Index

Trigonometry

Solving a right-angled triangle

  1. ?
    ?
    In a right-angled triangle trigonometric functions can be used:

    sinα=oppositehypotenuse

    cosα=adjacenthypotenuse

    tanα=oppositeadjacent
    In a right-angled triangle ABC,   AC^B=90, AB^C=37 and a=BC=14 cm.

    (a)   Find the lengths of the other two sides b=AC and c=AB.

    (b)   Calculate the perimeter P of the triangle.

    Solutions:    (a)  b10.5 cm, c17.5 cm;     (b)  P=a+b+c42.1 cm
  2. In a right-angled triangle ABC,   AC^B=90, AB^C=30 and a=BC=12 cm.

    (a)   Find the lengths of the other two sides b=AC and c=AB.

    (b)   Calculate the perimeter P of the triangle.

    Solutions:    (a)  b=43 cm6.93 cm, c=83 cm13.9 cm;     (b)  P=a+b+c=12+123 cm32.8 cm
  3. In a right-angled triangle ABC,   AC^B=90, BA^C=52.5 and c=AB=17 cm.

    (a)   Find the lengths of the other two sides.

    (b)   Calculate the perimeter P of the triangle.

    Solutions:    (a)  a13.5 cm, b10.3 cm;     (b)  P=a+b+c40.8 cm
  4. In a right-angled triangle ABC,   AC^B=90, a=BC=15 cm and b=AC=8 cm.

    (a)   Find the length of the hypotenuse.

    (b)   Calculate the angles α=BA^C and β=AB^C.

    Solutions:    (a)  c=AB=17 cm;     (b)  α61.9, β28.1
  5. In a right-angled triangle ABC the hypotenuse is c=25 cm and one of the catheti is b=7 cm.

    (a)   Find the perimeter of this triangle.

    (b)   Calculate the angles α and β.

    Solutions:    (a)  a=24 cm, P=56 cm;     (b)  α73.7, β16.3
  6. In an isosceles triangle ABC,   a=b=7 cm and α=BA^C=68.

    (a)   Find the length of the side c.

    (b)   Find the length of the height hc.

    Solutions:    (a)  c5.24 cm;     (b)  hc6.49 cm
  7. Isosceles triangle ABC (a=b) has the base c=AB=24 cm and the height hc=35 cm.

    (a)   Find the perimeter of this triangle.

    (b)   Calculate the angles of this triangle.

    Solutions:    (a)  P=24+37+37=98 cm;     (b)  α=β71.1, γ37.8
  8. Rectangle ABCD has the diagonal e=AC=20 cm. The angle between this diagonal and the side a=AB is CA^B=2745.

    (a)   Find the sides of this rectangle.

    (b)   Calculate the acute angle between the diagonals.

    Solutions:    (a)  a17.7 cm, b9.31 cm;     (b)  φ=55.5=5530
  9. Rectangle ABCD has the side a=AB=18 cm. The angle between the diagonal d=AC and the side a is CA^B=30. Find the side b=BC and the diagonal d=AC. Write your results in the exact form.
    Solutions:    b=63 cm, d=123 cm
  10. The diagonals of the rhombus ABCD have lengths e=AC=30 cm and f=BD=16 cm.

    (a)   Find the side a=AB.

    (b)   Calculate the angle α=DA^B.

    Solutions:    (a)  a=17 cm;     (b)  α56.1
  11. A regular pentagon ABCDE is inscribed in the circle with the radius r=10 cm. Find the side a=AB of this pentagon.
    Solution:    a11.8 cm
  12. A regular hexagon ABCDEF has the side a=7 cm. Find the length of the diagonal d=AE.
    Solution:    d=73 cm12.1 cm
  13. In a triangle ABC, α=CA^B=60, β=AB^C=45 and the height hc=43 cm. Find the lengths of the sides a, b and c. Write the exact values.
    Solutions:    a=46 cm, b=8 cm, c=(4+43) cm
  14. Annie has a 3 m long ladder. She will place it against a vertical wall so that the bottom part of the ladder is 75 cm apart from the wall (and the top of the ladder touches the wall).

    (a)   Find the height to which the top of the ladder will reach.

    (b)   Calculate the angle between the wall and the ladder.

    Solutions:    (a)  a2.90 m=290 cm;     (b)  α14.5
  15. Elevation We are looking at a tree from the distance of 60 m. From a point on the ground the angle of elevation of the top of this tree is 25°. Find the height of this tree.
    Solution:    Height = 28 m.

Solving a general triangle

  1. In a triangle ABC, b=AC=6 cm, c=AB=10 cm and α=CA^B=70. The height hc has the endpoints C and H.

    (a)   Find the height hc.

    (b)   Find the distances AH and HB.

    (c)   Hence, calculate the side a=BC.

    Solutions:    (a)  hc5.64 cm;     (b)  AH2.05 cm, HB7.95 cm;     (c)  a9.74 cm
  2. ?
    ?
    The cosine rule can be used in any triangle:

    a2=b2+c22bccosA^

    b2=a2+c22accosB^

    c2=a2+b22abcosC^

    In a triangle ABC, b=AC=5 cm, c=AB=8 cm and α=CA^B=60. Find the length of the side a.
    Solution:    a=7 cm
  3. In a triangle ABC, a=BC=13 cm, b=AC=19 cm and γ=AC^B=6430. Find the length of the side c.
    Solution:    c17.8 cm
  4. In a triangle ABC, a=BC=9 cm, b=AC=14 cm and c=AB=13 cm. Calculate the angles α,β and γ.
    Solutions:    α38.7, β76.7, γ64.6
  5. In a triangle ABC, a=BC=13 cm, b=AC=8 cm and c=AB=7 cm. Calculate the angles α,β and γ. Write your results in degrees and minutes.
    Solutions:    α=120, β3212, γ2748
  6. In a triangle ABC, a=BC=2 cm, b=AC=7 cm and c=AB=33 cm. Calculate the angle β.
    Solution:    β=150
  7. In a triangle ABC, a=23 cm, c=17 cm and β=107.

    (a)   Find the side b.

    (b)   Calculate the angles α and γ.

    Solutions:    (a)  b32.4 cm;     (b)  α42.8, γ30.2
  8. In a triangle ABC, α=30, β=71 and b=16 cm.

    (a)   Find the height hc.

    (b)   Calculate the side a.

    Solutions:    (a)  hc=8 cm;     (b)  a8.46 cm
  9. ?
    ?
    The sine rule can be used in any triangle:

    asinA^=bsinB^=csinC^
    In a triangle ABC, α=57, β=71 and c=15 cm.

    (a)   Find the angle γ.

    (b)   Find the sides a and b.

    Solutions:    (a)  γ=52;     (b)  a16.0 cm, b18.0 cm
  10. In a triangle ABC, a=23 cm, b=39 cm and β=83.

    (a)   Find the angles α and γ.

    (b)   Find the side c.

    Solutions:    (a)  α35.8, γ61.2;     (b)  c34.4 cm
  11. We watch the peak of a mountain from two different points in the plain. When viewed from the first point, the angle of elevation of the peak is α=35. When viewed from the second point, the angle of elevation of the peak is β=50. The distance between the two points is d=430 m. Calculate the height of this mountain above the plain.
    Height of a mountain
    Solutions:    h730 m

Area

  1. ?
    ?
    Area of a triangle can be calculated using the formula:

    A=base×height2

    or also using:

    A=12absinC^

    A=12acsinB^

    A=12bcsinA^
    In a triangle ABC, b=6 cm, c=8 cm and α=30.

    (a)   Find the height hc.

    (b)   Find the area A.

    Solutions:    (a)  hc=3 cm;     (b)  A=12 cm2
  2. In a triangle ABC, a=14 cm, c=11 cm and β=7733.

    (a)   Find the side b.

    (b)   Find the area A.

    Solutions:    (a)  b15.8 cm;     (b)  A75.2 cm2
  3. In a triangle ABC, a=5 cm, b=2 cm and γ=58. Find the area of this triangle.
    Solution:    A4.24 cm2
  4. In a triangle ABC, a=7 cm, b=8 cm and c=5 cm.

    (a)   Find the angle α=CA^B.

    (b)   Find the area A.

    Solutions:    (a)  α=60;     (b)  A=103 cm17.3 cm2
  5. ?
    ?
    Area of a triangle can be calculated using the Heron formula if you know all three sides:

    A=s(sa)(sb)(sc)

    where s=a+b+c2
    A triangle ABC has sides: a=26 cm, b=15 cm and c=37 cm. Find the area of this triangle.
    Solution:    A=156 cm2
  6. A triangle ABC has sides: a=14 cm, b=19 cm and c=7 cm. Find the area of this triangle.
    Solution:    A39.5 cm2
  7. A triangle ABC has sides: a=6 cm, b=8 cm and c=17 cm. Find the area of this triangle.
    Solution:    A triangle with these sides doesn't exist.
  8. A triangle ABC has the sides: a=17 cm, b=10 cm and c=21 cm.

    (a)   Find the area.

    (b)   Find the height hc.

    Solutions:    (a)  A=84 cm2;     (b)  hc=8 cm
  9. In a triangle ABC: α=39, β=68 and c=14 cm.

    (a)   Find the angle γ.

    (b)   Find the sides a and b.

    (c)   Find the perimeter and area.

    Solutions:    (a)  γ=73;     (b)  a9.21 cm, b13.6 cm;     (c)  P36.8 cm, A59.8 cm2
  10. In a parallelogram ABCD: a=AB=15 cm, b=BC=7 cm and α=BA^D=60.

    (a)   Find the diagonal f=BD.

    (b)   Find the area of this parallelogram.

    Solutions:    (a)  f=13 cm;     (b)  A90.9 cm2
  11. A rhombus ABCD has the side a=7 cm and the angle α=69.

    (a)   Find the diagonal f=BD.

    (b)   Find the height h.

    (c)   Find the area of this rhombus.

    Solutions:    (a)  f7.93 cm;     (b)  h6.54 cm;     (c)  A45.7 cm2
  12. Farmer has a field in form of a quadrilateral ABCD. He measured the sides: AB=140 m, BC=85 m, CD=125 m, DA=80 m. Finally, he measured one of the diagonals: AC=195 m. Determine the area of this field.
    Solution:    A8250 m2
  13. A regular pentagon is inscribed in the circle with the radius r=8 cm.

    (a)   Find the side of this pentagon.

    (b)   Find the diagonal.

    (c)   Find the area.

    Solutions:    (a)  a9.40 cm;     (b)  d15.2 cm;     (c)  A152 cm2
  14. A regular octagon ABCDEFGH has the side a=10 cm.

    (a)   Find the diagonal AC.

    (b)   Find the inradius r (radius of the inscribed circle).

    (c)   Find the area of this octagon.

    Solutions:    (a)  AC18.5 cm;     (b)  r12.1 cm;     (c)  A483 cm2
  15. A regular nonagon has the side a=6 cm.

    (a)   Find the circumradius R (radius of the circumscribed circle).

    (b)   Find the length of the longest diagonal.

    (c)   Find the area of this nonagon.

    Solutions:    (a)  R8.77 cm;     (b)  d17.3 cm;     (c)  A223 cm2
  16. A regular hexagon has the side a=16 cm.

    (a)   Find the area of this hexagon.

    (b)   Find the circumradius R (radius of the circumscribed circle).

    (c)   Find the inradius r (radius of the inscribed circle).

    (d)   By what percentage is the circumradius greater than the inradius?

    Solutions:    (a)  A665 cm2;     (b)  R=a=16 cm;     (c)  r13.9 cm;     (d)  By 15.5%

Circle, arc, circular sector and circular segment

  1. A circle has the radius r=5 cm. Find the area and perimeter of this circle.
    Solutions:    A=25π cm278.5 cm2, P=10π cm31.4 cm
  2. A circle has the circumference 100 cm. Find the area of this circle.
    Solutions:    r15.9 cm, A796 cm2
  3. A circle has the area A=95 cm2. Calculate the radius and the perimeter of this circle.
    Solutions:    r5.50 cm, P34.6 cm
  4. A circle has the radius r=10 cm,

    (a)   Find the circumference.

    (b)   Find the length of the arc with the central angle 90.

    (c)   Find the area of this circle.

    (d)   Find the area of the circular sector with the central angle 90.

    Solutions:    (a)  P62.8 cm;     (b)  L15.7 cm;     (c)  A0314 cm2;     (d)  A178.5 cm2
  5. ?
    ?
    Length of an arc can be calculated using the formula:

    L=2πrθ360     or

    L=πrθ180

    Area of a circular sector can be calculated using the formula:

    A=πr2θ360
    A circle has the radius r=12 cm. Find the length of the arc with the central angle θ=40.
    Solution:    L=83π cm8.38 cm
  6. Find the area of the sector of the circle with the radius r=18 cm and the central angle θ=10.
    Solution:    A=9π cm228.3 cm2
  7. In a circle with the radius r=15 cm, arc L subtends the angle 69 at the centre.

    (a)   Find the length of the arc L.

    (b)   Find the area of the corresponding circular sector.

    Solutions:    (a)  L18.1 cm;     (b)  A135 cm2
  8. A circular sector has the radius r=18 cm. The area of this sector is A=288 cm2.

    (a)   Find the corresponding central angle.

    (b)   Find the length of the corresponding circular arc.

    Solutions:    (a)  θ102;     (b)  L=32 cm
  9. Given the radius r=8 cm and central angle θ=90,

    (a)   find the area of the circular sector,

    (b)   find the area of the corresponding circular segment.

    Solutions:    (a)  A150.3 cm2;     (b)  A218.3 cm2
  10. A circle has the radius r=26 cm. Calculate the area of the circular segment corresponding to the central angle θ=125.
    Solution:    A461 cm2
  11. Circular segment is a part of the circle with r=13 cm. The arc corresponding to this circular segment has the length L=15 cm. Calculate the area of this circular segment.
    Solution:    A20.2 cm2

Measuring angles in radians

  1. Write the following angles in radians:

    (a)   30

    (b)   45

    (c)   120

    (d)   135

    Solutions:    (a)  30=π6;     (b)  45=π4;     (c)  120=2π3;     (d)  135=3π4
  2. Convert the following angles to radians. Round the results to three significant figures.

    (a)   75

    (b)   20

    (c)   10

    (d)   1

    Solutions:    (a)  75=5π121.31;     (b)  20=π90.349;     (c)  10=π180.175;     (d)  1=π1800.0175
  3. Convert the following angles to degrees:

    (a)   π3

    (b)   π2

    (c)   5π6

    (d)   5π4

    Solutions:    (a)  π3=60;     (b)  π2=90;     (c)  5π6=150;     (d)  5π4=225
  4. Convert the following angles to degrees:

    (a)   1

    (b)   0.25

    (c)   1.85

    (d)   3.14

    Solutions:    (a)  1 rad57.3;     (b)  0.25 rad14.3;     (c)  1.85 rad106;     (d)  3.14 rad180
  5. A circle has the radius r=9 cm. Find the length of the arc which subtends the angle θ=2 radians.
    Solution:    L=18 cm
  6. Given the radius r=6 cm and central angle θ=18π,

    (a)   find the area of the circular sector,

    (b)   find the length of the arc.

    Solutions:    (a)  A7.07 cm2;     (b)  L2.36 cm
  7. Find the area of the circular segment of the radius r=14 cm and central angle θ=1.
    Solution:    A15.5 cm2

Powered by MathJax
Index

 Index