Domov

Trigonometry

  1. In the right-angled triangle \(\triangle ABC\),   \(A\hat{C}B=90^\circ,~ A\hat{B}C=37^\circ25'\) and \(a=BC=14~\mathrm{cm}\).

    (a)   Find the lengths of the other two sides \(b=AC\) and \(c=AB\).

    (b)   Calculate the perimeter \(P\) of the triangle.

    Solutions:    (a)  \(b\approx10.7~\mathrm{cm},~ c\approx17.6~\mathrm{cm}\);     (b)  \(P=a+b+c\approx42.3~\mathrm{cm}\)
  2. In the right-angled triangle \(\triangle ABC\),   \(A\hat{C}B=90^\circ,~ A\hat{B}C=30^\circ\) and \(a=BC=12~\mathrm{cm}\).

    (a)   Find the lengths of the other two sides \(b=AC\) and \(c=AB\).

    (b)   Calculate the perimeter \(P\) of the triangle.

    Solutions:    (a)  \(b=4\sqrt{3}~\mathrm{cm},~ c=8\sqrt{3}~\mathrm{cm}\);     (b)  \(P=a+b+c=12+12\sqrt{3}~\mathrm{cm}\)
  3. In the isosceles triangle \(\triangle ABC\),   \(a=b=7~\mathrm{cm}\) and \(\alpha=B\hat{A}C=68^\circ\).

    (a)   Find the length of the side \(c\).

    (b)   Find the length of the height \(h_c\).

    Solutions:    (a)  \(c\approx5.24~\mathrm{cm}\);     (b)  \(h_c\approx6.49~\mathrm{cm}\)
  4. The isosceles triangle \(\triangle ABC\) \((a=b)\) has the base \(c=AB=24~\mathrm{cm}\) and the height \(h_c=35~\mathrm{cm}\)

    (a)   Find the perimeter of this triangle.

    (b)   Calculate the angles of this triangle. Write them in degrees and minutes.

    Solutions:    (a)  \(P=24+37+37=98~\mathrm{cm}\);     (b)  \(\alpha=\beta\approx71^\circ5',~ \gamma\approx37^\circ51'\)
  5. The rectangle \(ABCD\) has the diagonal \(e=AC=20~\mathrm{cm}\). The angle between this diagonal and the side \(a=AB\) is \(C\hat{A}B=27^\circ45'\).

    (a)   Find the sides of this rectangle.

    (b)   Calculate the acute angle between the diagonals.

    Solutions:    (a)  \(a\approx17.7~\mathrm{cm},~ b\approx9.31~\mathrm{cm}\);     (b)  \(\varphi=55^\circ30'\)
  6. The rectangle \(ABCD\) has the side \(a=AB=18~\mathrm{cm}\). The angle between the diagonal \(d=AC\) and the side \(a\) is \(C\hat{A}B=30^\circ\). Find the side \(b=BC\) and the diagonal \(d=AC\). Write your results in the exact form.
    Solutions:    \(b=6\sqrt{3}~\mathrm{cm},~ d=12\sqrt{3}~\mathrm{cm}\)
  7. The diagonals of the rhombus \(ABCD\) have lengths \(e=AC=30~\mathrm{cm}\) and \(f=BD=16~\mathrm{cm}\).

    (a)   Find the side \(a=AB\).

    (b)   Calculate the angle \(\alpha=D\hat{A}B\).

    Solutions:    (a)  \(a=17~\mathrm{cm}\);     (b)  \(\alpha\approx56^\circ9'\)
  8. A regular pentagon \(ABCDE\) is inscribed in the circle with the radius \(r=10~\mathrm{cm}\). Find the side \(a=AB\) of this pentagon.
    Solutions:    \(a\approx11.8~\mathrm{cm}\)
  9. A regular hexagon \(ABCDEF\) has the side \(a=7~\mathrm{cm}\). Find the length of the diagonal \(d=AE\).
    Solutions:    \(d=7\sqrt{3}~\mathrm{cm}\)
  10. In the triangle \(\triangle ABC\), \(\alpha=C\hat{A}B=60^\circ,~ \beta=A\hat{B}C=45^\circ\) and the height \(h_c=4\sqrt{3}~\mathrm{cm}\). Find the lengths of the sides \(a,~ b\) and \(c\). Write the exact values.
    Solutions:    \(a=4\sqrt{6}~\mathrm{cm},~ b=8~\mathrm{cm},~ c=(4+4\sqrt{3})~\mathrm{cm}\)
  11. In the triangle \(\triangle ABC\), \(b=AC=6~\mathrm{cm},~ c=AB=10~\mathrm{cm}\) and \(\alpha=C\hat{A}B=70^\circ\). The height \(h_c\) has the endpoints \(C\) and \(H\).

    (a)   Find the height \(h_c\).

    (b)   Find the distances \(AH\) and \(HB\).

    (c)   Hence, calculate the side \(a=BC\).

    Solutions:    (a)  \(h_c\approx5.64~\mathrm{cm}\);     (b)  \(AH\approx2.05~\mathrm{cm},~ HB\approx7.95~\mathrm{cm}\);     (c)  \(a\approx9.74~\mathrm{cm}\)
  12. In the triangle \(\triangle ABC\), \(b=AC=5~\mathrm{cm},~ c=AB=8~\mathrm{cm}\) and \(\alpha=C\hat{A}B=60^\circ\). Find the length of the side \(a\).
    Solutions:    \(a=7~\mathrm{cm}\)
  13. In the triangle \(\triangle ABC\), \(a=BC=13~\mathrm{cm},~ b=AC=19~\mathrm{cm}\) and \(\gamma=A\hat{C}B=64^\circ30'\). Find the length of the side \(c\).
    Solutions:    \(c\approx17.8~\mathrm{cm}\)
  14. In the triangle \(\triangle ABC\), \(a=BC=9~\mathrm{cm},~ b=AC=14~\mathrm{cm}\) and \(c=AB=13~\mathrm{cm}\). Calculate the angles \(\alpha,\beta\) and \(\gamma\). Round the results to the nearest minute.
    Solutions:    \(\alpha\approx38^\circ43',~ \beta\approx76^\circ39',~ \gamma\approx64^\circ37'\)
  15. In the triangle \(\triangle ABC\), \(a=BC=13~\mathrm{cm},~ b=AC=8~\mathrm{cm}\) and \(c=AB=7~\mathrm{cm}\). Calculate the angles \(\alpha,\beta\) and \(\gamma\). Round the results to the nearest minute.
    Solutions:    \(\alpha=120^\circ,~ \beta\approx32^\circ12',~ \gamma\approx27^\circ48'\)
  16. In the triangle \(\triangle ABC\), \(a=BC=2~\mathrm{cm},~ b=AC=7~\mathrm{cm}\) and \(c=AB=3\sqrt{3}~\mathrm{cm}\). Calculate the angle \(\beta\).
    Solutions:    \(\beta=150^\circ\)
  17. In the triangle \(\triangle ABC\), \(a=23~\mathrm{cm},~ c=17~\mathrm{cm}\) and \(\beta=107^\circ\).

    (a)   Find the side \(b\).

    (b)   Calculate the angles \(\alpha\) and \(\gamma\).

    Solutions:    (a)  \(b\approx32.4~\mathrm{cm}\);     (b)  \(\alpha\approx42^\circ50',~ \gamma\approx30^\circ10'\)
  18. In the triangle \(\triangle ABC\), \(\alpha=30^\circ,~ \beta=71^\circ\) and \(b=16~\mathrm{cm}\).

    (a)   Find the height \(h_c\).

    (b)   Calculate the side \(a\).

    Solutions:    (a)  \(h_c=8~\mathrm{cm}\);     (b)  \(a\approx8.46~\mathrm{cm}\)
  19. In the triangle \(\triangle ABC\), \(\alpha=57^\circ,~ \beta=71^\circ\) and \(c=15~\mathrm{cm}\).

    (a)   Find the angle \(\gamma\).

    (b)   Find the sides \(a\) and \(b\).

    Solutions:    (a)  \(\gamma=52^\circ\);     (b)  \(a\approx16.0~\mathrm{cm},~ b\approx18.0~\mathrm{cm}\)
  20. In the triangle \(\triangle ABC\), \(a=23~\mathrm{cm},~ b=39~\mathrm{cm}\) and \(\beta=83^\circ\).

    (a)   Find the angles \(\alpha\) and \(\gamma\).

    (b)   Find the side \(c\).

    Solutions:    (a)  \(\alpha\approx35^\circ50',~ \gamma\approx61^\circ10'\);     (b)  \(c\approx34.4~\mathrm{cm}\)
  21. In the triangle \(\triangle ABC\), \(b=6~\mathrm{cm},~ c=8~\mathrm{cm}\) and \(\alpha=30^\circ\).

    (a)   Find the height \(h_c\).

    (b)   Find the area \(A\).

    Solutions:    (a)  \(h_c=3~\mathrm{cm}\);     (b)  \(A=12~\mathrm{cm}^2\)
  22. In the triangle \(\triangle ABC\), \(a=14~\mathrm{cm},~ c=11~\mathrm{cm}\) and \(\beta=77^\circ33'\).

    (a)   Find the side \(b\).

    (b)   Find the area \(A\).

    Solutions:    (a)  \(b\approx15.8~\mathrm{cm}\);     (b)  \(A\approx75.2~\mathrm{cm}^2\)
  23. In the triangle \(\triangle ABC\), \(a=5~\mathrm{cm},~ b=2~\mathrm{cm}\) and \(\gamma=58^\circ\). Find the area of this triangle.
    Solutions:    \(A\approx4.24~\mathrm{cm}^2\)
  24. In the triangle \(\triangle ABC\), \(a=7~\mathrm{cm},~ b=8~\mathrm{cm}\) and \(c=5~\mathrm{cm}\).

    (a)   Find the angle \(\alpha=C\hat{A}B\).

    (b)   Find the area \(A\).

    Solutions:    (a)  \(\alpha=60^\circ\);     (b)  \(A=10\sqrt{3}~\mathrm{cm}\approx17.3~\mathrm{cm}^2\)
  25. The triangle \(\triangle ABC\) has sides: \(a=26~\mathrm{cm},~ b=15~\mathrm{cm}\) and \(c=37~\mathrm{cm}\). Find the area of this triangle.
    Solutions:    \(A=156~\mathrm{cm}^2\)
  26. The triangle \(\triangle ABC\) has sides: \(a=14~\mathrm{cm},~ b=19~\mathrm{cm}\) and \(c=7~\mathrm{cm}\). Find the area of this triangle.
    Solutions:    \(A\approx39.5~\mathrm{cm}^2\)
  27. The triangle \(\triangle ABC\) has sides: \(a=6~\mathrm{cm},~ b=8~\mathrm{cm}\) and \(c=17~\mathrm{cm}\). Find the area of this triangle.
    Solutions:    A triangle with these sides doesn't exist.
  28. The triangle \(\triangle ABC\) has the sides: \(a=17~\mathrm{cm},~ b=10~\mathrm{cm}\) and \(c=21~\mathrm{cm}\).

    (a)   Find the area.

    (b)   Find the height \(h_c\).

    Solutions:    (a)  \(A=84~\mathrm{cm}^2\);     (b)  \(h_c=8~\mathrm{cm}\)
  29. In the triangle \(\triangle ABC\): \(\alpha=39^\circ,~ \beta=68^\circ\) and \(c=14~\mathrm{cm}\).

    (a)   Find the angle \(\gamma\).

    (b)   Find the sides \(a\) and \(b\).

    (c)   Find the perimeter and area.

    Solutions:    (a)  \(\gamma=73^\circ\);     (b)  \(a\approx9.21~\mathrm{cm},~ b\approx13.6~\mathrm{cm}\);     (c)  \(P\approx36.8~\mathrm{cm},~ A\approx59.8~\mathrm{cm}^2\)
  30. In the parallelogram \(ABCD\): \(a=AB=15~\mathrm{cm},~ b=BC=7~\mathrm{cm}\) and \(\alpha=B\hat{A}D=60^\circ\).

    (a)   Find the diagonal \(f=BD\).

    (b)   Find the area of this parallelogram.

    Solutions:    (a)  \(f=13~\mathrm{cm}\);     (b)  \(A\approx90.9~\mathrm{cm}^2\)
  31. The rhombus \(ABCD\) has the side \(a=7~\mathrm{cm}\) and the angle \(\alpha=69^\circ\).

    (a)   Find the diagonal \(f=BD\).

    (b)   Find the height \(h\).

    (c)   Find the area of this rhombus.

    Solutions:    (a)  \(f\approx7.93~\mathrm{cm}\);     (b)  \(h\approx6.54~\mathrm{cm}\);     (c)  \(A\approx45.7~\mathrm{cm}^2\)
  32. A regular pentagon is inscribed in the circle with the radius \(r=8~\mathrm{cm}\).

    (a)   Find the side of this pentagon.

    (b)   Find the diagonal.

    (c)   Find the area.

    Solutions:    (a)  \(a\approx9.40~\mathrm{cm}\);     (b)  \(d\approx15.2~\mathrm{cm}\);     (c)  \(A\approx152~\mathrm{cm}^2\)
  33. A regular octagon \(ABCDEFGH\) has the side \(a=10~\mathrm{cm}\).

    (a)   Find the diagonal \(AC\).

    (b)   Find the inradius \(r\) (radius of the inscribed circle).

    (c)   Find the area of this octagon.

    Solutions:    (a)  \(AC\approx18.5~\mathrm{cm}\);     (b)  \(r\approx12.1~\mathrm{cm}\);     (c)  \(A\approx483~\mathrm{cm}^2\)
  34. A regular nonagon has the side \(a=6~\mathrm{cm}\).

    (a)   Find the circumradius \(R\) (radius of the circumscribed circle).

    (b)   Find the length of the longest diagonal.

    (c)   Find the area of this nonagon.

    Solutions:    (a)  \(R\approx8.77~\mathrm{cm}\);     (b)  \(d\approx17.3~\mathrm{cm}\);     (c)  \(A\approx223~\mathrm{cm}^2\)
  35. In the triangle \(\triangle ABC\): \(a=2~\mathrm{cm},~ b=7~\mathrm{cm}\) and \(c=3\sqrt{3}~\mathrm{cm}\).

    (a)   Find the angle \(\alpha\).

    (b)   Find the angle \(\beta\). Try calculating \(\beta\) using the cosine rule and using the sine rule.

    Solutions:    (a)  \(\alpha\approx8^\circ13'\);     (b)  \(\beta=150^\circ\) (and not \(30^\circ\))
  36. In the triangle \(\triangle ABC\): \(a=19~\mathrm{cm},~ b=21~\mathrm{cm}\) and \(\alpha=60^\circ\).

    (a)   Find the angle \(\beta\). Write down both possible values of \(\beta\).

    (b)   Find the side \(c\). Write down both possible values of \(c\).

    Solutions:    (a)  \(\beta_1\approx73^\circ10',~ \beta_2\approx106^\circ50'\);     (b)  \(c_1=16~\mathrm{cm},~ c_2=5~\mathrm{cm}\)
  37. In the triangle \(\triangle ABC\): \(a=7~\mathrm{cm},~ b=13~\mathrm{cm}\) and \(\alpha=105^\circ\). Find the angle \(\beta\) and the side \(c\).
    Solutions:    Such a triangle can't exist.
  38. In the triangle \(\triangle ABC\): \(a=7~\mathrm{cm},~ b=13~\mathrm{cm}\) and \(\alpha=68^\circ\). Find the angle \(\beta\) and the side \(c\).
    Solutions:    Such a triangle can't exist.
  39. In the triangle \(\triangle ABC\): \(a=7~\mathrm{cm},~ b=13~\mathrm{cm}\) and \(\alpha=29^\circ\). Find the angle \(\beta\) and the side \(c\).
    Solutions:    Two solutions: (1)  \(\beta_1\approx64^\circ12',~ c_1\approx14.4~\mathrm{cm}\);     (2)  \(\beta_2\approx115^\circ48',~ c_2\approx8.32~\mathrm{cm}\)
  40. The triangle \(\triangle ABC\) has the sides \(a=5~\mathrm{cm},~ b=8~\mathrm{cm}\) and the area \(A=8~\mathrm{cm}^2\). Find the side \(c\).
    Solutions:    Two solutions: \(c_1\approx3.96~\mathrm{cm},~ c_2\approx12.7~\mathrm{cm}\)
  41. The circle has the radius \(r=5~\mathrm{cm}\). Find the area and perimeter of this circle.
    Solutions:    \(A=25\pi~\mathrm{cm}^2\approx78.5~\mathrm{cm}^2,~ P=10\pi~\mathrm{cm}\approx31.4~\mathrm{cm}\)
  42. The circle has the circumference \(100~\mathrm{cm}\). Find the area of this circle.
    Solutions:    \(r\approx15.9~\mathrm{cm},~ A\approx796~\mathrm{cm}^2\)
  43. Write the following angles in radians:

    (a)   \(30^\circ\)

    (b)   \(45^\circ\)

    (c)   \(120^\circ\)

    (d)   \(135^\circ\)

    Solutions:    (a)  \(30^\circ=\frac{\pi}{6}\);     (b)  \(45^\circ=\frac{\pi}{4}\);     (c)  \(120^\circ=\frac{2\pi}{3}\);     (d)  \(135^\circ=\frac{3\pi}{4}\)
  44. Convert the following angles to degrees:

    (a)   \(\frac{\pi}{3}\)

    (b)   \(\frac{\pi}{2}\)

    (c)   \(\frac{5\pi}{6}\)

    (d)   \(\frac{5\pi}{4}\)

    Solutions:    (a)  \(\frac{\pi}{3}=60^\circ\);     (b)  \(\frac{\pi}{2}=90^\circ\);     (c)  \(\frac{5\pi}{6}=150^\circ\);     (d)  \(\frac{5\pi}{4}=225^\circ\)
  45. The circle has the radius \(r=12~\mathrm{cm}\). Find the length of the arc which subtends the angle \(\theta=40^\circ\) at the centre of this circle.
    Solutions:    \(L=\frac{8}{3}\pi~\mathrm{cm}\approx8.38~\mathrm{cm}\)
  46. The circle has the radius \(r=9~\mathrm{cm}\). Find the length of the arc which subtends the angle \(\theta=2~\mathrm{radians}\).
    Solutions:    \(L=18~\mathrm{cm}\)
  47. Find the area of the sector of the circle with the radius \(r=18~\mathrm{cm}\) and the central angle \(\theta=10^\circ\).
    Solutions:    \(A=9\pi~\mathrm{cm}^2\approx28.3~\mathrm{cm}^2\)
  48. Given the radius \(r=6~\mathrm{cm}\) and central angle \(\theta=\frac{1}{8}\pi\),

    (a)   find the area of the circular sector,

    (b)   find the length of the arc.

    Solutions:    (a)  \(A\approx7.07~\mathrm{cm}^2\);     (b)  \(L\approx2.36~\mathrm{cm}\)
  49. Given the radius \(r=8~\mathrm{cm}\) and central angle \(\theta=90^\circ\),

    (a)   find the area of the circular sector,

    (b)   find the area of the corresponding circular segment.

    Solutions:    (a)  \(A_1\approx50.3~\mathrm{cm}^2\);     (b)  \(A_2\approx18.3~\mathrm{cm}^2\)
  50. Find the area of the circular segment of the radius \(r=14~\mathrm{cm}\) and central angle \(\theta=1\).
    Solutions:    \(A\approx15.5~\mathrm{cm}^2\)

Powered by MathJax
Index

 Index