(a) \({\displaystyle \int (x^3+2x+7)\,dx}\)
(b) \({\displaystyle \int \left(1+\frac{1}{x^2}+\frac{1}{x}\right)\,dx}\)
(c) \({\displaystyle \int \frac{x^3+x^2-1}{x}\,dx }\)
Solutions: (a) \(\cdots=\frac{1}{4}x^4+x^2+7x+C\); (b) \(\cdots=x-\frac{1}{x}+\ln|x|+C\); (c) \(\cdots=\frac{x^3}{3}+\frac{x^2}{2}-\ln|x|+C\)(a) \({\displaystyle \int (x+\sqrt{x}+1)\,dx}\)
(b) \({\displaystyle \int \frac{3}{\sqrt{x}}\,dx}\)
(c) \({\displaystyle \int (\sqrt[\scriptstyle3]{x}+\sqrt[\scriptstyle3]{x^2})\,dx }\)
(d) \({\displaystyle \int \frac{2x^2-x^{-1/2}-1}{\sqrt{x}}dx}\)
Solutions: (a) \(\cdots=\frac{1}{2}x^2+\frac{2}{3}\sqrt{x^3}+x+C\); (b) \(\cdots=6\sqrt{x}+C\); (c) \(\cdots=\frac{3}{4}\sqrt[3]{x^4}+\frac{3}{5}\sqrt[3]{x^5}+C\); (d) \(\cdots=\frac{4}{5}\sqrt{x^5}-2\sqrt{x}-\ln|x|+C\)(a) \({\displaystyle \int (\cos x-\sin x)\,dx}\)
(b) \({\displaystyle \int (\sin x+3\cos x +e^x)\,dx}\)
Solutions: (a) \(\cdots=\sin x+\cos x+C\); (b) \(\cdots=-\cos x+3\sin x +e^x+C\)(a) \({\displaystyle \int\limits_{-1}^2 (-x^2+5)~ dx}\)
(b) \({\displaystyle \int\limits_0^9 \sqrt{x}~ dx}\)
(c) \({\displaystyle \int\limits_0^\pi (\cos x+2)~dx }\)
Solutions: (a) \(\cdots=12\); (b) \(\cdots=18\); (c) \(\cdots=2\pi\)(a) \({\displaystyle \int\limits_{-2}^0 (x^3-4x)~ dx}\)
(b) \({\displaystyle \int\limits_0^2 (x^3-4x)~ dx}\)
(c) \({\displaystyle \int\limits_{-2}^2 (x^3-4x)~ dx}\)
Solutions: (a) \(\cdots=4\); (b) \(\cdots=-4\); (c) \(\cdots=0\)(a) \({\displaystyle \int (2x+3)^2\,dx}\)
(b) \({\displaystyle \int \sqrt{2x+5}\,dx}\)
(c) \({\displaystyle \int \frac{1}{x+5}\,dx }\)
Solutions: (a) \(\cdots=\frac{1}{6}(2x+3)^3+C\); (b) \(\cdots=\frac{1}{3}\sqrt{(2x+5)^3}+C\); (c) \(\cdots=\ln|x+5|+C\)(a) \({\displaystyle \int e^{4x-1}\,dx}\)
(b) \({\displaystyle \int \sin 5x\,dx}\)
(c) \({\displaystyle \int \cos\frac{x+\pi}{7}\,dx }\)
Solutions: (a) \(\cdots=\frac{1}{4}e^{4x-1}+C\); (b) \(\cdots=-\frac{1}{5}\cos 5x+C\); (c) \(\cdots=7\sin\frac{x+\pi}{7}+C\)(a) \({\displaystyle \int \frac{2x\,dx}{\sqrt{x^2+4}}}\)
(b) \({\displaystyle \int \frac{2x\,dx}{x^2+1}}\)
(c) \({\displaystyle \int \frac{\cos x\,dx}{\sin x}}\)
(d) \({\displaystyle \int \tan x\,dx }\)
Solutions: (a) \(\cdots=2\sqrt{x^2+4}+C\); (b) \(\cdots=\ln(x^2+1)+C\); (c) \(\cdots=\ln|\sin x|+C\); (d) \(\cdots=-\ln|\cos x|+C\)(a) \({\displaystyle \int \frac{\sin x}{2\cos x+3}\,dx}\)
(b) \({\displaystyle \int \frac{\cos x}{\sin^2 x}\,dx}\)
(c) \({\displaystyle \int \sin^5 x \cos x\,dx}\)
Solutions: (a) \(\cdots=-\frac{1}{2}\ln(2\cos x+3)+C\); (b) \(\cdots=-\frac{1}{\sin x}+C\); (c) \(\cdots=\frac{1}{6}\sin^6 x+C\)(a) \({\displaystyle \int \frac{x}{\sqrt{9-x^2}}\,dx}\)
(b) \({\displaystyle \int \frac{2x-3}{x^2-3x+5}\,dx}\)
(c) \({\displaystyle \int \frac{x+1}{\sqrt{x^2+2x+3}}\,dx}\)
Solutions: (a) \(\cdots=-\sqrt{9-x^2}+C\); (b) \(\cdots=\ln(x^2+3x+5)+C\); (c) \(\cdots=\sqrt{x^2+2x+3}+C\)(a) \({\displaystyle \int\limits_1^8 \sqrt{3x+1}\,dx}\)
(b) \({\displaystyle \int\limits_{-1}^3 \sqrt{2x+3}\,dx}\)
Solutions: (a) \(\cdots=26\); (b) \(\cdots=\frac{26}{3}=8\frac{2}{3}\)(a) \({\displaystyle \int\limits_1^2 (2x-1)^3\,dx}\)
(b) \({\displaystyle \int\limits_{-1}^{12} \sqrt[\scriptstyle3]{2x+3}\,dx}\)
(c) \({\displaystyle \int\limits_0^5 \frac{1}{\sqrt{2x+3}}\,dx}\)
Solutions: (a) \(\cdots=10\); (b) \(\cdots=30\); (c) \(\cdots=2\)(a) \({\displaystyle \int\limits_0^\frac{\pi}{2} \sin 2x\,dx}\)
(b) \({\displaystyle \int\limits_0^\pi \cos\frac{x-\pi}{4}\,dx}\)
(c) \({\displaystyle \int\limits_{-2}^0 e^{x+2}\,dx}\)
Solutions: (a) \(\cdots=1\); (b) \(\cdots=2\sqrt{2}\approx2.83\); (c) \(\cdots=e^2-1\approx6.39\)(a) \({\displaystyle \int\limits_1^\infty \frac{1}{x^2}\,dx}\)
(b) \({\displaystyle \int\limits_0^\infty \frac{4}{(x+2)^2}\,dx}\)
(c) \({\displaystyle \int\limits_{-\infty}^0 e^{2x}\,dx}\)
Solutions: (a) \(\cdots=1\); (b) \(\cdots=2\); (c) \(\cdots=\frac{1}{2}\)