IGLib
1.7.2
The IGLib base library EXTENDED - with other lilbraries and applications.
|
Public Member Functions | |
MultivariateSample | CreateMultivariateNormalSample (ColumnVector M, SymmetricMatrix C, int n) |
void | MultivariateManipulations () |
void | MultivariateNormalSummaryStatistics () |
void | BivariateNullAssociation () |
void | PairedStudentTTest () |
void | MultivariateLinearRegressionTest () |
void | MultivariateLinearRegressionBadInputTest () |
void | OldMultivariateLinearRegressionTest () |
void | MultivariateMoments () |
void | MultivariateLinearRegressionNullDistribution () |
void | MultivariateLinearRegressionAgreement () |
void | PrincipalComponentAnalysis () |
Private Member Functions | |
double | GetTotalVariance (MultivariateSample sample) |
|
inline |
References Meta.Numerics.Statistics.MultivariateSample.Add(), Meta.Numerics.Matrices.SymmetricMatrix.CholeskyDecomposition(), Meta.Numerics.Matrices.VectorBase.Dimension, Meta.Numerics.Statistics.Distributions.Distribution.InverseLeftProbability(), and Meta.Numerics.Matrices.CholeskyDecomposition.SquareRootMatrix().
Referenced by Test.MultivariateSampleTest.MultivariateNormalSummaryStatistics().
|
inline |
References Meta.Numerics.Statistics.MultivariateSample.Add(), Meta.Numerics.Statistics.MultivariateSample.Clear(), Meta.Numerics.Statistics.MultivariateSample.Contains(), Meta.Numerics.Statistics.MultivariateSample.Count, Meta.Numerics.Statistics.MultivariateSample.Dimension, and Meta.Numerics.Statistics.MultivariateSample.Remove().
|
inline |
References Meta.Numerics.Interval.ClosedContains(), Meta.Numerics.Statistics.MultivariateSample.Column(), Meta.Numerics.UncertainValue.ConfidenceInterval(), Meta.Numerics.Statistics.MultivariateSample.Count, Test.MultivariateSampleTest.CreateMultivariateNormalSample(), Meta.Numerics.Statistics.Sample.PopulationMean, and Meta.Numerics.Statistics.Sample.PopulationVariance.
|
inline |
References Meta.Numerics.Statistics.BivariateSample.Add(), Meta.Numerics.Statistics.Sample.Add(), Meta.Numerics.Statistics.TestResult.Distribution, Meta.Numerics.Statistics.BivariateSample.KendallTauTest(), Meta.Numerics.Statistics.Sample.KolmogorovSmirnovTest(), Meta.Numerics.Statistics.TestResult.LeftProbability, Meta.Numerics.Statistics.BivariateSample.PearsonRTest(), Meta.Numerics.Statistics.BivariateSample.SpearmanRhoTest(), and Meta.Numerics.Statistics.TestResult.Statistic.
|
inline |
|
inline |
References Meta.Numerics.Statistics.MultivariateSample.Add(), Meta.Numerics.Interval.ClosedContains(), Meta.Numerics.UncertainValue.ConfidenceInterval(), Meta.Numerics.Statistics.FitResult.Dimension, Meta.Numerics.Statistics.FitResult.GoodnessOfFit, Meta.Numerics.Statistics.Distributions.Distribution.InverseLeftProbability(), Meta.Numerics.Statistics.TestResult.LeftProbability, Meta.Numerics.Statistics.MultivariateSample.LinearRegression(), Meta.Numerics.Statistics.FitResult.Parameter(), and Meta.Numerics.Statistics.TestResult.Statistic.
|
inline |
|
inline |
|
inline |
References Meta.Numerics.Statistics.MultivariateSample.Add(), Meta.Numerics.Statistics.MultivariateSample.Column(), Meta.Numerics.Statistics.BivariateSample.Covariance, Meta.Numerics.Statistics.Distributions.Distribution.GetRandomValue(), Meta.Numerics.Statistics.Sample.Mean, Meta.Numerics.Statistics.MultivariateSample.Moment(), Meta.Numerics.Statistics.MultivariateSample.MomentAboutMean(), Meta.Numerics.Statistics.MultivariateSample.TwoColumns(), and Meta.Numerics.Statistics.Sample.Variance.
|
inline |
References Meta.Numerics.Statistics.MultivariateSample.Add(), Meta.Numerics.Statistics.Sample.Add(), Meta.Numerics.Statistics.Distributions.NormalDistribution.GetRandomValue(), Meta.Numerics.Statistics.FitResult.GoodnessOfFit, Meta.Numerics.Statistics.Sample.KolmogorovSmirnovTest(), Meta.Numerics.Statistics.TestResult.LeftProbability, Meta.Numerics.Statistics.MultivariateSample.LinearRegression(), and Meta.Numerics.Statistics.TestResult.Statistic.
|
inline |
References Meta.Numerics.Statistics.MultivariateSample.Add(), Meta.Numerics.Statistics.MultivariateSample.Columns(), Meta.Numerics.Statistics.FitResult.CovarianceMatrix(), Meta.Numerics.Statistics.FitResult.GoodnessOfFit, Meta.Numerics.Statistics.MultivariateSample.LinearRegression(), Meta.Numerics.Statistics.BivariateSample.LinearRegression(), Meta.Numerics.Statistics.FitResult.Parameters(), Meta.Numerics.Statistics.TestResult.Statistic, and Meta.Numerics.Statistics.MultivariateSample.TwoColumns().
|
inlineprivate |
|
inline |
References Meta.Numerics.Statistics.MultivariateSample.Add(), Meta.Numerics.Statistics.MultivariateSample.Column(), Meta.Numerics.Statistics.PrincipalComponentAnalysis.Component(), Meta.Numerics.Matrices.RowVector.Copy(), Meta.Numerics.Statistics.PrincipalComponentAnalysis.Count, Meta.Numerics.Statistics.MultivariateSample.Count, Meta.Numerics.Statistics.PrincipalComponent.CumulativeVarianceFraction, Meta.Numerics.Statistics.PrincipalComponentAnalysis.Dimension, Meta.Numerics.Statistics.MultivariateSample.Dimension, Test.MultivariateSampleTest.GetTotalVariance(), Meta.Numerics.Statistics.PrincipalComponent.Index, Meta.Numerics.Statistics.Sample.Mean, Meta.Numerics.Statistics.PrincipalComponent.NormalizedVector(), Meta.Numerics.Statistics.MultivariateSample.PrincipalComponentAnalysis(), Meta.Numerics.Statistics.PrincipalComponent.ScaledVector(), Meta.Numerics.Statistics.PrincipalComponentAnalysis.TransformedSample(), Meta.Numerics.Statistics.PrincipalComponent.VarianceFraction, and Meta.Numerics.Statistics.PrincipalComponent.Weight.