Domov

Quadratic function

Quadratic equations

  1. Solve the following quadratic (and higher order) equations:

    (a)   (x2)(x5)=0

    (b)   (x4)(x+1)=0

    (c)   (x1)(x4)(x+6)=0

    (d)   x(x3)(x+7)=0

    Solutions:    (a)  x1=2, x2=5;     (b)  x1=4, x2=1;     (c)  x1=1, x2=4, x3=6;     (d)  x1=0, x2=3, x3=7
  2. Solve the following equations using factorisation:

    (a)   x25x+6=0

    (b)   x2+2x15=0

    (c)   x32x28x=0

    Solutions:    (a)  x1=2, x2=3;     (b)  x1=3, x2=5;     (c)  x1=0, x2=2, x3=4
  3. Solve the following equations:

    (a)   x2=x+2

    (b)   x2=6x

    (c)   x3=16x

    (d)   x3+45=5x2+9x

    Solutions:    (a)  x1=2, x2=1;     (b)  x1=0, x2=6;     (c)  x1=0, x2=4, x3=4;     (d)  x1=5, x2=3, x3=3
  4. Solve the following equations:

    (a)   2x2=10x8

    (b)   2x2=3x1

    (c)   3x2+6=11x

    Solutions:    (a)  x1=1, x2=4;     (b)  x1=12, x2=1;     (c)  x1=23, x2=3
  5. Solve the following equations by completing the square:

    (a)   x24x+3=0

    (b)   x26x+5=0

    (c)   x26x+4=0

    (d)   x28x+8=0

    Solutions:    (a)  x1=1, x2=3;     (b)  x1=1, x2=5;     (c)  x1=35, x2=3+5;     (d)  x1=422, x2=4+22
  6. Solve the following equations using the quadratic formula:

    (a)   3x2+x2=0

    (b)   8x214x+3=0

    (c)   2x28x+2=0

    (d)   3x29x+3=0

    Solutions:    (a)  x1=1, x2=23;     (b)  x1=32, x2=14;     (c)  x1=23, x2=2+3;     (d)  x1=352, x2=3+52
  7. Calculate the discriminant and find out how many real roots do the following equations have:

    (a)   5x2x+2=0

    (b)   4x2+8x5=0

    (c)   9x212x+4=0

    Solutions:    (a)  Δ=39, no real roots;     (b)  Δ=144, two real roots;     (c)  Δ=0, one repeated root
  8. Calculate the discriminant and solve the following equations:

    (a)   x28x+13=0

    (b)   x236x+324=0

    (c)   6x219x+15=0

    Solutions:    (a)  Δ=12, x1=4+3, x2=43;     (b)  Δ=0, x1=x2=18;     (c)  Δ=1, x1=32, x2=53
  9. Find the value of the constant m given that the following equation has one repeated root:

    (a)   x210x+(3m+4)=0

    (b)   4x2+mx+m+5=0

    Solutions:    (a)  m=7;     (b)  m1=4, m2=20
  10. Solve the following equations. Write your answers in exact form:

    (a)   (x1)(x3)=6

    (b)   (x+2)3=x35x4

    Solutions:    (a)  x1=27, x2=2+7;     (b)  x1=32, x2=43
  11. Solve the following equations. Write your answers correct to three significant figures:

    (a)   2x(x7)+15=0

    (b)   (2x+1)(x2)=(x+1)2

    Solutions:    (a)  x1=5,68, x2=1,32;     (b)  x1=5,54, x2=0,541
  12. Solve the following equations:

    (a)   5x4=1x

    (b)   x2=20x1

    (c)   xx2=4x5

    Solutions:    (a)  x1=15, x2=1;     (b)  x1=3, x2=6;     (c)  x1=1, x2=8
  13. Solve the following equations:

    (a)   2x45x212=0

    (b)   (x2+1)212(x2+1)+20=0

    (c)   x7x+10=0

    Solutions:    (a)  x1=2, x2=2;     (b)  x1=1, x2=1, x3=3, x4=3;     (c)  x1=4, x2=25
  14. The product of two positive numbers is 120. The first number is 7 more than the other. Find these two numbers.
    Solutions:    a=15, b=8
  15. The product of two positive numbers is 403. The first number is 5 more than twice the other number. Find these two numbers.
    Solutions:    a=31, b=13
  16. The product of two numbers is 360. The first number is 3 more than one half of the other number. Find these two numbers.
    Solutions:    a1=15, b1=24;     a2=12, b2=30
  17. The area of a rectangle is 2100 cm2. If the side a were 10 cm longer it would be twice as long as the side b. Find the lengths of sides a and b.
    Solutions:    a=60 cm, b=35 cm
  18. A farmer has two fields. Each of them has the form of a square. The side of the first field is 20 m longer than the other. Both fields together have the area of 51400 m2. Determine the area of the first field and the area of the second field.
    Solutions:    a2=28900 m2, b2=22500 m2

Graphs of quadratic functions

  1. Draw graphs of the following functions:

    (a)   f(x)=x24

    (b)   f(x)=x24x

    (c)   f(x)=x24x+3

  2. Draw graphs of the following functions:

    (a)   y=x22x3

    (b)   y=x2+6x8

    (c)   y=12x22x+2

  3. Draw graphs of the following functions:

    (a)   y=2x24x1

    (b)   y=x24x+5

    (c)   y=2x23x+2

  4. Quadratic function f has the vertex V(2,4) and passes through the point P(6,4).

    (a)   Write the equation of this quadratic function in the form f(x)=ax2+bx+c.

    (b)   Draw the graph of f.

    Solutions:    (a)  f(x)=12x22x2
  5. Find the points of intersection of the following two graphs:

    (a)   y=x26x+8,    y=x+2

    (b)   y=x2x2,    y=x3

    Solutions:    (a)  P1(1,3), P2(6,8);     (b)  P(1,2)
  6. Find the points of intersection of the following two graphs:

    (a)   y=x22x3,    y=x2+1

    (b)   y=x24x,    y=12x2x52

    Solutions:    (a)  P1(1,0), P2(2,3);     (b)  P1(1,3), P2(5,5)
  7. Find all the values of x for which the given function is negative:

    (a)   y=x25x+4

    (b)   y=x22x+2

    Hint:    Draw the graph.
    Solutions:    (a)  1<x<4;     (b)  x doesn't exist (this function is always positive)
  8. Solve the inequalities:

    (a)   x22x30

    (b)   x23x+20

    Solutions:    (a)  x[1,3];     (b)  x(,1][2,)

Powered by MathJax
Index

 Index