Domov

Trigonometry

  1. Draw the graph of the function \(f(x)=\sin x\) and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: \(-1\), max. value: \(1\);     (b)  period: \(2\pi\)
  2. Draw the graph of the function \(f(x)=2\cos x+1\) and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: \(-1\), max. value: \(3\);     (b)  period: \(2\pi\)
  3. Draw the graph of the function \(f(x)=\sin2x+3\) and determine the following properties:

    (a)   find the domain and range,

    (b)   find the period,

    (c)   write down minima and maxima.

    Solutions:    (a)  domain: \(\mathbb{R}\), range: \([2,4]\);     (b)  period: \(\pi\);     (c)  min.: \((-\frac{\pi}{4}+k\pi,2)\), max.:\((\frac{\pi}{4}+k\pi,4),~~ k\in\mathbb{Z}\)
  4. Draw the graph of the function \(f(x)=\sin3x\) and determine the following properties:

    (a)   find \(x\)-intercepts,

    (b)   find the period,

    (c)   write down minima and maxima.

    Solutions:    (a)  \(x\)-intercepts: \(\frac{k\pi}{3},~~ k\in\mathbb{Z}\);     (b)  period: \(\frac{2\pi}{3}\);     (c)  min.: \((-\frac{\pi}{6}+\frac{2k\pi}{3},-1)\), max.:\((\frac{\pi}{6}+\frac{2k\pi}{3},1),~~ k\in\mathbb{Z}\)
  5. Draw the graph of the function \(f(x)=\cos3x\) and determine the following properties:

    (a)   find all \(x\)-intercepts on \([0,2\pi]\),

    (b)   write down minima and maxima on \([0,2\pi]\).

    Solutions:    (a)  \(x\)-intercepts: \(\frac{\pi}{6},~\frac{\pi}{2},~\frac{5\pi}{6},~\frac{7\pi}{6},~\frac{3\pi}{2},~\frac{11\pi}{6}\);     (b)  min.: \((\frac{\pi}{3},-1),~(\pi,-1),~(\frac{5\pi}{3},-1)\), max.:\((0,1),~(\frac{2\pi}{3},1),~(\frac{4\pi}{3},1),~(2\pi,1)\)
  6. Draw the graph of the function \(f(x)=4\cos\left(x-\frac{\pi}{6}\right)\) and determine the following properties:

    (a)   find \(y\)-intercept,

    (b)   find all \(x\)-intercepts on \([0,2\pi]\),

    (c)   write down the greatest and the least value, and state the smallest non-negative value of \(x\) for which they occur.

    Solutions:    (a)  \(y\)-intercept: \(2\sqrt{3}\);     (b)  \(x\)-intercepts: \(\frac{2\pi}{3},~ \frac{5\pi}{3}\);     (c)  min. value \(-4\) occurs at \(x=\frac{7\pi}{6}\), max. value \(4\) occurs at \(x=\frac{\pi}{6}\)
  7. Draw the graph of the function \(f(x)=\tan x\) and determine the following properties:

    (a)   find \(x\)-intercepts,

    (b)   find the vertical asymptotes.

    Solutions:    (a)  \(x\)-intercepts: \(x=k\pi,~~ k\in\mathbb{Z}\);     (b)  vertical asymptotes: \(x=\frac{\pi}{2}+k\pi,~~ k\in\mathbb{Z}\)
  8. Draw the graph of the function \(f(x)=\tan \frac{x}{2}\) and determine the following properties:

    (a)   find \(x\)-intercepts,

    (b)   find the vertical asymptotes.

    Solutions:    (a)  \(x\)-intercepts: \(x=2k\pi,~~ k\in\mathbb{Z}\);     (b)  vertical asymptotes: \(x=\pi+2k\pi,~~ k\in\mathbb{Z}\)
  9. Draw the graphs of the following functions:

    (a)   \(y=|\sin x|\)

    (b)   \(y=|2\cos x+1|\)

  10. Draw the graphs of the following functions:

    (a)   \(y=\sin |x|\)

    (b)   \(y=\tan |x|\)

  11. Use your GDC to draw the graph of the function \(y=\log_2 (\sin x+1)\) and then:

    (a)   find \(x\)-intercepts,

    (b)   find the vertical asymptotes,

    (c)   find minima and maxima.

    Solutions:    (a)  \(x\)-intercepts: \(x=k\pi,~~ k\in\mathbb{Z}\);     (b)  vertical asymptotes: \(x=\frac{3\pi}{2}+2k\pi,~~ k\in\mathbb{Z}\);     (c)  maxima: \((\frac{\pi}{2}+2k\pi,1),~~ k\in\mathbb{Z}\), minima don't exist
  12. Use your GDC to draw the graph of the function \(f(x)=\sin x+\sqrt{3}\cos x\). This function can be written in the form \(f(x)= A\sin(x+B)\). Find the values of the constants \(A\) and \(B\).
    Solutions:    \(A=2,~ B=\frac{\pi}{3}\);     \(f(x)=2\sin(x+\frac{\pi}{3})\)
  13. Use your GDC to draw the graph of the function \(f(x)=\sin^2 x\). Then write this function in the form \(f(x)= A\cos Bx+C\). (Hint: Use the GDC to test your solution.)
    Solutions:    \(f(x)=-\frac{1}{2}\cos 2x+\frac{1}{2}\)
  14. Calculate the values of the following trigonometric functions. Your results should be exact.

    (a)   \(\sin120^\circ\)

    (b)   \(\cos135^\circ\)

    (c)   \(\tan150^\circ\)

    Solutions:    (a)  \(\cdots=\frac{\sqrt{3}}{2}\);     (b)  \(\cdots=-\frac{\sqrt{2}}{2}\);     (c)  \(\cdots=-\frac{\sqrt{3}}{3}\)
  15. Calculate the exact values of the following trigonometric functions:

    (a)   \(\cos210^\circ\)

    (b)   \(\tan225^\circ\)

    (c)   \(\sin330^\circ\)

    Solutions:    (a)  \(\cdots=-\frac{\sqrt{3}}{2}\);     (b)  \(\cdots=1\);     (c)  \(\cdots=-\frac{1}{2}\)
  16. Calculate the exact values of the following trigonometric functions:

    (a)   \(\sin405^\circ\)

    (b)   \(\tan480^\circ\)

    (c)   \(\cos540^\circ\)

    (d)   \(\sin1290^\circ\)

    Solutions:    (a)  \(\cdots=\frac{\sqrt{2}}{2}\);     (b)  \(\cdots=-\sqrt{3}\);     (c)  \(\cdots=-1\);     (d)  \(\cdots=-\frac{1}{2}\)
  17. Calculate the exact values of the following trigonometric functions:

    (a)   \(\sin(-60^\circ)\)

    (b)   \(\tan(-135^\circ)\)

    (c)   \(\cos(-270^\circ)\)

    Solutions:    (a)  \(\cdots=-\frac{\sqrt{3}}{2}\);     (b)  \(\cdots=1\);     (c)  \(\cdots=0\)
  18. Calculate the exact values of the following trigonometric functions:

    (a)   \(\sin\frac{7\pi}{6}\)

    (b)   \(\tan\frac{11\pi}{3}\)

    (c)   \(\cos(-7\pi)\)

    Solutions:    (a)  \(\cdots=-\frac{1}{2}\);     (b)  \(\cdots=-\sqrt{3}\);     (c)  \(\cdots=-1\)
  19. Express each of the following as trigonometric function of an acute angle:

    (a)   \(\cos190^\circ\)

    (b)   \(\sin500^\circ\)

    (c)   \(\tan\frac{7\pi}{5}\)

    Solutions:    (a)  \(\cdots=-\cos10^\circ\);     (b)  \(\cdots=\sin40^\circ\);     (c)  \(\cdots=\tan\frac{2\pi}{5}=\tan72^\circ\)
  20. Find \(\sin\alpha\) given that \(\alpha\) is an acute angle and \(\cos\alpha=\frac{3}{5}\).
    (Note: Use the standard trigonometric identities to find the exact result.)
    Solutions:    \(\sin\alpha=\frac{4}{5}\)
  21. Given that \(\sin x=\frac{15}{17}\) and \(90^\circ\lt x\lt180^\circ\), find the exact values of:

    (a)   \(\cos x\)

    (b)   \(\tan x\)

    Solutions:    (a)  \(\cos x=-\frac{8}{17}\);     (b)  \(\tan x=-\frac{15}{8}\)
  22. Given that \(\cos x=-\frac{2}{3}\) and \(\pi\lt x\lt 2\pi\), find the exact values of:

    (a)   \(\sin x\)

    (b)   \(\tan x\)

    Solutions:    (a)  \(\sin x=-\frac{\sqrt{5}}{3}\);     (b)  \(\tan x=\frac{\sqrt{5}}{2}\)
  23. Given that \(\tan x=-2\sqrt{2}\) and \(0\lt x\lt \pi\), find the exact values of:

    (a)   \(\cos x\)

    (b)   \(\sin x\)

    Solutions:    (a)  \(\cos x=-\frac{1}{3}\);     (b)  \(\sin x=\frac{2\sqrt{2}}{3}\)
  24. Simplify the following expressions using the standard trigonometric identities:

    (a)   \({\displaystyle\frac{1-\cos^2 x}{\sin x}}\)

    (b)   \({\displaystyle\left(\frac{1}{\sin x}-\sin x\right)\cdot\frac{1}{\cos^2 x}}\)

    (c)   \({\displaystyle\left(\sin x-\frac{1}{\sin x}\right)\cdot\tan x}\)

    Solutions:    (a)  \(\cdots=\sin x\);     (b)  \(\cdots=\frac{1}{\sin x}\);     (c)  \(\cdots=-\cos x\)
  25. Simplify the following expressions:

    (a)   \({\displaystyle\frac{\tan^2 x}{\sin^2 x}\cdot\frac{1-\sin^2 x}{1+\tan^2 x}}\)

    (b)   \({\displaystyle\frac{{\displaystyle\frac{1}{\cos x}}-\cos x}{\tan x}+\frac{1}{\sin x(\tan^2 x+1)}}\)

    (c)   \({\displaystyle\left(\tan x+\frac{1}{\tan x}-\frac{1}{\sin x}\right)(1+\cos x)}\)

    Solutions:    (a)  \(\cdots=\cos^2 x\);     (b)  \(\cdots=\frac{1}{\sin x}\);     (c)  \(\cdots=\tan x\)
  26. Simplify the following expressions using the standard trigonometric identities and the double angles formulae:

    (a)   \({\displaystyle\sin 2x\cdot\frac{{\displaystyle\frac{1}{\sin x}}-\sin x}{\cos x}}\)

    (b)   \({\displaystyle\frac{2\tan x-\sin 2x}{1-\cos 2x}}\)

    (c)   \({\displaystyle\frac{{\displaystyle\frac{1}{\cos 2x}}-\cos^2 x+\sin^2 x}{\tan 2x}}\)

    (d)   \({\displaystyle\frac{\tan x+\sin x}{\tan x \sin 2x}\cdot(1-\cos x)}\)

    Solutions:    (a)  \(\cdots=2\cos^2 x\);     (b)  \(\cdots=\tan x\);     (c)  \(\cdots=\sin 2x\);     (d)  \(\cdots=\frac{1}{2}\tan x\)
  27. Solve the following equations for \(-180^\circ\leqslant x\lt 180^\circ\). Write the solutions in degrees.

    (a)   \(\sin x=\frac{1}{2}\)

    (b)   \(\sin x=-\frac{\sqrt{2}}{2}\)

    (c)   \(\cos x=\frac{1}{2}\)

    (d)   \(\cos x=0\)

    Solutions:    (a)  \(x_1=30^\circ,~ x_2=150^\circ\);     (b)  \(x_1=-45^\circ,~ x_2=-135^\circ\);     (c)  \(x_1=60^\circ,~ x_2=-60^\circ\);     (d)  \(x_1=90^\circ,~ x_2=-90^\circ\)
  28. Solve the following equations for \(0\leqslant x\lt 2\pi\). Write the solutions in radians.

    (a)   \(\sin x=\frac{1}{2}\)

    (b)   \(\sin x=\frac{\sqrt{2}}{2}\)

    (c)   \(\cos x=\frac{\sqrt{2}}{2}\)

    (d)   \(\cos x=-\frac{1}{2}\)

    Solutions:    (a)  \(x_1=\frac{\pi}{6},~ x_2=\frac{5\pi}{6}\);     (b)  \(x_1=\frac{\pi}{4},~ x_2=\frac{3\pi}{4}\);     (c)  \(x_1=\frac{\pi}{4},~ x_2=\frac{7\pi}{4}\);     (d)  \(x_1=\frac{5\pi}{6},~ x_2=\frac{7\pi}{6}\)
  29. Find all possible solutions of the following equations. Write the solutions in radians.

    (a)   \(\sin x=\frac{1}{2}\)

    (b)   \(\sin x=-1\)

    (c)   \(\cos x=\frac{\sqrt{3}}{2}\)

    (d)   \(\cos x=-\frac{1}{2}\)

    Solutions:    (a)  \(x_1=\frac{\pi}{6}+2k\pi,~ x_2=\frac{5\pi}{6}+2k\pi,~~ (k\in\mathbb{Z})\);     (b)  \(x_1=-\frac{\pi}{2}+2k\pi,~~ (k\in\mathbb{Z})\);     (c)  \(x_1=\pm\frac{\pi}{6}+2k\pi,~~ (k\in\mathbb{Z})\);     (d)  \(x_1=\pm\frac{2\pi}{3}+2k\pi,~~ (k\in\mathbb{Z})\)
  30. Find all possible solutions of the following equations. Write the solutions in radians.

    (a)   \(\sin 2x=\frac{1}{2}\)

    (b)   \(\sin \left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

    (c)   \(\cos 5x=-\frac{\sqrt{3}}{2}\)

    (d)   \(\cos \left(3x-\frac{\pi}{6}\right)=\sqrt{2}\)

    Solutions:    (a)  \(x_1=\frac{\pi}{12}+k\pi,~ x_2=\frac{5\pi}{12}+k\pi,~~ (k\in\mathbb{Z})\);     (b)  \(x_1=2k\pi,~ x_2=\frac{\pi}{2}+2k\pi,~~ (k\in\mathbb{Z})\);     (c)  \(x_1=\pm\frac{\pi}{6}+\frac{2}{5}k\pi,~~ (k\in\mathbb{Z})\);     (d)  this equation has no solutions (cosine can't be greater than 1)
  31. Find all possible solutions of the following equations. Write the solutions in degrees.

    (a)   \(\sin 2x=\frac{1}{2}\)

    (b)   \(\sin \left(5x+40^\circ\right)=\frac{\sqrt{3}}{2}\)

    (c)   \(\cos 6x=-1\)

    (d)   \(\cos (x+25^\circ)=\frac{1}{3}\)

    Solutions:    (a)  \(x_1=15^\circ+180^\circ k,~ x_2=75^\circ+180^\circ k,~~ (k\in\mathbb{Z})\);     (b)  \(x_1=4^\circ+72^\circ k,~ x_2=16^\circ+72^\circ k,~~ (k\in\mathbb{Z})\);     (c)  \(x_1=30^\circ+60^\circ k,~~ (k\in\mathbb{Z})\);     (d)  \(x_1\approx 45^\circ32'+360^\circ k,~ x_2\approx -95^\circ32'+360^\circ k,~~ (k\in\mathbb{Z})\)
  32. Find all solutions for \(x\in[0,360^\circ)\). Write the solutions in degrees and minutes.

    (a)   \(\sin 2x=\frac{1}{2}\)

    (b)   \(\sin \left(3x-15^\circ30'\right)=0\)

    (c)   \(\sin \frac{3x}{2}=\frac{2}{3}\)

    Solutions:    (a)  \(x_1=15^\circ,~ x_2=75^\circ,~ x_3=195^\circ,~ x_4=255^\circ\);     (b)  \(x_1=5^\circ10',~ x_2=65^\circ10',~ x_3=125^\circ10',~ x_4=185^\circ10',~ x_5=245^\circ10',~ x_6=305^\circ10'\);     (c)  \(x_1\approx27^\circ52',~ x_2\approx92^\circ8',~ x_3\approx267^\circ52',~ x_4\approx332^\circ8'\)
  33. Find all possible solutions of the following equations. Write the solutions in radians.

    (a)   \(\tan x=1\)

    (b)   \(\tan x=\sqrt{3}\)

    (c)   \(\tan 2x=-1\)

    (d)   \(\tan 2x=3\)

    Solutions:    (a)  \(x_1=\frac{\pi}{4}+k\pi,~~ (k\in\mathbb{Z})\);     (b)  \(x_1=\frac{\pi}{3}+k\pi,~~ (k\in\mathbb{Z})\);     (c)  \(x_1=-\frac{\pi}{8}+\frac{1}{2}k\pi,~~ (k\in\mathbb{Z})\);     (d)  \(x_1\approx0.6245+\frac{k\pi}{2},~~ (k\in\mathbb{Z})\)
  34. Find all possible solutions of the following equations. Write the solutions in degrees.

    (a)   \(\tan (x+25^\circ)=\frac{\sqrt{3}}{3}\)

    (b)   \(\tan 9x=0\)

    (c)   \(\tan (2x-72^\circ)=-\frac{1}{2}\)

    Solutions:    (a)  \(x_1=5^\circ+180^\circ k,~~ (k\in\mathbb{Z})\);     (b)  \(x_1=20^\circ k,~~ (k\in\mathbb{Z})\);     (c)  \(x_1\approx22^\circ43'+90^\circ k,~~ (k\in\mathbb{Z})\)
  35. Find all solutions for \(x\in(-180^\circ,180^\circ]\). Write the solutions in degrees and minutes.

    (a)   \(\tan (x-15^\circ)=\sqrt{3}\)

    (b)   \(\tan \frac{3x}{2}=-3\)

    Solutions:    (a)  \(x_1=75^\circ,~ x_2=-105^\circ\);     (b)  \(x_1\approx72^\circ17',~ x_2\approx-47^\circ43',~ x_3\approx-167^\circ43'\)
  36. Find all solutions of the following equations:

    (a)   \(\cos^2 x-4\cos x+3=0\)

    (b)   \(2\sin^2 x-11\sin x=6\)

    (c)   \(2\sin^2 x+3\cos x=3\)

    Solutions:    (a)  \(x=2k\pi~~ (k\in\mathbb{Z})\);     (b)  \(x_1=-\frac{\pi}{6}+2k\pi,~ x_2=-\frac{5\pi}{6}+2k\pi~~ (k\in\mathbb{Z})\);     (c)  \(x_1=2k\pi,~ x_2=\pm\frac{\pi}{3}+2k\pi~~ (k\in\mathbb{Z})\)
  37. Find all solutions of the following equations:

    (a)   \(\sin^2 x+2\sin x=0\)

    (b)   \(\tan^2 x-\tan x=0\)

    (c)   \(2\sin x\cos x-2\sin x+\sqrt{3}\cos x-\sqrt{3}=0 \)

    Solutions:    (a)  \(x=k\pi~~ (k\in\mathbb{Z})\);     (b)  \(x_1=k\pi,~ x_2=\frac{\pi}{4}+k\pi~~ (k\in\mathbb{Z})\);     (c)  \(x_1=2k\pi,~ x_2=-\frac{\pi}{3}+2k\pi,~ x_3=-\frac{2\pi}{3}+2k\pi~~ (k\in\mathbb{Z})\)
  38. Find all solutions of the following equations:

    (a)   \(4\sin^2 x\cos x=8\cos x-7\sin2x\)

    (b)   \(\tan x\cos^2 x-\frac{5}{2}\tan x=-\frac{9}{2}\tan x\cos x\)

    Solutions:    (a)  \(x_1=\frac{\pi}{2}+k\pi,~ x_2=\frac{\pi}{6}+2k\pi,~ x_2=\frac{5\pi}{6}+2k\pi~~ (k\in\mathbb{Z})\);     (b)  \(x_1=k\pi,~ x_2=\pm\frac{\pi}{3}+2k\pi~~ (k\in\mathbb{Z})\)
  39. Find all solutions of the following equations:

    (a)   \(\sin x+\sqrt{3}\cos x=0\)

    (b)   \(\sin^2x+\sin2x-3\cos^2x=0\)

    (c)   \(6\sin^2x-\sin2x-2\cos^2x=1\)

    Solutions:    (a)  \(x_1=-\frac{\pi}{3}+k\pi~~ (k\in\mathbb{Z})\);     (b)  \(x_1=\frac{\pi}{4}+k\pi,~ x_2=-\arctan3+k\pi~~ (k\in\mathbb{Z})\);     (c)  \(x_1=\frac{\pi}{4}+k\pi,~ x_2=-\arctan\frac{3}{5}+k\pi~~ (k\in\mathbb{Z})\)

Powered by MathJax
Index

 Index