(a) \((x-2)(x-5)=0\)
(b) \((x-4)(x+1)=0\)
(c) \((x-1)(x-4)(x+6)=0\)
(d) \(x(x-3)(x+7)=0\)
Solutions: (a) \(x_1=2,~ x_2=5\); (b) \(x_1=4,~ x_2=-1\); (c) \(x_1=1,~ x_2=4,~ x_3=-6\); (d) \(x_1=0,~ x_2=3,~ x_3=-7\)(a) \(x^2-5x+6=0\)
(b) \(x^2+2x-15=0\)
(c) \(x^3-2x^2-8x=0\)
Solutions: (a) \(x_1=2,~ x_2=3\); (b) \(x_1=3,~ x_2=-5\); (c) \(x_1=0,~ x_2=-2,~ x_3=4\)(a) \(x^2=x+2\)
(b) \(x^2=6x\)
(c) \(x^3=16x\)
(d) \(x^3+45=5x^2+9x\)
Solutions: (a) \(x_1=2,~ x_2=-1\); (b) \(x_1=0,~ x_2=6\); (c) \(x_1=0,~ x_2=4,~ x_3=-4\); (d) \(x_1=5,~ x_2=3,~ x_3=-3\)(a) \(2x^2=10x-8\)
(b) \(2x^2=3x-1\)
(c) \(3x^2+6=11x\)
Solutions: (a) \(x_1=1,~ x_2=4\); (b) \(x_1=\frac{1}{2},~ x_2=1\); (c) \(x_1=\frac{2}{3},~ x_2=3\)(a) \(x^2-4x+3=0\)
(b) \(x^2-6x+5=0\)
(c) \(x^2-6x+4=0\)
(d) \(x^2-8x+8=0\)
Solutions: (a) \(x_1=1,~ x_2=3\); (b) \(x_1=1,~ x_2=5\); (c) \(x_1=3-\sqrt{5},~ x_2=3+\sqrt{5}\); (d) \(x_1=4-2\sqrt{2},~ x_2=4+2\sqrt{2}\)(a) \(3x^2+x-2=0\)
(b) \(8x^2-14x+3=0\)
(c) \(2x^2-8x+2=0\)
(d) \(3x^2-9x+3=0\)
Solutions: (a) \(x_1=-1,~ x_2=\frac{2}{3}\); (b) \(x_1=\frac{3}{2},~ x_2=\frac{1}{4}\); (c) \(x_1=2-\sqrt{3},~ x_2=2+\sqrt{3}\); (d) \(x_1=\frac{3-\sqrt{5}}{2},~ x_2=\frac{3+\sqrt{5}}{2}\)(a) \(5x^2-x+2=0\)
(b) \(4x^2+8x-5=0\)
(c) \(9x^2-12x+4=0\)
Solutions: (a) \(\Delta=-39\), no real roots; (b) \(\Delta=144\), two real roots; (c) \(\Delta=0\), one repeated root(a) \(x^2-8x+13=0\)
(b) \(x^2-36x+324=0\)
(c) \(6x^2-19x+15=0\)
Solutions: (a) \(\Delta=12,~ x_1=4+\sqrt{3},~ x_2=4-\sqrt{3}\); (b) \(\Delta=0,~ x_1=x_2=18\); (c) \(\Delta=1,~ x_1=\frac{3}{2},~ x_2=\frac{5}{3}\)(a) \(x^2-10x+(3m+4)=0\)
(b) \(4x^2+mx+m+5=0\)
Solutions: (a) \(m=7\); (b) \(m_1=-4,~ m_2=20\)(a) \((x-1)(x-3)=6\)
(b) \((x+2)^3=x^3-5x-4\)
Solutions: (a) \(x_1=2-\sqrt{7},~ x_2=2+\sqrt{7}\); (b) \(x_1=-\frac{3}{2},~ x_2=-\frac{4}{3}\)(a) \(2x(x-7)+15=0\)
(b) \((2x+1)(x-2)=(x+1)^2\)
Solutions: (a) \(x_1=5,\!68,~ x_2=1,\!32\); (b) \(x_1=5,\!54,~ x_2=-0,\!541\)(a) \(5x-4=\frac{\textstyle 1}{\textstyle x}\)
(b) \(x-2=\frac{\textstyle 20}{\textstyle x-1}\)
(c) \({\displaystyle\frac{x}{x-2}=\frac{4}{x-5}}\)
Solutions: (a) \(x_1=-\frac{1}{5},~ x_2=1\); (b) \(x_1=-3,~ x_2=6\); (c) \(x_1=1,~ x_2=8\)(a) \(2x^4-5x^2-12=0\)
(b) \((x^2+1)^2-12(x^2+1)+20=0\)
(c) \(x-7\sqrt{x}+10=0\)
Solutions: (a) \(x_1=2,~ x_2=-2\); (b) \(x_1=1,~ x_2=-1,~ x_3=3,~ x_4=-3\); (c) \(x_1=4,~ x_2=25\)(a) \(f(x)=x^2-4\)
(b) \(f(x)=x^2-4x\)
(c) \(f(x)=x^2-4x+3\)
(a) \(y=x^2-2x-3\)
(b) \(y=-x^2+6x-8\)
(c) \(y=\frac{1}{2}x^2-2x+2\)
(a) \(y=2x^2-4x-1\)
(b) \(y=x^2-4x+5\)
(c) \(y=2x^2-3x+2\)
(a) Write the equation of this quadratic function in the form \(f(x)=ax^2+bx+c\).
(b) Draw the graph of \(f\).
Solutions: (a) \(f(x)=\frac{1}{2}x^2-2x-2\)(a) \(y=x^2-6x+8,~~~~ y=x+2\)
(b) \(y=x^2-x-2,~~~~ y=x-3\)
Solutions: (a) \(P_1(1,3),~ P_2(6,8)\); (b) \(P(1,-2)\)(a) \(y=x^2-2x-3,~~~~ y=-x^2+1\)
(b) \(y=x^2-4x,~~~~ y=\frac{1}{2}x^2-x-\frac{5}{2}\)
Solutions: (a) \(P_1(-1,0),~ P_2(2,-3)\); (b) \(P_1(1,-3),~ P_2(5,5)\)(a) \(y=x^2-5x+4\)
(b) \(y=x^2-2x+2\)
Hint: Draw the graph.(a) \(x^2-2x-3\leqslant 0\)
(b) \(x^2-3x+2\geqslant 0\)
Solutions: (a) \(x\in[-1,3]\); (b) \(x\in (-\infty,1]\cup[2,\infty)\)