Vrednosti za zaporedje posebne filotakse: t = 2.

Zaporedje 2, 2t+1, 2t +3, 4t +4, 6t +7, 10t +11, … za t=2 je sledeče: 2, 5, 7, 12, 19, …

Za par (2t+1, 2t +3) je divergenca znotraj intervala
[t/(2t+1), (t+1)/(2t +3)]

dobimo par (5, 7) katerega divergenca je znotraj intervala [2/5, 3/7]

Za par (2t +3, 4t +4)je divergenca znotraj intervala
[(2t + 1)/(4t +4), (t+1)/(2t +3)

dobimo par (7, 12) katerega divergenca je znotraj intervala [5/12, 3/7]

Za par (4t +4, 6t +7) je divergenca znotraj intervala
[(3t + 2)/(6t +7), (2t + 1)/(4t +4)]

dobimo par (12, 19) katerega divergenca je znotraj intervala [8/19, 5/12]

Če bi pogledali še naprej bi videli, da gre vrednost divergenčnega kota proti 151,14°. Njegova točna vrednost je

360°/(2+(2+-1)-1)

NAZAJ


/\ /\ /\ /\
|| || || ||