IGLib  1.6.0
The IGLib base library for development of numerical, technical and business applications.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Events
FunctionScalarExamples.cs File Reference

Classes

class  IG.Num.ScalarFunctionConstant
 Constant scalar function of vector variable. Function is evaluated according to f(x) = c where x is vector of parameters, and c is the constant scalar term (function value at x=0). More...
 
class  IG.Num.ScalarFunctionLinear
 Linear scalar function of vector variable. Function is evaluated according to q(x) = b^T*x + c where x is vector of parameters, b is vector of linear coefficients (gradient at x=0) and c is the scalar term (function value at x=0). More...
 
class  IG.Num.ScalarFunctionQuadratic
 Quadratic scalar function of vector variable. Function is evaluated according to q(x) = (1/2)*x^T*G*x + b^T*x + c where x is vector of parameters, G is constant Hessian matrix, b is vector of linear coefficients (gradient at x=0) and c is the scalar term (function value at x=0). More...
 
class  IG.Num.ScalarFunctionExamples
 Various examples of scalar functions. More...
 
class  IG.Num.ScalarFunctionExamples.Rosenbrock
 RosenBrock function. f(x,y) = (1-x)^2 + 100 * (y-x^2)^2 More...
 
class  IG.Num.ScalarFunctionExamples.RosenbrockGeneralizedAdjacent
 Generalzed multivariate RosenBrock function for Dim >= 2. More...
 
class  IG.Num.ScalarFunctionExamples.RosenbrockGeneralizedExhaustive
 Generalzed multivariate RosenBrock function for Dim >= 2. More...
 
class  IG.Num.ScalarFunctionExamples.ParaboloidSymmetric2D
 Symmetric paraboloid centered at coordinate origin. f(x,y) = x^2 + y^2 - R2. If R2 is positive then 0-level is a circle, if it is negative then the paraboloid does not intersect with zero-plane. Default is R2 = 1 (default constructor). More...
 
class  IG.Num.ScalarFunctionExamples.Quadratic2d
 Example quadratic polynomial in 2D. f(x,y) = 2*x^2 + y^2 + x*y + x + y + 10. More...
 
class  IG.Num.ScalarFunctionExamples.Quadratic3d
 Example quadratic polynomial in 3D. f(x,y,z) = x*x + 2*y*y + 4*z*z + x*y + 2*y*z + 4*z*x + x + y + z + 10 More...
 

Namespaces

package  IG.Num