Domov

Vectors in two dimensions

  1. A B C P a b
    In the triangle ABC point P is the midpoint of the segment BC. Write the following vectors in terms of vectors a=AB and b=AC:

    (a)   CB

    (b)   PC

    (c)   AP

    Solutions:    (a)  CB=ab;     (b)  PC=12a+12b;     (c)  AP=12a+12b
  2. A B C D E F S a b
    The point S is the center of the regular hexagon ABCDEF. Write the following vectors as linear combinations of vectors a=AB and b=BC:

    (a)   AC

    (b)   ES

    (c)   FC

    (d)   EA

    Solutions:    (a)  AC=a+b;     (b)  ES=ab;     (c)  FC=2a;     (d)  EA=a2b
  3. A B C D P U V a b
    In the rectangle ABCD point P is the midpoint of the side CD. Points U and V divide the side BC into three equal parts. Express the following vectors as linear combinations of given vectors a=AB and b=AD:

    (a)   AC

    (b)   BD

    (c)   AP

    (d)   AU

    (e)   PV

    Solutions:    (a)  AC=a+b;     (b)  BD=a+b;     (c)  AP=12a+b;     (d)  AU=a+13b;     (e)  PV=12a13b
  4. A B C D P a b
    In the square ABCD point P is the midpoint of the side BC. Express the following vectors as linear combinations of basis vectors a=AC and b=AD:

    (a)   AB

    (b)   DB

    (c)   PD

    Solutions:    (a)  AB=ab;     (b)  DB=a2b;     (c)  PD=a+32b
  5. Write the vectors shown in the diagram bellow in column vector notation.

    Vectors

    Solutions:    a=(22),     b=(81),     c=(40),     d=(632),     e=(324),     f=(04)
  6. Write the vectors shown in the diagram bellow in terms of standard basis vectors i and j.

    Vectors

    Solutions:    a=2i+3j,     b=6i3j,     c=i+6j,     d=5i,     e=6j,     f=7i3j
  7. Vectors a and b are shown in the diagram bellow.

    Vectors

    (a)   Draw vectors  a+b  and  ab.

    (b)   Write vectors a and b in column notation.

    (c)   Calculate vectors  a+b  and  ab and write them in column notation.

    Solutions:    (b)  a=(61),     b=(23);     (c)  a+b=(44),     ab=(82)
  8. Vectors a and b have the coordinates:  a=(106),    b=(69).
    Calculate vectors:

    (a)   u=a+b

    (b)   v=5a6b

    (c)   w=12a+23b

    Solutions:    (a)  u=(1615);     (b)  v=(1424);     (c)  w=(13)
  9. Given vectors a=4i3j and b=5i+32j calculate:

    (a)   u=a+2b

    (b)   v=a+4b

    (c)   w=12ab

    Solutions:    (a)  u=14i;     (b)  v=16i+9j;     (c)  w=3i3j
  10. Given vector a=(86) calculate:

    (a)   52a

    (b)   2a+3ij

    (c)   |a|

    Solutions:    (a)  52a=(2015);     (b)  2a+3ij=(1911);     (c)  |a|=10
  11. Let a=(2172) and b=(4256).

    (a)   Find |a| and |b|.

    (b)   Calculate c=a+b.

    (c)   Find |c|.

    Solutions:    (a)  |a|=75,  |b|=70;     (b)  c=(6316);     (c)  |c|=65
  12. Let a=(68).

    (a)   Find |a|.

    (b)   Write down the unit vector u which has the direction of the vector a.

    Solutions:    (a)  |a|=10;     (b)  u=(3545)
  13. Let a=(512).
    Find the unit vector in the direction of the vector a and write it in terms of i and j.
    Solutions:    u=513i+1213j
  14. Consider vectors u1=12i+32j and u2=(10).

    (a)   Show that u1 and u2 are unit vectors.

    (b)   Calculate |u1u2| (write the exact value).

    Solutions:    (a)  |u1|=1,  |u2|=1;     (b)  |u1u2|=3
  15. Points A and B have coordinates A(3,1), B(5,6).

    (a)   Write down the position vectors OA and OB.

    (b)   Find the vector AB.

    Solutions:    (a)  OA=(31),    OB=(56);     (b)  AB=OBOA=(25)
  16. Points A(2,1), B(5,4) and C(3,8) are vertices of a triangle.

    (a)   Find vectors u=AB,   v=BC and w=CA.

    (b)   Verify that u+v+w=0.

    Solutions:    (a)  u=(73),    v=(24),    w=(57);     (b)  u+v+w=(00)
  17. Points A(2,3), B(9,5) and C(10,9) are three of the vertices of the parallelogram ABCD.

    (a)   Find the coordinates of point D.

    (b)   Find the length of the diagonal AC

    Solutions:    (a)  D(3,7);     (b)  |AC|=10
  18. Points A(3,1), B(5,4) and D(1,6) are three of the vertices of the parallelogram ABCD.

    (a)   Find the coordinates of point C.

    (b)   Find the coordinates of the intersection point of the diagonals AC and BD.

    Solutions:    (a)  C(7,9);     (b)  P(2,5)
  19. Points A(6,1) and B(16,5) are two of the vertices of the parallelogram ABCD. Point M(13,8) is the midpoint of the side CD. Point P is the intersection point of the diagonals.

    (a)   Find the coordinates of points C and D.

    (b)   Find the coordinates of point P.

    Solutions:    (a)  C(18,10), D(8,6);     (b)  P(12,5.5)
  20. Points A(5,0), B(22,3), C(19,10) and D(8,13) are the vertices of the quadrilateral ABCD.

    (a)   Show that ABCD is a parallelogram.

    (b)   Find the coordinates of the point P which is the intersection point of the diagonals.

    (c)   Find the length of the longer diagonal.

    Solutions:    (a)  AB=DC=(273) and AD=BC=(313);     (b)  P(7,5);     (c)  |BD|=34
  21. A given line segment AB has the endpoints A(2,1) and B(8,10). Points U and V divide the segment AB in three equal parts. Find the coordinates of the points U and V.
    Solutions:    U(4,4), V(6,7)
  22. Line segment AB has the endpoints A(3,2) and B(7,17). T is the point on AB such that AT:TB=2:3. Find the coordinates of the point T.
    Solutions:    T(1,8)
  23. Points A(5,20) and B(41,4) are the endpoints of the line segment AB.

    (a)   Find the coordinates of the point U on AB such that AU:UB=1:3.

    (b)   Find the coordinates of the point V on AB such that AV:AB=1:3.

    Solutions:    (a)  U(14,14);     (b)  V(17,12)
  24. M(22,31) is a point on the line segment AB such that AM:MB=2:5. Given the point A(4,3) find the coordinates of the point B.
    Solutions:    B(67,101)
  25. Points B(17,5), C(25,21) and D(13,17) are three of the vertices of the parallelogram ABCD. P is the point on AB such that AP:PB=1:3, and R is the point on AD such that AR:RD=1:3.

    (a)   Find the coordinates of the point A.

    (b)   Find the coordinates the points P and R.

    (c)   Write down the coordinates the vector PR.

    (d)   Show that the vector PR is parallel to the vector BD.

    Solutions:    (a)  A(5,1);     (b)  P(8,2), R(7,5);     (c)  PR=(13);     (d)  BD=4PR
  26. Consider vectors a=(53),   b=(12) and c=(154). Express vector c in terms of a and b.
    Solutions:    c=2a+5b
  27. Consider vectors u=(83),   v=(27) and w=(131). Express vector w in terms of u and v.
    Solutions:    w=32u12v
  28. Consider vectors a=(23) and b=(12). Write vector i in terms of a and b.
    Solutions:    i=2a+3b
  29. Consider vectors u=(69),   v=(46) and w=(810).

    (a)   Express vector u in terms of v and w if possible.

    (b)   Express vector w in terms of u and v if possible.

    Solutions:    (a)  u=32v+0w;     (b)  It's not possible.
  30. Vector a=(12m) has the modulus |a|=13. Find the value of m. Write down all possible solutions.
    Solutions:    m1=5, m2=5

Powered by MathJax
Index

 Index