(a) \(f(x)=x^3-3x^2+4x+1\)
(b) \(f(x)=x^2(x^2+x-1)\)
(c) \(f(x)=(3x+2)^2\)
Solutions: (a) \(f'(x)=3x^2-6x+4\); (b) \(f'(x)=4x^3+3x^2-2x\); (c) \(f'(x)=18x+12\)(a) \(f(x)=x^2+\frac{\textstyle 1}{\textstyle x}\)
(b) \(f(x)=\frac{\textstyle 2}{\textstyle x^2}+\frac{\textstyle 1}{\textstyle x^3}\)
(c) \(f(x)=\frac{\textstyle x^2+3x+1}{\textstyle x}\)
Solutions: (a) \(f'(x)=2x-\frac{1}{x^2}\); (b) \(f'(x)=-\frac{4}{x^3}-\frac{3}{x^4}\); (c) \(f'(x)=1-\frac{1}{x^2}\)(a) \(y=\sqrt{x}\)
(b) \(y=\sqrt[\scriptstyle 3]{x}+\sqrt[\scriptstyle 4]{x}\)
(c) \(y=\frac{\textstyle 2}{\textstyle \sqrt{x^3}}\)
Solutions: (a) \(\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{2\sqrt{x}}\); (b) \(\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{3\,\sqrt[3]{x^2}}+\frac{1}{4\,\sqrt[4]{x^3}}\); (c) \(\frac{\mathrm{d}y}{\mathrm{d}x}=-\frac{3}{\sqrt{x^5}}\)(a) \(y=\sin x+3\cos x\)
(b) \(y=x^2+e^x\)
(c) \(y=\ln x+x+1\)
Solutions: (a) \(y'=\cos x-3\sin x\); (b) \(y'=2x+e^x\); (c) \(y'=\frac{1}{x}+1\)(a) \(P(0,3)\)
(b) \(P(2,y)\)
(c) \(P(1,y)\)
Solutions: (a) \(y=-3x+3\); (b) \(y=9x-13\); (c) \(y=1\)(a) at \(x=1\),
(b) at \(x=9\).
Solutions: (a) \(y=2x-4\); (b) \(y=\frac{2}{9}x\)(a) Write down the equation of the normal at \(x=0\).
(b) Write down the equation of the tangent at \(x=\pi\).
Solutions: (a, b) \(y=-x\)(a) Draw the graph of this function.
(b) Write down the equation of the normal at point \(A(2,y)\).
(c) This normal intersects the function in point \(A\) and in another point \(B\). Find the coordinates of point \(B\).
Solutions: (b) \(y=2x-1\); (c) \(B(-3,-7)\)(a) Write down the equation of the normal at \(x=0\).
(b) Write down the equation of the normal at \(x=-3\).
(c) Find the intersection point of these two normals.
Solutions: (a) \(y=-2x\); (b) \(y=-\frac{1}{2}x+\frac{3}{2}\); (c) \(P(-1,2)\)(a) \(f(x)=x^3\sin x\)
(b) \(f(x)=e^x(x^2+x+1)\)
(c) \(f(x)=x+x\ln x\)
Solutions: (a) \(f'(x)=3x^2\sin x+x^3\cos x\); (b) \(f'(x)=e^x(x^2+x+1)+e^x(2x+1)=e^x(x^2+3x+2)\); (c) \(f'(x)=1+1\cdot\ln x+x\cdot\frac{1}{x}=2+\ln x\)(a) \({\displaystyle f(x)=\frac{x}{x+3}}\)
(b) \({\displaystyle f(x)=\frac{x+2}{x^2+1}}\)
(c) \({\displaystyle f(x)=\frac{1}{x^2+4}}\)
Solutions: (a) \(f'(x)=\frac{3}{x^2+6x+9}\); (b) \(f'(x)=\frac{-x^2-4x+1}{x^4+2x^2+1}\); (c) \(f'(x)=-\frac{2x}{x^4+8x^2+16}\)(a) \({\displaystyle f(x)=\frac{e^x}{x+1}}\)
(b) \({\displaystyle f(x)=\tan x}\)
(c) \({\displaystyle f(x)=\frac{\sin x}{2\cos x+1}}\)
Solutions: (a) \(f'(x)=\frac{xe^x}{x^2+2x+1}\); (b) \(f'(x)=\frac{1}{\cos^2 x}\); (c) \(f'(x)=\frac{\cos x+2}{4\cos^2x+4\cos x+1}\)(a) \(f(x)=\sqrt{4x+1}\)
(b) \(f(x)=\cos(4x+\pi)\)
(c) \(f(x)=\ln(3x+2)\)
(d) \(f(x)=(2x+3)^3\)
Solutions: (a) \(f'(x)=\frac{2}{\sqrt{4x+1}}\); (b) \(f'(x)=-4\sin(4x+\pi)\); (c) \(f'(x)=\frac{3}{3x+2}\); (d) \(f'(x)=6(2x+3)^2\)(a) \(f(x)=\sqrt{x^2+9}\)
(b) \({\displaystyle f(x)=e^{-x^2}}\)
(c) \(f(x)=\ln(x^2+x+1)\)
Solutions: (a) \(f'(x)=\frac{x}{\sqrt{x^2+9}}\); (b) \(f'(x)=-2xe^{-x^2}\); (c) \(f'(x)=\frac{2x+1}{x^2+x+1}\)(a) Find the point where the graph of this function intercepts the \(x\) axis.
(b) Calculate the angle between the graph and the \(x\) axis.
Solutions: (a) \(P(3,0)\); (b) \(\theta\doteq63^\circ26'\)(a) Show that both graphs pass through the point \(P(4,2)\).
(b) Find the angles of inclination of the graphs at this point.
(c) Calculate the acute angle between the graphs.
Solutions: (a) \(f(4)=g(4)=2\); (b) \(\theta_1\doteq14^\circ2',~ \theta_2\doteq78^\circ41'\); (c) \(\alpha=64^\circ39'\)(a) Find the intersection point of the graphs of these two functions.
(b) Find the angles of inclination at this point.
(c) Calculate the angle between the graphs.
Solutions: (a) \(P(\frac{1}{2},\frac{1}{2})\); (b) \(\theta_1\doteq63^\circ26',~ \theta_2\doteq108^\circ26'\); (c) \(\alpha=45^\circ\)(a) Find the intersection point of the graphs of these two functions.
(b) Calculate the angle between the graphs.
Solutions: (a) \(P(2,1)\); (b) \(\alpha=90^\circ\)