(a) \(f(x)=3x-1\)
(b) \(f(x)=x^2+2x+3\)
(c) \(f(x)=\frac{\textstyle x+1}{\textstyle x}\)
Solutions: (a) domain \(=\{x|~ x\in\mathbb{R}\}=\mathbb{R}\); (b) domain \(=\{x|~ x\in\mathbb{R}\}=\mathbb{R}\); (c) domain \(=\{x|~ x\in\mathbb{R},~ x\ne0\}=\mathbb{R}\setminus\{0\}\)(a) \(f(x)=\sqrt{x+2}\)
(b) \(f(x)=\sqrt{2x-3}\)
(c) \(f(x)=\sqrt{6-2x}\)
Solutions: (a) domain \(=\{x|~ x\in\mathbb{R},~ x\geqslant -2\}=[-2,\infty)\); (b) domain \(=\left\{x|~ x\in\mathbb{R},~ x\geqslant \frac{3}{2}\right\}=\left[\frac{3}{2},\infty\right)\); (c) domain \(=\{x|~ x\in\mathbb{R},~ x\leqslant3\}=(-\infty,3]\)(a) \(f(x)=\log_2 (x+3)\)
(b) \(f(x)=\log_\sqrt{5} (6-x)\)
(c) \(f(x)=\ln(5-2x)\)
Solutions: (a) domain \(=\{x\in\mathbb{R};~ x\gt -3\}=(-3,\infty)\); (b) domain \(=\{x\in\mathbb{R};~ x\lt6\}=(-\infty,6)\); (c) domain \(=\left\{x\in\mathbb{R};~ x\lt \frac{5}{2}\right\}=\left(-\infty,\frac{5}{2}\right)\)(a) \({\displaystyle f(x)=\frac{x+2}{x^2-x}}\)
(b) \({\displaystyle f(x)=\sqrt{\frac{x+5}{3}}}\)
(c) \(f(x)=\log_3 x + 1\)
Solutions: (a) domain \(=\{x\in\mathbb{R};~ x\ne0,~ x\ne1\}\); (b) domain \(=\{x\in\mathbb{R};~ x\geqslant -5\}\); (c) domain \(=\{x\in\mathbb{R};~ x\gt 0\}\)(a) \(f(x)=\sqrt{4-x^2}\)
(b) \({\displaystyle f(x)=\sqrt{\frac{1-x}{1+x}}}\)
(c) \({\displaystyle f(x)=\frac{2x}{x^2+2}}\)
Solutions: (a) domain \(=\{x\in\mathbb{R};~ -2\leqslant x\leqslant 2\}=[-2,2]\); (b) domain \(=\{x\in\mathbb{R};~ -1\lt x\leqslant 1\}=(-1,1]\); (c) domain \(=\mathbb{R}=(-\infty,\infty)\)(a) \(f(x)=x^2-2\)
(b) \({\displaystyle f(x)=\frac{1}{x^2+1}}\)
(c) \(f(x)=x^3-4x\)
Solutions: (a) range \(=\{y|~ y\in\mathbb{R},~ y\geqslant -2\}=[-2,\infty)\); (b) range \(=\{y|~ y\in\mathbb{R},~ 0\lt y\leqslant 1\}=(0,1]\); (c) range \(=\{y|~ y\in\mathbb{R}\}=\mathbb{R}=(-\infty,\infty)\)(a) \(f(x)=e^x-2\)
(b) \({\displaystyle f(x)=\ln\frac{2-x}{2+x}}\)
(c) \({\displaystyle f(x)=\frac{x+1}{x-2}}\)
(d) \(f(x)=\sqrt[\scriptstyle 3]{x}\)
Solutions: (a) domain \(=\mathbb{R}\), range \(=(-2,\infty)\); (b) domain \(=(-2,2)\), range \(=\mathbb{R}\); (c) domain \(=\{x;~ x\ne 2\}\), range \(=\{y;~ y\ne 1\}\); (d) domain \(=\mathbb{R}\), range \(=\mathbb{R}\)(a) (b)
Solutions: (a) domain \(=\mathbb{R}\), range \(=[-1,3]\); (b) domain \(=(-\infty,-1)\cup(-1,1)\cup(1,\infty)\), range \(=(-\infty,-1]\cup(0,\infty)\)(a) \(f(x)= \left\{\begin{array}{cl} x^2; & \mathrm{for}~ x\leqslant 1 \cr 2-x; & \mathrm{for}~ x\gt 1 \end{array} \right.\)
(b) \(f(x)= \left\{\begin{array}{cl} 2^x; & \mathrm{for}~ x\lt 1 \cr x; & \mathrm{for}~ x\geqslant 1 \end{array} \right.\)
Solutions:(a) \(f(x)= \left\{\begin{array}{cl} -1; & \mathrm{for}~ x\lt -1 \cr x; & \mathrm{for}~ -1\leqslant x\leqslant 1 \cr 1; & \mathrm{for}~ x\gt 1 \end{array} \right.\)
(b) \(f(x)= \left\{\begin{array}{cl} -x; & \mathrm{for}~ x\leqslant 0 \cr \frac{\textstyle 1}{\textstyle x}; & \mathrm{for}~ x\gt 0 \end{array} \right.\)
(c) \(f(x)= \left\{\begin{array}{cl} x+1; & \mathrm{for}~ 0\lt x\lt 2 \cr 1; & \mathrm{for}~ x\geqslant 2 \end{array} \right.\)
Solutions: (a) domain \(=\mathbb{R}\), range \(=[-1,1]\); (b) domain \(=\mathbb{R}\), range \(=[0,\infty)\); (c) domain \(=(0,\infty)\), range \(=[1,3)\)(a) (b)
Solutions: (a) domain \(=[-5,1)\), range \(=(-2,3]\); (b) domain \(=(-\infty,2]\), range \(=[-2,3]\)