|
class | IG.Num.Func |
| Creation of a number of standard real mathematical functions in one dimension. Conttains subclasses for specific functions ans corresponding static creator methods. Creator methods come in 3 different version: for reference form of the function (e.g. just Exp[x]), for form shifted and stretched in x direction, and general form shifted and stretched in both directions. More...
|
|
class | IG.Num.Func.WeightGauss |
| A RealFunction class representing bell like polynomial weighting function with finite support, based on Gaussian function (exp(-x^2)). Reference function: bell like function with infinite support, 0 < |f(x)| <=1 f(0) = 1 More...
|
|
class | IG.Num.Func.WeightReciprocalPower |
| A RealFunction class representing bell like polynomial weighting function with finite support, based on reciprocal power function (1/(1+|x|^p) where p>0 is an integer power). Reference function: bell like function with infinite support, 0 < |f(x)| <=1 f(0) = 1 More...
|
|
class | IG.Num.Func.WeightPol3 |
| A RealFunction class representing bell like polynomial weighting function with finite support. Reference function: bell like function with final support, 0 <= |f(x)| <=1 f(x<-1) = f(x>1) = 0 f(0) = 1 More...
|
|
class | IG.Num.Func.WeightPol4 |
| A RealFunction class representing bell like polynomial weighting function with finite support, based on 4th order polynomial. Reference function: bell like function with final support, 0 <= |f(x)| <=1 f(x<-1) = f(x>1) = 0 f(0) = 1 More...
|
|
class | IG.Num.Func.WeightPol5 |
| A RealFunction class representing bell like polynomial weighting function with finite support, based on 5th order polynomial. Reference function: bell like function with final support, 0 <= |f(x)| <=1 f(x<-1) = f(x>1) = 0 f(0) = 1 More...
|
|
class | IG.Num.Func.WeightPol7 |
| A RealFunction class representing bell like polynomial weighting function with finite support, based on 7th order polynomial. Reference function: bell like function with final support, 0 <= |f(x)| <=1 f(x<-1) = f(x>1) = 0 f(0) = 1 More...
|
|