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Abstract

Values below the limit of detection (LOD) are a problem in several fields of science,
and there are numerous approaches for replacing the missing data. We present a new
mathematical solution for maximum likelihood estimation that allows us to estimate the
true values of the mean and standard deviation for normal and lognormal distributions
and is significantly faster than previous implementations. We provide the implementation
in R, Mathematica, and Excel.
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(MLE), exact calculation.

1. Introduction
Truncated samples pose problems when statistical analyses of data are performed, as labo-
ratories can quantify only the values above the limit-of-detection (LOD) threshold. Several
methods have been proposed to replace the unknown values below the LOD with values that
ensure that errors are minimized when the statistical analyses are performed. The earliest
studies were performed by Cohen (1949), Cohen (1950), and several comparisons of the substi-
tution methods and reviews of each method were performed in various fields of mathematics,
statistics, earth sciences, and medicine (Beal (2001), Gilliom and Helsel (2010), Hewett and
Ganser (2007), Hornung and Reed (1990), Lambert, Peterson, and Terpenning (1991), Senn,
Holford, and Hockey (2012),Succop, Clark, Chen, and Galke (2004)), with the most relevant
studies performed by Helsel (Helsel (1990), Helsel (2005), Helsel (2006), Helsel (2011)).
The simplest methods rely on the substitution of missing values with some arbitrary number,
and more advanced methods rely on predictions based on maximum likelihood estimation
(MLE) or other statistical approaches. The latter are recommended; however, simple substi-
tution is still performed and even suggested, for example, by the US Environmental Protection
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Agency (EPA (2006)) for datasets with < 15% missing values. Simple substitution can be
performed using some fraction of the LOD values (calculated as LOD × substitution value
factor), and the common values or approaches for the replacement of the missing values are
the following (Beal (2001), Senn et al. (2012)):

1. a constant of zero (substitution value factor equal to 0) is used

2. the value of the LOD itself (factor = 1) is used

3. some fraction of the LOD (usually LOD/2 or LOD/
√

2, factor = 1/2 or 1/
√

2) is used

4. values are simply ignored and are not included in the analysis (“No Data” replacement)

5. other statistical approaches are used to replace the values (extrapolation, regression)

Substitution values also differ in different fields of study; Helsel (2006) noted that in water
chemistry, the most common substitution value is LOD/2, and in air chemistry, the most
common value is LOD/

√
2. Approaches for the substitution of multiple detection limits have

been also used (Lee and Helsel (2007)).
As shown above, several approaches have been presented to find the “correct” substitution
value (substitution value factor = C); however, none has introduced an exact mathematical
solution to find such a value. A comparison of different substitution methods was performed by
Verbovšek (Verbovšek (2011)) for the normal and lognormal (Perkins, Cutter, and Cleveland
(1990)) distributions, which are commonly fitted to data. The results of the comparison
“indicated that the best substitution method is by LOD ×1/

√
2, as it produced the smallest

errors.” However, the results are highly dependent on the baseline data, so the conclusion
is not definitive. Helsel (Helsel (2011)) suggested using MLE and derived the system of
nonlinear equations, which should be “solved by iterative approximation using the Newton-
Raphson method.” The method is numerically exhausting and time-consuming and exceeds
the knowledge of statistics and mathematics of a typical researcher who deals with LOD-
censored data. It should be also emphasized that in many cases, the goal of the calculations
is not to obtain the substituted values themselves (they just replace the missing values) but
to estimate the basic statistics of distributions – the mean (µ) and the standard deviation
(σ).
The main result of our method is a simple-to-use mathematically derived solution based on
MLE that can calculate both the mean value and standard deviation of the observed nor-
mal/lognormal distribution. Our approach reduces the problem to solving only one equation,
which can be done by any statistics computer tool (even a simple program such as MS Excel).
Our method also derives the substitution value factor (C), which is used for the replacement
of missing data below the LOD. However, if we need to estimate the mean value, it turns out
that the substitution factor C is not the same as the factor used to estimate the standard
deviation. Thus, if one needs to estimate the mean and standard deviation of the underlying
data, such a substitution should not be applied, and the parameters obtained by our procedure
are the only correct estimates, because the MLE-derived substitution value relies on statistical
parameters. Therefore, we would like to emphasize that we do not recommend the simple
substitution methods, as these have long been described as poor methods for computing
descriptive statistics (Gilliom and Helsel (2010)). We are, however, aware that many users
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find the MLE method (or other high-level statistical methods) too advanced to use; therefore,
our approach simplifies the MLE method for practical use.
As our approach is available to anyone performing an analysis (we provide the formulae for
the Mathematica and R software and a template for the MS Excel software), we provide two
calculation methods. The first approach is preferred for calculating the mean and/or standard
deviation of the data. The second approach is for calculating the substitution value factor
(C) from a model sample, which is then used to “simply” replace the missing values for the
other sets of data. Therefore, with our work, we do not present just “another number” that
should be used instead of the LOD, LOD ×1/2, etc.; instead, we present a mathematically
simple solution that estimates both the mean and standard deviation for the specific data
and can be used to determine the factor C, which depends on the underlying data.

2. Methods

Our method is based on Maximum Likelihood Estimation. This approach uses three pieces
of information to perform computations: (a) numerical values above reporting limits, (b)
the proportion of data below each reporting limit, and (c) the mathematical formula for an
assumed distribution Helsel (2011). The most crucial consideration for MLE is how well data
fit the assumed distribution. A major problem with MLE is that for small data sets there is
often insufficient information to determine whether the assumed distribution is correct or not,
and so whether parameters are estimated reliably. MLE has been shown to perform poorly
for data sets with less than 25–50 observations (Helsel (2011)) however simulations of real
normally distributed data show that the method produces satisfactory results even for small
samples. For larger data sets, MLE is an efficient way to estimate parameters, given that the
chosen distribution is correct.
The proposed method is based on Maximum Likelihood Estimation. The setup is as follows:
we have a sample of n values X1, X2, . . . , Xn, but some of them are below the LOD threshold
and cannot be measured. We aim to determine the mean value of all the values in the sample.
Suppose Xi are normally distributed random variables with mean µ and variance σ2 (which are
unknown to us) and we know the LOD. Our measured sample then consists of k measurements
x1, x2, . . . , xk and we know that another n − k values are below LOD. We try to evaluate
Maximum likelihood statistics of µ and σ. In order to do that we look at the likelihood of
our sample:

L((x1, x2, . . . , xk), n − k, LOD; µ, σ) = Φ
(LOD − µ

σ

)n−k k∏
i=1

(f((xi − µ)/σ)/σ) ,

where Φ(x) is the cumulative distribution function of a standard normal variable and f(x)
is the probability density function of a standard normal variable. In order to maximize the
function we must solve the following two equations:

σ(n − k) 1
Φ
(

LOD−µ
σ

)f

(LOD − µ

σ

)
=

k∑
i=1

(xi − µ) (1)
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and

(n − k) 1
Φ
(

LOD−µ
σ

)f

(LOD − µ

σ

)
(−(LOD − µ))σ − kσ2 +

k∑
i=1

(xi − µ)2 = 0 . (2)

It turns out that solving this system can be numericaly unstable, it usually is time consuming,
and, most importantly, it is too complex to perform for an average user of LOD-censored
measurements, who is most commonly a non-statistician.
Somewhat unexpected is that the system can be reduced to one equation which is easier to
solve. It follows that µ can be computed from the value of σ:

µ(kLOD −
k∑

i=1
xi) = kσ2 + LOD

k∑
i=1

xi −
k∑

i=1
x2

i . (3)

The system reduces to one equation:

σ(n−k) 1

Φ
(

k(LOD2−σ2)+
∑k

i=1 x2
i −2LOD

∑k

i=1 xi

σ(kLOD−
∑k

i=1 xi)

)f

(
k(LOD2 − σ2) +

∑k
i=1 x2

i − 2LOD
∑k

i=1 xi

σ(kLOD −
∑k

i=1 xi)

)

=
k∑

i=1
xi − k

kσ2 + LOD
∑k

i=1 xi −
∑k

i=1 x2
i

kLOD −
∑k

i=1 xi

.

This equation can be solved even with Excel, which is commonly used in fields where data
below LOD can be found. The solution of the equation gives the estimate for σ, from which
we can derive also the estimate for µ using (3).

3. Models and software
We provide the implementation in R, Mathematica, and Excel.
MS Excel.
Usage of Lod_auto_compute_lognormal.xlsm:
The file is a notebook in MS Excel. In order to run it properly the following must be prepared:

1. Macros must be enabled (it can be done when the file opens by pressing “Enable con-
tent”)

2. Excel Add-on Solver is enabled (go to File > Options, click Add-Ins, and then in the
Manage box, select Excel Add-ins. Click Go. In the Add-Ins available box, select the
Solver Add-in check box, and then click OK.)

The file has two sheets, Normal (for normal distribution) and Lognormal (for lognormal
distribution)
Normal: The data (measurements) should be entered (copied) into column B (yellow back-
ground, thick frame). Note that if there is already data in the B column, it should be first
deleted (in case the new data has less entries). The cell F4 holds the number of the missing
data, one must enter the number (again the cell has yellow background, thick frame). LOD
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(level of detection) is entered into the cell F8. The values of σ and µ are computed by pressing
the button “Calculate!”. The initial value of σ can be (prior to Computing) entered in the cell
F10. The value is used by internal procedures of MS Visual Basic so some initial values result
in Solver returning the error message. In this case another initial value (higher or lower) can
be used. For nearly all valid data the button “Reset sigma” writes an appropriate initial value
into F10 which produces the correct final result. So when the Solver finds a solution one must
choose “Keep Solver solution” and “OK”, this writes the estimated value of σ into the cell
F10. Estimate of µ is in the cell F15. If the value is not valid, there is ERROR! written next
to it. In this case “Calculate!” should be used again (possibly with the changed initial value
of σ, cell F10). Also the theoretical value of C, corresponding to this set of data, is calculated
and shown in the cell F17.
Lognormal: Everything as with normal, with the addition of estimations of average and
standard deviation (because they are not equal to the parameters µ and σ).
Mathematica.
We provide the function LODEstimateOfSigma[n, k, LOD, sumx, sumx2] that returns the
σ of the normal distribution. The parameters of the function are: n is the size of the sample,
k is the number of known values (that are larger thamn LOD), LOD is the level of detection,
sumx is the sum of known values and sumx2 is the sum of squares of known values. The
parameter µ of the normal distribution is calculated from σ using the formula derived by us.
Examples are provided in Mathematica notebook lod_normal.nb.
R.
The same function is available in R and the example is provided in lodR.r.

4. Results and discussion
We have tested the proposed method on statistical datasets of normally and lognormally
distributed data, which are two of the most commonly applied distributions for analysis data.
We provide an Excel file with N = 100, 000 (LOD_Excel-100000.xlsx) for testing the method,
and two other files (LOD_Excel-100.xlsx and LOD_Excel-36.xlsx) with N = 100 and N =
36 as user templates (all three datasets are also used in Figure 2). In the tested dataset, five
spreadsheet columns correspond to five degrees of truncation (missing data): 1%, 5%, 10%,
25% and 50%. We have tested six scenarios of substitution value factors (1, 0, 1/2, 1/

√
2,

C–our proposed calculated value, and No Data). For each of 30 possible outcomes (6 scenarios
× 5 truncation values) of truncated and substituted sets, we calculated the mean value and
standard deviation and compared them to the true values of the untruncated dataset. Figure 1
presents the comparison of all six scenarios depending on the degree of truncation for normal
(Figure 1A and 1B) and lognormal distributions (Figure 1C and 1D). The comparison is
quantified by plotting the error of the method vs. the degree of truncation. As the degree
of truncation increases from 1% to 50%, the error increases rapidly for both distributions,
up to the values of −40.0% and −40.3% for replacement with the zero value (Figures 1A
and 1B). If No Data is used, the error is comparably large. The commonly used replacement
methods with LOD ×1/2 and LOD ×1/

√
2 produce results that are approximately twice as

good (error of −15.0% for LOD ×1/2 and −4.7% for LOD ×1/
√

2; the mean value and normal
distribution), although the errors are still unacceptable for large degrees of truncation (larger
than 5%). However, our suggested method gives the exact calculation and has zero error for
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all 1% 5% 10% 25% 50%

No data 0.0% 0.7% 2.7% 4.9% 10.6% 20.0%

LOD 0.0% 0.1% 0.5% 1.2% 3.8% 10.0%

LOD * 1/√2 0.0% 0.0% -0.3% -0.8% -2.3% -4.7%

LOD * 1/2 0.0% -0.1% -0.9% -2.2% -6.6% -15.0%

0 0.0% -0.3% -2.4% -5.6% -17.0% -40.0%

LOD * C 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

Normal distribu!on, mean value (N=100,000)

all 1% 5% 10% 25% 50%

No data 0.0% 0.5% 2.2% 4.1% 9.5% 19.4%

LOD 0.0% 0.0% -0.2% -0.9% -4.2% -13.1%

LOD * 1/√2 0.0% -0.1% -1.0% -2.5% -8.2% -21.0%

LOD * 1/2 0.0% -0.2% -1.6% -3.6% -11.1% -26.7%

0 0.0% -0.5% -2.9% -6.3% -17.9% -40.3%

LOD * C 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

Lognormal distribu!on, mean value (N=100,000)

all 1% 5% 10% 25% 50%

No data 0.0% -3.2% -10.1% -15.8% -27.1% -39.9%

LOD 0.0% -0.9% -4.3% -8.6% -21.0% -41.8%

LOD * 1/√2 0.0% 0.4% 2.6% 5.1% 9.7% 7.2%

LOD * 1/2 0.0% 1.4% 8.5% 16.7% 35.2% 46.1%

0 0.0% 4.3% 25.3% 49.1% 101.7% 143.6%

LOD * C 0.0% 0.0% -0.3% -0.9% -3.3% -9.8%

-50%

0%

50%

100%

150%

200%

Normal distribu!on, standard devia!on (N=100,000)

all 1% 5% 10% 25% 50%

No data 0.0% -1.5% -5.3% -8.5% -15.3% -23.2%

LOD 0.0% -0.3% 1.3% 5.3% 20.4% 40.9%

LOD * 1/√2 0.0% 1.0% 7.8% 17.2% 43.3% 70.8%

LOD * 1/2 0.0% 2.2% 13.2% 26.7% 60.4% 92.4%

0 0.0% 5.8% 28.4% 52.2% 103.5% 145.1%

LOD * C 0.0% 0.0% -0.1% -0.3% -1.4% -5.2%

-50%

0%

50%

100%

150%

200%

Lognormal distribu!on, std. devia!on (N=100,000)

A B

C D

Figure 1: Comparison of errors for the mean values, normal distribution (Figure 2A) and
lognormal distribution (Figure 2B) and for the standard deviations, normal distribution (Fig-
ure 2C) and lognormal distribution (Figure 2D).

the calculation of the mean (Figures 1A and 1B). One should note that the error values are
exactly zero, which confirms the correctness of the calculation and the replacement of the
mean value with LOD ×C.
One should note that the calculation of the standard deviation shows some error (maximum
values of −9.8% and −5.2% for both distributions, in the case of 50% truncation; see Figures
1C and 1D). However, the non-zero error values appear only if one uses the same replacement
value of LOD ×C for the estimation of both the mean and standard deviation. In the case of
such a substitution, one of these two parameters (in this case, the mean value) is restrained to
have zero error (Figures 1A and 1C), and the other always has a non-zero error (Figures 1B
and 1D). Nevertheless, it is possible to estimate both the mean and standard deviation values
correctly with our proposed calculation, provided in the file LOD_auto_compute.xlsm. If the
data from Figure 1 are entered into this Excel template (or R or Mathematica), both the mean
and standard deviation values are calculated with errors very close to zero, confirming the
correctness of our method. The errors are progressively smaller as the amount of data grows.
The process of inputting the data into the Excel file is explained in the file readme.txt.
The influence of the sample size is presented in Figure 2. It is obvious that the error is
virtually equal to zero with a very large sample number of N = 100, 000 (Figure 2A), but the
method performs well even with small samples. With N = 100 measurements (Figure 2B),
the average of all errors is −0.3%, smaller than that of any of the other replacement methods.
Figure 2C shows that even with the smallest samples (N = 36), the error is negligible; even
with 50% of the samples below the LOD, the result only varies by 4%, and our method again
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all 1% 5% 10% 25% 50%

No data 0.0% 0.5% 2.2% 4.1% 9.5% 19.4%

LOD 0.0% 0.0% -0.2% -0.9% -4.2% -13.1%

LOD * 1/√2 0.0% -0.1% -1.0% -2.5% -8.2% -21.0%

LOD * 1/2 0.0% -0.2% -1.6% -3.6% -11.1% -26.7%

0 0.0% -0.5% -2.9% -6.3% -17.9% -40.3%

LOD * C 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

   Normal distribu!on, mean value (N=100,000)

all 1% 5% 10% 25% 50%

No data 0.0% 0.6% 2.8% 4.7% 10.3% 20.2%

LOD 0.0% 0.0% 1.1% 1.3% 3.0% 9.3%

LOD * 1/√2 0.0% -0.1% 0.1% -0.8% -2.9% -5.1%

LOD * 1/2 0.0% -0.2% -0.6% -2.3% -7.1% -15.3%

0 0.0% -0.4% -2.3% -5.8% -17.3% -39.9%

LOD * C 0.0% -0.1% 0.5% 0.1% -0.8% -1.1%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

Normal distribu!on, mean value (N=100)

all 1% 5% 10% 25% 50%

No data 0.0% 1.4% 2.7% 5.0% 11.0% 20.4%

LOD 0.0% 0.1% 0.7% 0.9% 4.2% 13.0%

LOD * 1/√2 0.0% -0.3% -0.4% -1.3% -2.0% -2.5%

LOD * 1/2 0.0% -0.7% -1.1% -2.9% -6.3% -13.4%

0 0.0% -1.4% -3.0% -6.7% -16.7% -39.8%

LOD * C 0.0% -0.2% 0.0% -0.6% 0.4% 4.0%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

Normal distribu!on, mean value (N=36)

A

B

C

Figure 2: Comparison of errors for the mean values, normal distribution, with sample size
of 100.000 (Figure 3A), 100 (Figure 3B) and 36 (Figure 3C).

has the lowest average error (0.7%). The true error of our suggested method is therefore equal
to zero, but it deviates slightly from this due to a low number of samples.
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Computational details
The results in this paper were obtained using MS Excel 2016, Mathematica 11.3 and R 3.4.1. R
itself and all packages used are available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/.

Conclusions
Our newly proposed mathematical solution for MLE therefore allows us to estimate the true
values of the mean and standard deviation for normal and lognormal distributions, and it is
significantly faster than previous implementations; we encourage users to use this approach
instead of simple substitution methods.
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