (a) \(x_1=2,~ x_2=3,~ x_3=-3\), (b) \(x_1=0~\mathrm{(II.)},~ x_2=2,~ x_3=2i,~ x_4=-2i\), (c) \(x_1=2,~ x_2=\sqrt{2},~ x_3=-\sqrt{2},~ x_4=i,~ x_5=-i\), (d) \(x_1=-1,~ x_2=2,~ x_3=3,~ x_4=-1+i\sqrt{3},~ x_5=-1-i\sqrt{3}\)(a) \(p(x)=x^3+4x^2-7x-10\)
(b) \(p(x)=x^4+8x^3+21x^2+22x+8\)
(c) \(p(x)=x^4-4x^3+x^2+8x-6\)
(d) \(p(x)=x^5-2x^3+4x^2\)
Rešitev: (a) \(x_1=-1,~ x_2=2,~ x_3=-5\), (b) \(x_1=-1~\mathrm{(II.)},~ x_2=-2,~ x_3=-4\), (c) \(x_1=1,~ x_2=3,~ x_3=\sqrt{2},~ x_4=-\sqrt{2}\), (d) \(x_1=0~\mathrm{(II.)},~ x_2=-2,~ x_3=1+i,~ x_4=1-i\)(a) \(p(x)=3x^3-4x^2-5x+2\)
(b) \(p(x)=2x^3-7x^2+4x+3\)
(c) \(p(x)=2x^4+11x^3+23x^2+19x+5\)
(d) \(p(x)=x^4-x^3+\frac{17}{4}x^2-4x+1\)
Rešitev: (a) \(x_1=-1,~ x_2=\frac{1}{3},~ x_3=2\), (b) \(x_1=\frac{3}{2},~ x_2=1+\sqrt{2},~ x_3=1-\sqrt{2}\), (c) \(x_1=-\frac{1}{2},~ x_2=-1,~ x_3=-2+i,~ x_4=-2-i\), (d) \(x_1=\frac{1}{2}~\mathrm{(II.)},~ x_2=2i,~ x_3=-2i\)(a) \(p(x)=4x^4-11x^2+9x-2\)
(b) \(p(x)=-4x^4-13x^3-15x^2-7x-1\)
(c) \(p(x)=4x^5-8x^4-32x^3-24x^2-4x\)
(d) \(p(x)=4x^6+4x^5+13x^4+12x^3+11x^2+8x+2\)
Rešitev: (a) \(p(x)=4(x-\frac{1}{2})^2(x-1)(x+2)\), (b) \(p(x)=-4(x+1)^3(x+\frac{1}{4})\), (c) \(p(x)=4x(x+1)^2(x-2-\sqrt{5})(x-2+\sqrt{5})\), (d) \(p(x)=4(x+\frac{1}{2})^2(x-i)(x+i)(x-i\sqrt{2})(x+i\sqrt{2})\)(a) v obsegu \(\mathbb{Q}\)
(b) v obsegu \(\mathbb{R}\)
(c) v obsegu \(\mathbb{C}\)
Rešitev: (a) \(p(x)=(x+2)(x^2-2x+4)(x^2-4x+1)\), (b) \(p(x)=(x+2)(x^2-2x+4)(x-2-\sqrt{3})(x-2+\sqrt{3})\), (c) \(p(x)=(x+2)(x-1-i\sqrt{3})(x-1+i\sqrt{3})(x-2-\sqrt{3})(x-2+\sqrt{3})\)(a) \(p(x)=(x+1)(x-2)(x-3)\)
(b) \(p(x)=x^3-x^2-x+1\)
(c) \(p(x)=x^4-2x^3-x^2+2x\)
(d) \(p(x)=x^4-5x^3+6x^2\)
Rešitev: (a) \(x_1=-1,~ x_2=2,~ x_3=3\), (b) \(x_1=-1,~ x_2=1~\mathrm{(II.)}\), (c) \(x_1=-1,~ x_2=0,~ x_3=1,~ x_4=2\), (d) \(x_1=0~\mathrm{(II.)},~ x_2=2,~ x_3=3\)(a) \(p(x)=x^3-3x-2\)
(b) \(p(x)=2x^3-9x^2+12x\)
(c) \(p(x)=x^3-4x^2+4x-3\)
(d) \(p(x)=x^4-2x^3\)
Rešitev: (a) ničli: \(x_1=-1~\mathrm{(II.)},~ x_2=2\), max.: \((-1,0)\), min.: \((1,-4)\) (b) ničle: \(x_1=0,~ x_{2,3}\not\in\mathbb{R}\), max.: \((1,5)\), min.: \((2,4)\) (c) ničle: \(x_1=3,~ x_{2,3}\not\in\mathbb{R}\), max.: \((\frac{2}{3},-\frac{49}{27})\), min.: \((2,-3)\) (d) ničli: \(x_1=0~\mathrm{(III.)},~ x_2=2\), vodoravni prevoj: \((0,0)\), min.: \((\frac{3}{2},-\frac{27}{16})\)(a) \({\displaystyle f(x)=\frac{x-2}{x-1}}\)
(b) \({\displaystyle f(x)=\frac{(x-1)^2}{(x+1)(x-2)}}\)
(c) \({\displaystyle f(x)=\frac{(x-1)(x-2)}{x^2}}\)
(d) \({\displaystyle f(x)=\frac{(x-1)^2(x+1)}{(x+2)^2(x-2)}}\)
Rešitev: (a) asimptota: \(y=1\), (b) asimptota: \(y=1\) (graf jo seka pri \(x=3\)), (c) asimptota: \(y=1\) (graf jo seka pri \(x=\frac{2}{3}\)), (d) asimptota: \(y=1\) (graf jo seka pri \(x_1\doteq2,\!303\) in \(x_2\doteq-1,\!303\))(a) \({\displaystyle f(x)=\frac{x^2}{1-x^2}}\)
(b) \({\displaystyle f(x)=\frac{3x-6}{x^2+x-2}}\)
(c) \({\displaystyle f(x)=\frac{2x^2-x-3}{x^2+x-2}}\)
(d) \({\displaystyle f(x)=\frac{x^3-2x^2}{x^3-x^2-x+1}}\)
Rešitev: (a) asimptota: \(y=-1\), (b) asimptota: \(y=0\) (graf jo seka v ničli \(x=2\)), (c) asimptota: \(y=2\) (graf jo seka pri \(x=\frac{1}{3}\)), (d) asimptota: \(y=1\)(a) \({\displaystyle f(x)=\frac{x^2}{x-1}}\)
(b) \({\displaystyle f(x)=\frac{x^2-x-6}{2x-2}}\)
(c) \({\displaystyle f(x)=\frac{x^3}{x^2-3}}\)
Rešitev: (a) asimptota: \(y=x+1\), (b) asimptota: \(y=\frac{x}{2}\), (c) asimptota: \(y=x\) (graf jo seka pri \(x=0\))(a) \({\displaystyle f(x)=2-\frac{x+1}{x^2}}\)
(b) \({\displaystyle f(x)=\frac{1}{x-3}+\frac{2}{x}}\)
(c) \({\displaystyle f(x)=x+3-\frac{4}{x^2}}\)
Rešitev: (a) asimptota: \(y=2\) (graf jo seka pri \(x=-1\)), (b) asimptota: \(y=0\) (graf jo seka v ničli \(x=2\)), (c) asimptota: \(y=x+3\)(a) \({\displaystyle \frac{x^2+x}{x-2}-\frac{5}{x}=\frac{7}{x^2-2x}}\)
(b) \({\displaystyle \frac{2x^2+x-6}{x^2+2x}=x-\frac{2}{x}}\)
(c) \({\displaystyle \frac{2x}{x-1}-\frac{1}{x}=\frac{5x-1}{x^3-x}}\)
(d) \({\displaystyle \frac{x+3}{(x-1)^2}-\frac{2x}{(x-1)^3}=1}\)
Rešitev: (a) \(x_1=1,~ x_2=-3\), (b) \(x=1\), (c) \(x_1=-2,~ x_2=\frac{1}{2}\), (d) \(x_1=2,~ x_2=1+\sqrt{2},~ x_3=1-\sqrt{2}\)(a) \(x^3-x^2-x\geqslant x^2-2\)
(b) \(x^4+2x \leqslant 3x^2\)
Rešitev: (a) \(x\in[-1,1]\cup[2,\infty)\), (b) \(x\in[-2,0]\cup\{1\}\)(a) \({\displaystyle \frac{x}{x-3}\lt 0}\)
(b) \({\displaystyle \frac{x^2+2x-9}{x^2-4}\gt 2}\)
(c) \({\displaystyle 1\leqslant\frac{1}{x^3+1}}\)
(d) \({\displaystyle \frac{x^2-2x-1}{x^2-2x+1}\geqslant -\frac{x}{2}}\)
Rešitev: (a) \(x\in(0,3)\), (b) \(x\in(-2,1)\cup(1,2)\), (c) \(x\in(-1,0]\), (d) \(x\in\{-1\}\cup[2,\infty)\)