(a) \(|\mathbf{a}|=3,~~~ |\mathbf{b}|=4,~~~ \theta=60^\circ\)
(b) \(|\mathbf{a}|=5,~~~ |\mathbf{b}|=6,~~~ \theta=120^\circ\)
(c) \(|\mathbf{a}|=3,~~~ |\mathbf{b}|=5,~~~ \theta=90^\circ\)
Solutions: (a) \(\mathbf{a}\cdot\mathbf{b}=6\); (b) \(\mathbf{a}\cdot\mathbf{b}=-15\); (c) \(\mathbf{a}\cdot\mathbf{b}=0\)(a) \(\mathbf{a}=3\mathbf{i}+4\mathbf{j}\) and \(\mathbf{b}=\mathbf{i}+5\mathbf{j}\)
(b) \(\mathbf{e}=7\mathbf{i}-\mathbf{j}+\mathbf{k}\) and \(\mathbf{f}=\mathbf{i}+\mathbf{j}+2\mathbf{k}\)
(c) \(\mathbf{u}=2\mathbf{i}-4\mathbf{k}\) and \(\mathbf{v}=\mathbf{j}+6\mathbf{k}\)
Solutions: (a) \(\mathbf{a}\mathbf{b}=23\); (b) \(\mathbf{e}\mathbf{f}=8\); (c) \(\mathbf{u}\mathbf{v}=-24\)(a) \(\mathbf{c}=\left(\begin{array}{c} 2 \\ 3 \\ -1 \end{array}\right)\) and \(\mathbf{d}=\left(\begin{array}{c} 3 \\ 1 \\ 4 \end{array}\right)\)
(b) \(\mathbf{w}=\left(\begin{array}{c} 4 \\ -6 \\ 2 \end{array}\right)\) and \(\mathbf{z}=\left(\begin{array}{c} 5 \\ 1 \\ -7 \end{array}\right)\)
Solutions: (a) \(\mathbf{c}\mathbf{d}=5\); (b) \(\mathbf{w}\mathbf{z}=0\)Evaluate the following scalar products:
(a) \(\mathbf{a}\mathbf{c}\)
(b) \(\mathbf{a}\mathbf{a}\)
(c) \(\mathbf{a}(\mathbf{b}+\mathbf{c})\)
(d) \((2\mathbf{a}+3\mathbf{b})(\mathbf{b}-2\mathbf{c})\)
Solutions: (a) \(\mathbf{a}\mathbf{c}=4\); (b) \(\mathbf{a}\mathbf{a}=25\); (c) \(\mathbf{a}(\mathbf{b}+\mathbf{c})=30\); (d) \((2\mathbf{a}+3\mathbf{b})(\mathbf{b}-2\mathbf{c})=120\)Determine which two of them are perpendicular.
Solutions: Vectors \(\mathbf{a}\) and \(\mathbf{c}\) are perpendicular \((\mathbf{a}\mathbf{c}=0)\).Find the value of the constant \(a\) given that these two vectors are perpendicular. Write down all possible solutions.
Solutions: \(a_1=5,~a_2=-1\)(a) Find the value of \(m\) given that \(\mathbf{a}\) and \(\mathbf{b}\) are perpendicular.
(b) Find the value of \(m\) given that \(\mathbf{a}\) and \(\mathbf{b}\) are parallel.
Solutions: (a) \(m=-20\); (b) \(m=9\)(a) Find the value of \(m\) given that \(\mathbf{a}\) and \(\mathbf{b}\) are perpendicular.
(b) Find the value of \(m\) given that \(|\mathbf{a}|=|\mathbf{b}|\).
Solutions: (a) \(m=13\); (b) \(m_1=4,~ m_2=-4\)Find vector \(\mathbf{b}\) perpendicular to vector \(\mathbf{a}\) given that \(|\mathbf{b}|=|\mathbf{a}|\). Write down all possible solutions.
Solutions: \(\mathbf{b}_1=\left(\begin{array}{c} 5\\ -3 \end{array}\right),~~~ \mathbf{b}_2=\left(\begin{array}{c} -5\\ 3 \end{array}\right)\)(a) Calculate \(\mathbf{a}\mathbf{b}\).
(b) Calculate \(|\mathbf{a}|\) and \(|\mathbf{b}|\).
(c) Find the angle between vectors \(\mathbf{a}\) and \(\mathbf{b}\).
Solutions: (a) \(\mathbf{a}\mathbf{b}=58\); (b) \(|\mathbf{a}|=9,~~ |\mathbf{b}|=11\); (c) \(\theta\approx54.14^\circ\approx54^\circ8'\)(a) \(\mathbf{a}=\left(\begin{array}{c} 3\\ 4 \\ 5 \end{array}\right)\) and \(\mathbf{b}=\left(\begin{array}{c} 7\\ 1 \\ 0 \end{array}\right)\)
(b) \(\mathbf{a}=\left(\begin{array}{c} 6\\ 3 \\ 2 \end{array}\right)\) and \(\mathbf{b}=\left(\begin{array}{c} 9\\ 1 \\ -4 \end{array}\right)\)
(c) \(\mathbf{a}=\left(\begin{array}{c} 5\\ 3 \\ -1 \end{array}\right)\) and \(\mathbf{b}=\left(\begin{array}{c} 4\\ -2 \\ 3 \end{array}\right)\)
Solutions: (a) \(\theta=60^\circ\); (b) \(\theta=45^\circ\); (c) \(\theta\approx69.80^\circ\approx69^\circ48'\)(a) \(\mathbf{u}=\mathbf{i}+2\mathbf{j}+\mathbf{k}\) and \(\mathbf{v}=5\mathbf{i}+3\mathbf{j}+4\mathbf{k}\)
(b) \(\mathbf{u}=\mathbf{i}-\mathbf{j}+4\mathbf{k}\) and \(\mathbf{v}=8\mathbf{i}+7\mathbf{j}-7\mathbf{k}\)
(c) \(\mathbf{u}=-\mathbf{i}+4\mathbf{j}+3\mathbf{k}\) and \(\mathbf{v}=3\mathbf{i}-3\mathbf{j}+5\mathbf{k}\)
(d) \(\mathbf{u}=\mathbf{i}+\mathbf{j}-\mathbf{k}\) and \(\mathbf{v}=\mathbf{k}-\mathbf{i}\)
Solutions: (a) \(\theta=30^\circ\); (b) \(\theta=120^\circ\); (c) \(\theta=90^\circ\); (d) \(\theta\approx144.74^\circ\approx144^\circ44'\)The vector \(\mathbf{a}\) forms the angle \(\alpha\) with the \(x\)-axis, the angle \(\beta\) with the \(y\)-axis and the angle \(\gamma\) with the \(z\)-axis. Calculate the angles \(\alpha,~ \beta\) and \(\gamma\). Round them to degrees and minutes.
Hint: Calculate the angles between \(\mathbf{a}\) and the vectors \(\mathbf{i},~ \mathbf{j}\) and \(\mathbf{k}\).Determine the value of \(m\) so that the angle between the vectors \(\mathbf{a}\) and \(\mathbf{j}\) will be \(120^\circ\).
Solutions: \(m_1=9,~ m_2=-9\)Determine the value of \(m\) so that the angle between the vectors \(\mathbf{a}\) and \(\mathbf{b}\) will be \(60^\circ\).
Solutions: \(m=7\)(a) Write the vector equation of the line passing through \(P\) and \(Q\).
(b) Does the point \(A(10,11)\) lie on this line?
(c) Does the point \(B(7,10)\) lie on this line?
Solutions: (a) \(\mathbf{r}=\left(\begin{array}{c} 1 \\ 5 \end{array}\right)+t\left(\begin{array}{c} 3 \\ 2 \end{array}\right)\); (b) yes; (c) noFind out which of the following points lie on the line \(l\):
(a) \(A(10,11)\)
(b) \(B(4,7)\)
(c) \(C(16,13)\)
(d) \(D(-5,1)\)
Solutions: (a) yes; (b) yes; (c) no; (d) yesFind out which of the following points lie on the line \(l\):
(a) \(A(-2,2,2)\)
(b) \(B(10,10,-10)\)
(c) \(C(14,14,14)\)
Solutions: (a) yes; (b) no; (c) no(a) Write the vector equation of the line joining \(A\) and \(B\).
(b) Does this line pass through the point \(C(2,4,6)\)?
(c) Does this line pass through the origin of the coordinate system?
Solutions: (a) \(\mathbf{r}=\left(\begin{array}{c} 8 \\ 6 \\ 10 \end{array}\right)+t\left(\begin{array}{c} 4 \\ 3 \\ 5 \end{array}\right)\); (b) no; (c) yesWrite down the vector equation of the line which passes through the point \(P(3,2)\) and
(a) which is parallel to vector \(\mathbf{v}\),
(b) which is perpendicular to vector \(\mathbf{v}\).
Solutions: (a) \(\mathbf{r}=\left(\begin{array}{c} 3 \\ 2 \end{array}\right)+t\left(\begin{array}{c} 4 \\ -1 \end{array}\right)\); (b) \(\mathbf{r}=\left(\begin{array}{c} 3 \\ 2 \end{array}\right)+t\left(\begin{array}{c} 1 \\ 4 \end{array}\right)\)\(l_1\!:~~\mathbf{r}=\left(\begin{array}{c} 2 \\ 7 \end{array}\right)+t\left(\begin{array}{c} 1 \\ 2 \end{array}\right)\), \(l_2\!:~~\left(\begin{array}{c} x \\ y \end{array}\right)= \left(\begin{array}{c} 3 \\ 3 \end{array}\right)+u\left(\begin{array}{c} 6 \\ 4 \end{array}\right)\) \(l_3\!:~~\mathbf{r}=(-1+s)\mathbf{i}+(4-3s)\mathbf{j}\)
Write the equations of these lines in form \(y=mx+c\).
Solutions: \(l_1\!:~~y=2x+3\), \(l_2\!:~~y=\frac{2}{3}x+1\), \(l_3\!:~~y=-3x+1\),\(\mathbf{r}=\left(\begin{array}{c} 4 \\ -4 \\ -9 \end{array}\right)+t\left(\begin{array}{c} 1 \\ 2 \\ 4 \end{array}\right)\), \(\mathbf{r}=\left(\begin{array}{c} 13 \\ 12 \\ 1 \end{array}\right)+u\left(\begin{array}{c} 3 \\ 5 \\ -1 \end{array}\right)\)
Determine the point of intersection of these two lines if possible.
Solutions: \(P(7,2,3)\)\(\mathbf{r}=\left(\begin{array}{c} 1 \\ 5 \\ 1 \end{array}\right)+t\left(\begin{array}{c} 4 \\ 2 \\ 1 \end{array}\right)\), \(\mathbf{r}=\left(\begin{array}{c} 11 \\ 19 \\ 13 \end{array}\right)+u\left(\begin{array}{c} 2 \\ 4 \\ 3 \end{array}\right)\)
Determine the point of intersection of these two lines if possible.
Solutions: The intersection point doesn't exist – the lines are not concurrent.\(l_1\!:~~\mathbf{r}=\left(\begin{array}{c} 1 \\ -1 \\ 3 \end{array}\right)+t\left(\begin{array}{c} 6 \\ 2 \\ 4 \end{array}\right)\), \(l_2\!:~~\mathbf{r}=\left(\begin{array}{c} 2 \\ 2 \\ 7 \end{array}\right)+t\left(\begin{array}{c} -1 \\ 1 \\ 1 \end{array}\right)\)
(a) Are these two lines concurrent?
(b) Are these two lines perpendicular?
Solutions: (a) Yes, they are concurrent. They intersect at \(P(4,0,5)\). (b) Yes, they are perpendicular.\(l_1\!:~~\mathbf{r}=\left(\begin{array}{c} -1 \\ 10 \\ 3 \end{array}\right)+t\left(\begin{array}{c} -3 \\ 4 \\ 2 \end{array}\right)\), \(l_2\!:~~\mathbf{r}=\left(\begin{array}{c} -8 \\ 4 \\ -3 \end{array}\right)+t\left(\begin{array}{c} 5 \\ 1 \\ 2 \end{array}\right)\)
(a) Show that they are concurrent.
(b) Calculate the acute angle between these two lines. Round the result to nearest minute.
Solutions: (a) They intersect at \(P(2,6,1)\). (b) \(\theta\approx76^\circ16'\)\(l_1\!:~~\mathbf{r}=\left(\begin{array}{c} 5 \\ 3 \\ 2 \end{array}\right)+t\left(\begin{array}{c} 1 \\ 2 \\ -1 \end{array}\right)\), \(l_2\!:~~\mathbf{r}=\left(\begin{array}{c} 6 \\ 5 \\ 1 \end{array}\right)+t\left(\begin{array}{c} -3 \\ -6 \\ 3 \end{array}\right)\)
Show that these two lines are coincident (both equations represent the same line).
Solutions: Their direction vectors are parallel and the point \(P(5,3,2)\) lies on \(l_2\) (or: \(P(6,5,1)\) lies on \(l_1\)).\(\mathbf{r}=\left(\begin{array}{c} 3 \\ 5 \end{array}\right)+t\left(\begin{array}{c} 1 \\ 2 \end{array}\right)\)
(a) Find the point \(B\) on \(l\) so that \(\overrightarrow{AB}\) is perpendicular to \(l\).
(b) Find the perpendicular distance from \(A\) to \(l\).
Solutions: (a) \(B(6,11)\); (b) \(d(A,l)=3\sqrt{5}\approx6.71\)\(\mathbf{r}=\left(\begin{array}{c} 15 \\ 9 \\ 8 \end{array}\right)+t\left(\begin{array}{c} 4 \\ 3 \\ 1 \end{array}\right)\)
(a) Find the point \(B\) on \(l\) so that \(\overrightarrow{AB}\) is perpendicular to \(l\).
(b) Find the perpendicular distance from \(A\) to \(l\).
Solutions: (a) \(B(7,3,6)\); (b) \(d(A,l)=9\)\(\left(\begin{array}{c} x \\ y \end{array}\right)=t\left(\begin{array}{c} 16 \\ 12 \end{array}\right)\)
where the vector \(\left(\begin{array}{c} 0 \\ 1 \end{array}\right)\) represents the displacement of 1 km to the north.
(a) Find the position of this boat at \(t=1\) and \(t=2\).
(b) Find the speed of this boat.
(c) Calculate the time when the boat will reach the point \(H(60,45)\).
Solutions: (a) \(P_1(16,12),~ P_2(32,24)\); (b) \(|\mathbf{v}|=20\), so the speed is 20 km/h; (c) at \(t=3.75~\mathrm{h}=3~\mathrm{h}~45~\mathrm{min}\)First airplane: \(\mathbf{r}=\left(\begin{array}{c} 380 \\ 1340 \end{array}\right)+t\left(\begin{array}{c} 560 \\ 330 \end{array}\right)\)
Second airplane: \(\mathbf{r}=\left(\begin{array}{c} 2940 \\ 350 \end{array}\right)+t\left(\begin{array}{c} -480 \\ 550 \end{array}\right)\)
(a) Find the speeds of both airplanes.
(b) Find the distance between them after 1 hour.
(c) Show that the courses of the two airplanes intersect. Write the coordinates of the point of intersection.
(d) Will these two airplanes collide?
Solutions: (a) 650 km/h and 730 km/h; (b) \(d\approx1704~\mathrm{km}\); (c) \(P(1500,2000)\); (d) no: the first plane will reach \(P\) at \(t=2\) and the second at \(t=3\)