Domov

Review exercises  —  vectors

  1. Consider vectors \(\mathbf{a}=\left(\begin{array}{c} 4 \\ 3 \end{array}\right)\),  \(\mathbf{b}=\left(\begin{array}{c} -2 \\ 2 \end{array}\right)\)  and  \(\mathbf{c}=\left(\begin{array}{c} 2 \\ 19 \end{array}\right)\).

    (a)   Express vector \(\mathbf{c}\) in the form \(\mathbf{c}=n\,\mathbf{a}+m\,\mathbf{b}\).

    (b)   Calculate \(|\mathbf{a}|\) and \(|\mathbf{b}|\).

    (c)   Calculate scalar product \(\mathbf{a}\cdot\mathbf{b}\).

    (d)   Find the angle between \(\mathbf{a}\) and \(\mathbf{b}\).

    Solutions:    (a)  \(\mathbf{c}=3\mathbf{a}+5\mathbf{b}\);     (b)  \(|\mathbf{a}|=5\), \(|\mathbf{b}|=2\sqrt{2}\);     (c)  \(\mathbf{a}\cdot\mathbf{b}=-2\);     (d)  \(\theta\approx98.1^\circ\)
  2. Points \(A(1,3)\), \(B(13,8)\) and \(C(22,23)\) are three of the vertices of a paralellogram \(ABCD\).

    (a)   Find the coordinates of the vertex \(D\).

    (b)   Calculate angle \(\alpha=B\hat{A}D\).

    (c)   Calculate the length of the longer diagonal.

    Solutions:    (a)  \(D(10,18)\);     (b)  \(\alpha\approx36.4^\circ\);     (c)  \(AC=29\)
  3. Quadrilateral \(ABCD\) has vertices \(A(-3,1),~B(9,4),~C(7,9)\) and \(D(-1,7)\).

    (a)   Show that this quadrilateral is not a parallelogram.

    (b)   Show that sides \(AB\) and \(CD\) are parallel.

    Straight line \(L\) passes through points \(A\) and \(B\).

    (c)   Write the equation of \(L\) in the form \(y=mx+c\).

    Solutions:    (a)  \(\overrightarrow{AB}\ne\overrightarrow{DC}\), \(\overrightarrow{AD}\ne\overrightarrow{BC}\) ;     (b)  \(\overrightarrow{AB}=\frac{3}{2}\overrightarrow{DC}\);     (c)  \(y=\frac{1}{4}x+\frac{7}{4}\)
  4. Triangle \(ABC\) has vertices \(A(1,3,6),~B(13,9,10)\) and \(C(7,12,8)\).

    (a)   Calculate lengths of all three sides.

    (b)   Calculate the largest angle in this triangle.

    (c)   Calculate the area of this triangle.

    Solutions:    (a)  \(a=BC=7,~ b=AC=11,~ c=AB=14\) ;     (b)  \(\gamma=A\hat{C}B\approx99.7^\circ\);     (c)  \(A\approx37.9\)
  5. Triangle \(ABC\) has \(A(-1,3)\) and \(\overrightarrow{AB}=\left(\begin{array}{c} 9 \\ -2 \end{array}\right)\), \(\overrightarrow{BC}=\left(\begin{array}{c} 3 \\ 6 \end{array}\right)\).

    (a)   Find the coordinates of points \(B\) and \(C\).

    (b)   Write down \(\overrightarrow{BA}\).

    (c)   Calculate the angle \(\beta=A\hat{B}C\).

    Point \(D\) is the midpoint of the side \(AC\).

    (d)   Calculate the distance \(DB\).

    Solutions:    (a)  \(B(8,1),~ C(11,7)\);     (b)  \(\overrightarrow{BA}=\left(\begin{array}{c} -9 \\ 2 \end{array}\right)\);     (c)  \(\beta\approx104^\circ\);     (d)  \(DB=5\)
  6. Let  \(\overrightarrow{PQ}=4\mathbf{i}+2\mathbf{j}+4\mathbf{k}\)  and  \(\overrightarrow{PR}=6\mathbf{i}+8\mathbf{j}-\mathbf{k}\).

    (a)   Write \(\overrightarrow{QR}\).

    (b)   Show that \(\overrightarrow{PQ}\) is perpendicular to \(\overrightarrow{QR}\).

    Unit vector \(\mathbf{u}\) has the same direction as \(\overrightarrow{PQ}\).

    (c)   Write \(\mathbf{u}\) in terms of \(\mathbf{i},~ \mathbf{j}\) and \(\mathbf{k}\).

    Solutions:    (a)  \(\overrightarrow{QR}=\left(\begin{array}{c} 2 \\ 6 \\ -5 \end{array}\right)=2\mathbf{i}+6\mathbf{j}-5\mathbf{k}\);     (b)  \(\overrightarrow{PQ}\cdot\overrightarrow{QR}=0\);     (c)  \(\mathbf{u}=\frac{2}{3}\mathbf{i}+\frac{1}{3}\mathbf{j}+\frac{2}{3}\mathbf{k}\)
  7. Vectors  \(\mathbf{a}=\left(\begin{array}{c} 5 \\ 14 \\ 2 \end{array}\right)\)  and  \(\mathbf{b}=\left(\begin{array}{c} 10 \\ 10 \\ p \end{array}\right)\) have equal lengths.

    (a)   Find \(p\), given that \(p\) is a positive number.

    Consider two other vectors:  \(\mathbf{c}=\mathbf{a}+\mathbf{b}\)  and  \(\mathbf{d}=\mathbf{a}-\mathbf{b}\).

    (b)   Write down \(\mathbf{c}\) and \(\mathbf{d}\).

    (c)   Show that \(\mathbf{c}\) is perpendicular to \(\mathbf{d}\).

    Solutions:    (a)  \(p=5\);     (b)  \(\mathbf{c}=\left(\begin{array}{c} 15 \\ 24 \\ 7 \end{array}\right)\),  \(\mathbf{d}=\left(\begin{array}{c} -5 \\ 4 \\ -3 \end{array}\right)\);     (c)  \(\mathbf{c}\cdot\mathbf{d}=0\)
  8. Line \(L\) passes through points \(P(5,1)\) and \(Q(9,5)\).

    (a)   Write down \(\overrightarrow{PQ}\).

    (b)   Write the equation of \(L\) in the form \(\mathbf{r}=\mathbf{a}+\mathbf{b}\,t\).

    (c)   Calculate the acute angle formed by \(L\) and the horizontal axis.

    Solutions:    (a)  \(\overrightarrow{PQ}=\left(\begin{array}{c} 4 \\ 4 \end{array}\right)\);     (b)  \(\mathbf{r}=\left(\begin{array}{c} 5 \\ 1 \end{array}\right)+\left(\begin{array}{c} 4 \\ 4 \end{array}\right)t\);     (c)  \(\varphi=45^\circ\)
  9. Line \(L_1\) passes through points \(A(4,5,-1)\) and \(B(6,8,0)\).

    (a)   Find \(\overrightarrow{AB}\).

    (b)   Write the equation of \(L_1\) in the form \(\mathbf{r}=\mathbf{a}+\mathbf{b}\,t\).

    Line \(L_2\) has the equation  \(\mathbf{r}=\left(\begin{array}{c} 12 \\ 10 \\ 0 \end{array}\right)+\left(\begin{array}{c} 1 \\ 5 \\ 2 \end{array}\right)t\).

    (c)   Find the angle between \(L_1\) and \(L_2\).

    (d)   Find the intersection point.

    Solutions:    (a)  \(\overrightarrow{AB}=\left(\begin{array}{c} 2 \\ 3 \\ 1 \end{array}\right)\);     (b)  \(\mathbf{r}=\left(\begin{array}{c} 4 \\ 5 \\ -1 \end{array}\right)+\left(\begin{array}{c} 2 \\ 3 \\ 1 \end{array}\right)t\);     (c)  \(\varphi\approx22.0^\circ\);     (d)  \(P(14,20,4)\)
  10. Line \(L\) passes through points \(A(4,2)\) and is perpendicular to vector \(\mathbf{v}=\left(\begin{array}{c} 3 \\ 4 \end{array}\right)\).

    (a)   Write the equation of \(L\) in the form \(\mathbf{r}=\mathbf{a}+\mathbf{b}\,t\).

    (b)   Write the equation of \(L\) in the form \(y=mx+c\).

    (c)   Write the equation of \(L\) in the form \(px+qy=s\), where \(p,~ q\) and \(s\) are integers.

    Solutions:    (a)  \(\mathbf{r}=\left(\begin{array}{c} 4 \\ 2 \end{array}\right)+\left(\begin{array}{c} 4 \\ -3 \end{array}\right)t\);     (b)  \(y=-\frac{3}{4}x+5\);     (c)  \(3x+4y=20\)
  11. Line \(L_1\) has the equation  \(\mathbf{r}=(2+3t)\mathbf{i}+(-1+t)\mathbf{j}\).

    (a)   Write the equation of \(L_1\) in the form \(\mathbf{r}=\mathbf{a}+\mathbf{b}\,t\).

    (b)   Show that \(L_1\) passes through the point \(A(11,2)\).

    Line \(L_2\) passes through \(A\) and is perpendicular to \(L_1\).

    (c)   Write the equation of \(L_2\) in the form \(y=mx+c\).

    Solutions:    (a)  \(\mathbf{r}=\left(\begin{array}{c} 2 \\ -1 \end{array}\right)+\left(\begin{array}{c} 3 \\ 1 \end{array}\right)t\);     (c)  \(y=-3x+35\)

Powered by MathJax
Index

 Index