(a) \(8x-4=5(x+1)\)
(b) \(x^2+2x+8=(x-2)x\)
(c) \((x+2)^2-(x-1)^2= 9\,(x-3)\)
(d) \((x - 1)(x + 2)(x + 3) = x^3+4x^2+8x+16\)
Solutions: (a) \(x=3\); (b) \(x=-2\); (c) \(x=10\); (d) \(x = -\frac{22}{7}\)(a) \({\displaystyle\frac{x}{3}=\frac{x+2}{4}}\)
(b) \({\displaystyle\frac{x}{4}-4x=\frac{3x-7}{2}}\)
(c) \({\displaystyle\frac{x+5}{3} = 1+\frac{2}{3}\,\Big(x+\frac{1}{2}\Big)}\)
(d) \({\displaystyle\frac{1}{4}(x+2)^2-\Big(\frac{x-1}{2}\Big)^2=\frac{1}{4}+4x}\)
(e) \({\displaystyle\Big(\frac{x+1}{2}\Big)^3=\frac{1}{8}(x^3+3x^2)-1}\)
Solutions: (a) \(x=6\); (b) \(x=\frac{2}{3}\); (c) \(x=1\); (d) \(x=\frac{1}{5}\); (e) \(x=-3\)(a) \({\displaystyle\frac{1}{2x+1}=\frac{1}{3x-2}}\)
(b) \({\displaystyle\frac{x+1}{x-1}=\frac{3}{2}}\)
(c) \({\displaystyle\frac{x}{x+2}+\frac{3}{x-2}=1}\)
(d) \({\displaystyle\frac{2x}{x-2}=\frac{x+2}{x-2}}\)
Solutions: (a) \(x=3\); (b) \(x=5\); (c) \(x=-10\); (d) No solution: \(x\) doesn't exist.(a) \({\displaystyle x+3 \leqslant \frac{x}{3}+11}\)
(b) \({\displaystyle\frac{x+7}{6} \gt \frac{1}{2}\,\Big(x-\frac{1}{3}\Big)}\)
(c) \({\displaystyle\Big(\frac{x+2}{2}\Big)^2 \leqslant \frac{1}{4}\,(x+3)^2}\)
(d) \({\displaystyle\frac{x+1}{2}\cdot\frac{x-2}{3}\lt\frac{x\,(x+2)}{6}}\)
Solutions: (a) \(x\leqslant12\); (b) \(x\lt4\); (c) \(x \geqslant -\frac{5}{2}\); (d) \(x\gt-\frac{2}{3}\)(a) \({\displaystyle\frac{x+7}{3}+(x-1)^2\leqslant x^2}\)
(b) \({\displaystyle\frac{1}{2}\cdot\frac{2-5x}{2}\lt x^2-\Big(x+\frac{1}{2}\Big)^2}\)
Solutions: (a) \(x\in\{2,~ 3,~ 4,~ 5,~\ldots\}\); (b) \(x\in\{4,~ 5,~,6,~ 7,~\ldots\}\)(a) \({\displaystyle\frac{2+3x}{4}\leqslant x^2-\Big(x-\frac{1}{2}\Big)^2}\)
(b) \({\displaystyle\frac{x^2}{3}-\frac{x^2-2}{5}\leqslant\frac{2x}{3}\cdot\frac{x-3}{5}}\)
Solutions: (a) \(x\in[3,\infty)\); (b) \(x\in(-\infty,-1]\)\(3(x-3)\gt x-7,~~~~ 2(x+5)\geqslant 6x-2\)
Solutions: \(1\lt x\leqslant 3\)(a) \(5x-6\lt x+10,~~~~ 4-x\leqslant 2(x+5)\)
(b) \({\displaystyle\frac{1}{3}\cdot\Big(x-\frac{1}{2}\Big)\gt 0,~~~~ x-\frac{x+3}{2}\leqslant \frac{x}{6}+1 }\)
Solutions: (a) \(x\in\{-2,~ -1,~ 0,~ 1,~ 2,~ 3\}\); (b) \(x\in\{1,~ 2,~ 3,~ 4,~ 5,~ 6,~ 7\}\)\({\displaystyle\frac{1}{3}\cdot\Big(x-\frac{1}{2}\Big)\gt 0,~~~~ x-\frac{x+3}{2}\leqslant \frac{x}{6}+1 }\)
Solutions: \(x\in\left(\frac{1}{2}, \frac{15}{2}\right]\)\({\displaystyle 1-\frac{x-2}{4}\leqslant \frac{x}{2},~~~~ (x+1)^2\lt x^2+1 }\)
Solutions: No solutions, \(x\) doesn't exist.(a) \(f(x)=2x-5\)
(b) \(f(x)=x+3\)
(c) \(f(x)=3-x\)
(d) \(f(x)=5\)
Solutions: (a) \(m=2,~ c=-5\); (b) \(m=1,~ c=3\); (c) \(m=-1,~ c=3\); (d) \(m=0,~ c=5\)(a) \(y=-x\)
(b) \(y=\frac{1}{2}x+3\)
(c) \(y=\frac{\textstyle 1}{\textstyle 2}+\frac{\textstyle x}{\textstyle 3}\)
(d) \(y=\frac{\textstyle 3x-2}{\textstyle 12}\)
Solutions: (a) \(m=-1,~ c=0\); (b) \(m=\frac{1}{2},~ c=3\); (c) \(m=\frac{1}{3},~ c=\frac{1}{2}\); (d) \(m=\frac{1}{4},~ c=-\frac{1}{6}\)(a) \(x+y=2\)
(b) \(2x-4y+1=0\)
(c) \(\frac{\textstyle x}{\textstyle 3}+\frac{\textstyle y}{\textstyle 6}=1\)
Solutions: (a) \(m=-1,~ c=2\); (b) \(m=\frac{1}{2},~ c=\frac{1}{4}\); (c) \(m=-2,~ c=6\)(a) \(f(x)=x+2\)
(b) \(f(x)=2x-1\)
(c) \(f(x)=\frac{1}{3}x+1\)
(a) \(y=x\)
(b) \(y=-2x+3\)
(c) \(x-2y=4\)
(d) \(\frac{\textstyle x}{\textstyle 3}+\frac{\textstyle y}{\textstyle 2}=1\)
(a) Write down the equation of this straight line.
(b) Draw this straight line in the coordinate system.
Solutions: (a) \(y=\frac{2}{3}x+\frac{1}{3}\)(a) Write down the equation of this straight line.
(b) Find the coordinates of the \(x\)-axis intercept.
(c) Draw this straight line in the coordinate system.
Solutions: (a) \(y=\frac{3}{4}x-\frac{1}{2}\); (b) \(C(\frac{2}{3},0)\)(a) Find the coordinates of \(x\)-axis intercept \(A\) and \(y\)-axis intercept \(B\).
(b) Calculate the length of the line segment \(AB\).
(c) Draw this straight line in the coordinate system.
Solutions: (a) \(A(6,0),~ B(0,8)\); (b) \(AB=10\)(a) Find the gradient and the \(y\)-intercept of the line \(\ell_1\).
(b) Write the equation of the straight line \(\ell_2\) which is parallel to \(\ell_1\) and passes through the origin.
Solutions: (a) \(m=\frac{1}{6},~ c=\frac{1}{2}\); (b) \(y=\frac{1}{6}x\)(a) Find \(m\), given that \(\ell_1~||~\ell_2\).
(b) Find the area of the triangle formed by the line \(\ell_2\) and both coordinate axes.
Solutions: (a) \(m=-\frac{1}{3}\); (b) \(A=6\)\(y=3x-2,~~~~ y=\frac{1}{2}x+3\)
Solutions: \(P(2,4)\)(a) \(x+2y=10,~~~~ 3x+5y=27\)
(b) \(y=2x+7,~~~~ 4x+2y=6\)
(c) \(7x-y=5,~~~~ 5x+3y=-2\)
(d) \(\frac{2}{3}x+\frac{4}{3}y=\frac{2}{3},~~~~ \frac{1}{2}x+\frac{3}{2}y=-1\)
Solutions: (a) \(x=4,~ y=3\); (b) \(x=-1,~ y=5\); (c) \(x=\frac{1}{2},~ y=-\frac{3}{2}\); (d) \(x=7,~ y=-3\)(a) Find the point of intersection \(P\).
(b) Find the area of the triangle formed by the lines \(\ell_1,~\ell_2\) and \(y\)-axis.
Solutions: (a) \(P(\frac{14}{5},\frac{2}{5})\); (b) \(A=\frac{49}{5}=9.8\)