Domov

Differentiation

Quick review

  1. Find derivatives of the following functions:

    (a)   \(f(x)=x^4-2x^3+x^2-5x+7\)

    (b)   \(f(x)=\frac{\textstyle 1}{\textstyle x^2}+\sqrt{x^3}\)

    (c)   \(f(x)=2e^x+\ln x+\cos x\)

    Solutions:    (a)  \(f'(x)=4x^3-6x^2+2x-5\);     (b)  \(f'(x)=-\frac{2}{x^3}+\frac{3}{2}\sqrt{x}\);     (c)  \(f'(x)=2e^x+\frac{1}{x}-\sin x\)
  2. Differentiate the following functions:

    (a)   \(f(x)=x^3 \ln x\)

    (b)   \(f(x)=e^x \sin x\)

    (c)   \(f(x)=\frac{\textstyle 2x+1}{\textstyle x-2}\)

    (d)   \(f(x)=\frac{\textstyle \sin x+2}{\textstyle \cos x}\)

    Solutions:    (a)  \(f'(x)=3x^2 \ln x+x^2\);     (b)  \(f'(x)=e^x \sin x +e^x \cos x\);     (c)  \(f'(x)=\frac{-5}{x^2-4x+4}\);     (d)  \(f'(x)=\frac{1+2\sin x}{\cos^2 x}\)
  3. Differentiate the following functions:

    (a)   \(y=(4x+1)^3\)

    (b)   \(y=\sqrt{x^2+9}\)

    (c)   \(y=\sin\frac{\textstyle x+\pi}{\textstyle 5}\)

    Solutions:    (a)  \(y'=3\,(4x+1)^2\cdot4=12\,(4x+1)^2\);     (b)  \(y'=\frac{x}{\sqrt{x^2+9}}\);     (c)  \(y'=\frac{1}{5}\cos\frac{x+\pi}{5}\)
  4. The function has the equation:  \(f(x)=\frac{\textstyle x^2+x+1}{\textstyle 3}\).

    (a)   Differentiate the function \(f\).

    (b)   Write down the equation of the tangent at \(x=4\).

    (c)   Show that this tangent is parallel to the straight line \(y=3x+1\).

    Solutions:    (a)  \(f'(x)=\frac{2x+1}{3}\);     (b)  tangent: \(y=3x-5\);     (c)  they have the same gradient: \(m_1=m_2=3\)
  5. The function has the equation:  \(f(x)=\sqrt{2x+7}\).

    (a)   Differentiate the function \(f\).

    (b)   Write down the equation of the normal at \(x=1\).

    (c)   This normal and both coordinate axes form a triangle:

    (i)   Write down the coordinates of the vertices of this triangle.

    (ii)   Calculate the area of this triangle.

    Solutions:    (a)  \(f'(x)=\frac{1}{\sqrt{2x+7}}\);     (b)  normal: \(y=-3x+6\);     (c)  (i)  vertices: \(A(0,0),~ B(2,0),~ C(0,6)\); (ii)  area: \(A=6\)

Stationary points

  1. The function has the equation \(f(x)=2x^3-15x^2+36x-25\). Find the points on the graph where the tangent is horizontal. Write down the coordinates of these points.
    Solutions:    \(P_1(2,3),~ P_2(3,2)\)
  2. The function has the equation \(f(x)=x^3-3x+1\). Find the stationary points of this function. Write down the coordinates of these points.
    Solutions:    \(P_1(-1,3),~ P_2(1,-1)\)
  3. The function has the equation \(f(x)=x^4-4x^2\).

    (a)   Find the zeros of this function.

    (b)   Find the stationary points of this function.

    (c)   Draw the graph.

    Solutions:    (a)  \(x_1=-2,~ x_{2,3}=0,~ x_4=2\);     (b)  \(P_1(-\sqrt{2},-4),~ P_2(0,0),~ P_3(\sqrt{2},-4)\)
  4. The function has the equation \(f(x)=x^3+3x^2+3x+2\).

    (a)   Find the stationary points of this function.

    (b)   Draw the graph using your GDC and verify the obtained result.

    Solutions:    (a)  \(P_1(-1,1)\)
  5. The function has the equation \(f(x)={\displaystyle\frac{x}{2}+\frac{2}{x}}\).

    (a)   Find the stationary points of this function.

    (b)   Draw the graph using your GDC and verify the obtained result.

    Solutions:    (a)  \(P_1(-2,-2),~ P_2(2,2)\)

Second derivative

  1. Write down the first and the second derivative of each of the following functions:

    (a)   \(f(x)=x^3+2x^2-5x+4\)

    (b)   \(f(x)=\frac{\textstyle x^2+3x+1}{\textstyle 5}\)

    (c)   \(f(x)=\sqrt{x^5}\)

    Solutions:    (a)  \(f'(x)=3x^2+4x-5,~ f''(x)=6x+4\);     (b)  \(f'(x)=\frac{2x+3}{5},~ f''(x)=\frac{2}{5}\);     (c)  \(f'(x)=\frac{5}{2}\sqrt{x^3},~ f''(x)=\frac{15}{4}\sqrt{x}\)
  2. Find \(y'\) and \(y''\) of each of the following functions:

    (a)   \(y=e^x+\sin x\)

    (b)   \(y=x-\ln x\)

    (c)   \(y=x^2 \ln x\)

    Solutions:    (a)  \(y'=e^x+\cos x,~ y''=e^x-\sin x\);     (b)  \(y'=1-\frac{1}{x},~ y''=\frac{1}{x^2}\);     (c)  \(y'=2x\ln x+x,~ y''=2\ln x+3\)
  3. Find \(\frac{\textstyle \mathrm{d}y}{\textstyle \mathrm{d}x}\) and \(\frac{\textstyle \mathrm{d}^2y}{\textstyle \mathrm{d}x^2}\) of each of the following functions:

    (a)   \(y=e^x\sin x\)

    (b)   \(y=\frac{\textstyle 1}{\textstyle x+3}\)

    Solutions:    (a)  \(\frac{\mathrm{d}y}{\mathrm{d}x}=e^x\sin x+e^x\cos x,~ \frac{\mathrm{d}^2y}{\mathrm{d}x^2}=2e^x\cos x\);     (b)  \(\frac{\mathrm{d}y}{\mathrm{d}x}=-\frac{1}{(x+3)^2},~ \frac{\mathrm{d}^2y}{\mathrm{d}x^2}=\frac{2}{(x+3)^3}\)
  4. Given that \(a\) and \(b\) are constants find the first and the second derivative of each of the following functions:

    (a)   \(y=x^2+ax+b\)

    (b)   \(y=\frac{\textstyle x}{\textstyle a}+\frac{\textstyle b}{\textstyle x}\)

    Solutions:    (a)  \(y'=2x+a,~ y''=2\);     (b)  \(y'=\frac{1}{a}-\frac{b}{x^2},~ y''=\frac{2b}{x^3}\)
  5. Find the first, the second … and the \(n\)-th derivative of the function \(f(x)=xe^x\).
    Solutions:    \(f'(x)=(x+1)e^x,~ f''(x)=(x+2)e^x,~\ldots~,~ f^{(n)}(x)=(x+n)e^x\)

Determining the type of stationary points

  1. The function has the equation:  \(f(x)=x^3-3x^2+1\).

    (a)   Using the first derivative find the stationary points.

    (b)   Using the second derivative determine the type of each of these points.

    Solutions:    Maximum: \(P_1(0,1)\),  minimum: \(P_2(2,-3)\)
  2. The function has the equation:  \(f(x)=x^4-4x^2\).

    (a)   Find the stationary points.

    (b)   Determine the nature of each stationary point.

    Solutions:    Minimum: \(P_1(-\sqrt{2},-4)\),  maximum: \(P_2(0,0)\),  minimum: \(P_3(\sqrt{2},-4)\)
  3. The function has the equation:  \(f(x)=6x^4+8x^3+3\).

    (a)   Find the stationary points.

    (b)   Determine the nature of each stationary point.

    (c)   Using your GDC draw the graph to verify the obtained results.

    Solutions:    Minimum: \(P_1(-1,1)\),  inflexion point: \(P_2(0,3)\)
  4. The function has the equation:  \(f(x)=\frac{\textstyle 2x-1}{\textstyle x^2}\).

    (a)   Find the zeros, vertical asymptotes and horizontal asymptote.

    (b)   Find the stationary points and determine their types.

    (c)   Hence draw the graph.

    Solutions:    (a)  Zeros: \(x_1=\frac{1}{2}\), vertical asymptote: \(x=0\), horizontal asymptote: \(y=0\);     (b)  maximum: \(P_1(1,1)\)
  5. The function has the equation:  \(f(x)=\frac{\textstyle x^2-3x}{\textstyle x^2+3}\).

    (a)   Find the zeros, vertical asymptotes and horizontal asymptote.

    (b)   Find and classify the stationary points.

    (c)   Hence draw the graph.

    Solutions:    (a)  Zeros: \(x_1=0,~ x_2=3\), no vertical asymptotes, horizontal asymptote: \(y=1\);     (b)  maximum: \(P_1(-3,\frac{3}{2})\), minimum: \(P_2(1,-\frac{1}{2})\)
  6. The function has the equation:  \(f(x)=\frac{\textstyle 6}{\textstyle x^2-4x+6}\).

    (a)   Find the zeros and asymptotes, if any.

    (b)   Find and classify the stationary points.

    (c)   Hence draw the graph.

    Solutions:    (a)  No zeros, no vertical asymptotes, horizontal asymptote: \(y=0\);     (b)  maximum: \(P_1(2,3)\)
  7. The function has the equation:  \(f(x)=\frac{\textstyle 1+\ln x}{\textstyle x}\).

    (a)   Find and classify the stationary points.

    (b)   Using your GDC draw the graph to verify the obtained results.

    Solutions:    (a)  Maximum: \(P_1(1,1)\)

Different types of inflexion points

  1. Find the points where \(y''=0\). Use your GDC to draw the graphs and investigate the behaviour of the functions.

    (a)   \(y=x^3-3x^2+3x\)

    (b)   \(y=x^3-3x^2+2x+1\)

    (c)   \(y=x^3-3x^2+4x-1\)

    Solutions:    In all three cases \(y''=0\) at \(P_1(1,1)\). These points are the inflexion points.
    In case (a) this point is also a stationary point  –  it's a stationary inflexion point.
    In cases (b) and (c) this point is not a stationary point  –  it's a non-stationary inflexion point.
  2. The function has the equation \(y=x^3-6x^2+9x\).

    (a)   Find zeros.

    (b)   Find and classify the stationary points.

    (c)   Find and classify the inflexion points.

    (d)   Hence draw the graph.

    Solutions:    (a)  Zeros: \(x_1=0,~ x_{2,3}=3\);     (b)  maximum: \(P_1(1,4)\), minimum: \(P_2(3,0)\);     (c)  non-stationary inflexion point: \(P_3(2,2)\)
  3. The function has the equation \(y=\frac{1}{9}x^4+\frac{4}{9}x^3\).

    (a)   Find zeros.

    (b)   Find and classify the stationary points.

    (c)   Find and classify the inflexion points.

    (d)   Hence draw the graph.

    Solutions:    (a)  Zeros: \(x_{1,2,3}=0,~ x_4=-4\);     (b,c)  minimum: \(P_1(-3,-3)\), stationary inflexion point: \(P_2(0,0)\), non-stationary inflexion point: \(P_3(-2,-\frac{16}{9})\)
  4. The function has the equation \(f(x)=\frac{\textstyle 12}{\textstyle x^2+3}\).

    (a)   Find the inflexion points.

    (b)   Write the equation of the tangent at the inflexion point with the negative abscissa.

    Solutions:    (a)  Inflexion points (both non-stationary): \(P_1(-1,3),~ P_2(1,3)\);     (b)  tangent: \(y=\frac{3}{2}x+\frac{9}{2}\)

Powered by MathJax
Index

 Index