Domov

Differentiation

Finding the derivative

  1. Differentiate the following functions:

    (a)   f(x)=x33x2+4x+1

    (b)   f(x)=x2(x2+x1)

    (c)   f(x)=(3x+2)2

    Solutions:    (a)  f(x)=3x26x+4;     (b)  f(x)=4x3+3x22x;     (c)  f(x)=18x+12
  2. Find derivatives of the following functions:

    (a)   f(x)=x2+1x

    (b)   f(x)=2x2+1x3

    (c)   f(x)=x2+3x+1x

    Solutions:    (a)  f(x)=2x1x2;     (b)  f(x)=4x33x4;     (c)  f(x)=11x2
  3. Find dydx for the following functions:

    (a)   y=x

    (b)   y=x3+x4

    (c)   y=2x3

    Solutions:    (a)  dydx=12x;     (b)  dydx=13x23+14x34;     (c)  dydx=3x5
  4. Find y of the following functions:

    (a)   y=sinx+3cosx

    (b)   y=x2+ex

    (c)   y=lnx+x+1

    Solutions:    (a)  y=cosx3sinx;     (b)  y=2x+ex;     (c)  y=1x+1

Tangents and normals

  1. Find the equation of the tangent to the curve y=x33x+3 at given points:

    (a)   P(0,3)

    (b)   P(2,y)

    (c)   P(1,y)

    Solutions:    (a)  y=3x+3;     (b)  y=9x13;     (c)  y=1
  2. Find the equation of the tangent to the graph of the function f(x)=x at the point P(9,y).
    Solution:    y=16x+32
  3. Find the equation of the tangent to the graph of the function f(x)=2cosx at x=π2.
    Solution:    y=2x+π
  4. Find the equation of the normal to the graph of the function f(x)=ex at the point P where x=0.
    Solution:    y=x+1
  5. Find the equation of the normal to the curve y=212x+x at x=4.
    Solution:    y=4x14
Use the derivative function on your GDC to solve the following exercises. The value of the derivative of the given function at given point can be obtained as  ddx(function)|x=point.
  1. Find the equation of the tangent to the graph of the function f(x)=2x+3 at x=1.
    Solution:    y=x+2
  2. Find the equation of the tangent to the graph of the function f(x)=2x1 at x=2.
    Solution:    y=2x+6
  3. Find the equation of the tangent to the graph of the function y=1+ex1x at x=0.
    Solution:    y=3x+2
  4. Find the equation of the tangent to the curve y=x3x

    (a)    at x=1,

    (b)    at x=9.

    Solutions:    (a)  y=2x4;     (b)  y=29x
  5. Find the equation of the normal to the graph of the function f(x)=ln(x3) at x=4.
    Solution:    y=x+4
  6. Find the equation of the normal to the graph of the function f(x)=xx+4 at x=3.
    Solution:    y=2x+3
  7. Find the equation of the normal to the graph of the function y=(x2)x+2 at x-axis intercept with positive abscissa.
    Solution:    y=12x+1
  8. Function has the equation f(x)=xcosx

    (a)    Write down the equation of the normal at x=0.

    (b)    Write down the equation of the tangent at x=π.

    Solutions:    (a, b)  y=x
  9. Function f has the equation f(x)=1+8x+2

    (a)    Draw the graph of this function.

    (b)    Write down the equation of the normal at point A(2,y).

    (c)    This normal intersects the function in point A and in another point B. Find the coordinates of point B.

    Solutions:    (b)  y=2x1;     (c)  B(3,7)
  10. Consider the function y=xx+2

    (a)    Write down the equation of the normal at x=0.

    (b)    Write down the equation of the normal at x=3.

    (c)    Find the intersection point of these two normals.

    Solutions:    (a)  y=2x;     (b)  y=12x+32;     (c)  P(1,2)

Rules of differentiation

Solve the exercises in this section without your GDC. Use the rules of differentiation: product rule, quotient rule and chain rule.
  1. Differentiate the following functions:

    (a)   f(x)=x3sinx

    (b)   f(x)=ex(x2+x+1)

    (c)   f(x)=x+xlnx

    Solutions:    (a)  f(x)=3x2sinx+x3cosx;     (b)  f(x)=ex(x2+x+1)+ex(2x+1)=ex(x2+3x+2);     (c)  f(x)=1+1lnx+x1x=2+lnx
  2. Differentiate the following functions:

    (a)   f(x)=xx+3

    (b)   f(x)=x+2x2+1

    (c)   f(x)=1x2+4

    Solutions:    (a)  f(x)=3x2+6x+9;     (b)  f(x)=x24x+1x4+2x2+1;     (c)  f(x)=2xx4+8x2+16
  3. Differentiate the following functions:

    (a)   f(x)=exx+1

    (b)   f(x)=tanx

    (c)   f(x)=sinx2cosx+1

    Solutions:    (a)  f(x)=xexx2+2x+1;     (b)  f(x)=1cos2x;     (c)  f(x)=cosx+24cos2x+4cosx+1
  4. Write the equation of the tangent to the graph of the function f(x)=(x+2)x at x=4.
    Solution:    Tangent: y=72x2
  5. Write the equation of the tangent to the graph of the function f(x)=exx1 at x=0.
    Solution:    Tangent: y=2x1
  6. Write the equation of the tangent to the graph of the function f(x)=xlnx2 at the point P(1,y).
    Solution:    Tangent: y=12x12
  7. Write the equation of the tangent to the graph of the function f(x)=2x33x+1 at the point where the graph intercepts the ordinate axis.
    Solution:    Tangent: y=11x3
  8. Write the equation of the normal to the curve y=2x2x2 at the point P(2,y).
    Solution:    Normal: y=13x43
  9. Differentiate the following functions:

    (a)   f(x)=4x+1

    (b)   f(x)=cos(4x+π)

    (c)   f(x)=ln(3x+2)

    (d)   f(x)=(2x+3)3

    Solutions:    (a)  f(x)=24x+1;     (b)  f(x)=4sin(4x+π);     (c)  f(x)=33x+2;     (d)  f(x)=6(2x+3)2
  10. Differentiate the following functions:

    (a)   f(x)=x2+9

    (b)   f(x)=ex2

    (c)   f(x)=ln(x2+x+1)

    Solutions:    (a)  f(x)=xx2+9;     (b)  f(x)=2xex2;     (c)  f(x)=2x+1x2+x+1
  11. Write the equation of the tangent to the curve y=x2+3 at point P(1,y).
    Solution:    Tangent: y=12x+32
  12. Write the equation of the tangent to the graph of function f(x)=ln(x23) at point P(2,y).
    Solution:    Tangent: y=4x8
  13. Write the equation of the normal to the curve y=1x93 at the point P0(8,y0).
    Solution:    Normal: y=3x25
  14. The function has the equation f(x)=x37x+1. Find the points on the graph where the gradient of this function is 5. Write down the coordinates of these points.
    Solutions:    At points P1(2,5) and P2(2,7).
  15. The gradient of the curve y=x2+9 at the point P is 45. Find the coordinates of P.
    Solution:    P(4,5)
  16. The function has the equation f(x)=2x53. Find the points on the graph where the tangent is parallel to the line 2x3y=0. Write down the coordinates of these points.
    Solutions:    P1(3,1), P2(2,1)

Angle of inclination

  1. The function has the equation f(x)=4x+3x. Find the angle of inclination of the tangent to the graph at the point P(4,y). Write the angle in degrees and minutes.
    Solution:    θ787
  2. Find the angle of inclination of the curve y=xx+2 at x=1. Write the angle in degrees and minutes.
    Solution:    θ1232
  3. The function has the equation f(x)=ln(2x5).

    (a)   Find the point where the graph of this function intercepts the x axis.

    (b)   Calculate the angle between the graph and the x axis.

    Solutions:    (a)  P(3,0);     (b)  θ6326
  4. The functions have the equations f(x)=x and g(x)=x23x2.

    (a)   Show that both graphs pass through the point P(4,2).

    (b)   Find the angles of inclination of the graphs at this point.

    (c)   Calculate the acute angle between the graphs.

    Solutions:    (a)  f(4)=g(4)=2;     (b)  θ1142, θ27841;     (c)  α=6439
  5. The functions have the equations f(x)=2x2 and g(x)=x2+1x.

    (a)   Find the intersection point of the graphs of these two functions.

    (b)   Find the angles of inclination at this point.

    (c)   Calculate the angle between the graphs.

    Solutions:    (a)  P(12,12);     (b)  θ16326, θ210826;     (c)  α=45
  6. The functions have the equations f(x)=3x and g(x)=2x3.

    (a)   Find the intersection point of the graphs of these two functions.

    (b)   Calculate the angle between the graphs.

    Solutions:    (a)  P(2,1);     (b)  α=90
  7. The function has the equation f(x)=2x25x+1. Find the point P on the graph where the angle of inclination is 45. Write down the coordinates of this point.
    Solution:    P(32,2)
  8. The function has the equation f(x)=2x1. Find the point P on the graph where the angle of inclination is 30. Write down the coordinates of this point.
    Solution:    P(2,3)
  9. The function has the equation f(x)=x36x2+9x+1. Find the points on the graph where the angle of inclination is 0. Write down the coordinates of these points.
    Solutions:    P1(1,5), P2(3,1)

Powered by MathJax
Index

 Index