IGLib  1.5
The IGLib base library EXTENDED - with other lilbraries and applications.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Events Macros
Package DotNetMatrix

Namespaces

package  examples
 
package  test
 

Classes

class  CholeskyDecomposition
 Cholesky Decomposition. For a symmetric, positive definite matrix A, the Cholesky decomposition is an lower triangular matrix L so that A = L*L'. If the matrix is not symmetric or positive definite, the constructor returns a partial decomposition and sets an internal flag that may be queried by the isSPD() method. More...
 
class  EigenvalueDecomposition
 Eigenvalues and eigenvectors of a real matrix. If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.Multiply(D.Multiply(V.Transpose())) and V.Multiply(V.Transpose()) equals the identity matrix. If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.Multiply(V) equals V.Multiply(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*Inverse(V) depends upon V.cond(). More...
 
class  GeneralMatrix
 .NET GeneralMatrix class. More...
 
class  LUDecomposition
 LU Decomposition. For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a permutation vector piv of length m so that A(piv,:) = L*U. More...
 
class  Maths
 
class  QRDecomposition
 QR Decomposition. For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n orthogonal matrix Q and an n-by-n upper triangular matrix R so that A = Q*R. More...
 
class  SingularValueDecomposition
 Singular Value Decomposition. More...