Index

Trigonometric functions

Graphs of trig functions in degrees

In all exercises in this section we'll be using degrees as angular units. To draw graphs correctly you must set the angular unit setting to "Degrees". Besides, you must fix the values in window settings: Xmin = −360, Xmax = 360 (and Xscale = 90 might be a good idea, too).
  1. Draw the graph of the function f(x)=sinx and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: 1, max. value: 1;     (b)  period: 360
  2. Draw the graph of the function f(x)=2sinx and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: 2, max. value: 2;     (b)  period: 360
  3. ?
    ?
    Coefficients in the equation   y=Asinx+D   have the meaning:

    A= amplitude,   D= vertical shift

    Principal axis has the equation: y=D.
    Draw the graph of the function f(x)=2sinx+1 and determine the following properties:

    (a)   find the amplitude,

    (b)   find the principal axis,

    (c)   find the minimum value and the maximum value,

    (d)   find the period.

    Solutions:    (a)  amplitude: 2;     (b)  principal axis: y=1;     (c)  min. value: 1, max. value: 3;     (d)  period: 360
  4. ?
    ?
    Coefficient in the equation   y=sinBx   has the meaning:

    B= horizontal shrink

    Period of the function is 360B.
    Draw the graph of the function f(x)=sin3x and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: 1, max. value: 1;     (b)  period: 120
  5. ?
    ?
    Coefficient in the equation   y=sin(xC)   has the meaning:

    C= horizontal shift
    Draw the graph of the function f(x)=sin(x45) and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: 1, max. value: 1;     (b)  period: 360
  6. Draw the graph of the function f(x)=sin2(x20) and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: 1, max. value: 1;     (b)  period: 180
  7. Draw the graph of the function f(x)=cosx and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: 1, max. value: 1;     (b)  period: 360
  8. Draw the graph of the function f(x)=3cosx+1 and determine the following properties:

    (a)   find the principal axis,

    (b)   write down the range,

    (c)   find all minima for 0x360.

    Solutions:    (a)  principal axis: y=1;     (b)  range: 2y4;     (c)  minimum at: (180,2)
  9. Draw the graph of the function f(x)=cos3x and determine the following properties:

    (a)   find all x-intercepts for 0x360,

    (b)   write down minima and maxima for 0x360.

    Solutions:    (a)  x-intercepts: 30, 90, 150, 210, 270, 330;     (b)  min.: (60,1), (180,1), (300,1), max.:(0,1), (120,1), (240,1), (360,1)
  10. Draw the graph of the function f(x)=4cos(x30) and determine the following properties:

    (a)   find y-intercept,

    (b)   find all x-intercepts on [0,360],

    (c)   write down the greatest and the least value, and state the smallest non-negative value of x for which they occur.

    Solutions:    (a)  y-intercept: 23;     (b)  x-intercepts: 120, 300;     (c)  min. value 4 occurs at x=210, max. value 4 occurs at x=30
  11. Graph of a function y=f(x) is drawn in the picture below.

    (a)   find the principal axis, amplitude and period,

    (b)   write the function in the form y=Asinx+D

    Graph
    Solutions:    (a)  principal axis: y=3, amplitude: 2, period 360;     (b)  y=2sinx+3
  12. Graph of a function y=f(x) is drawn in the picture below.

    (a)   find the principal axis, amplitude and period,

    (b)   write the function in the form y=AsinBx+D

    Graph
    Solutions:    (a)  principal axis: y=2, amplitude: 3, period 180;     (b)  y=3sin2x+2
  13. Use your GDC to draw the graph of the function f(x)=sinx+3cosx. This function can be written in the form f(x)=Asin(x+C). Find the values of the constants A and C.
    Solutions:    A=2, C=60;     f(x)=2sin(x+60)
  14. Use your GDC to draw the graph of the function f(x)=sin2x. Then write this function in the form f(x)=AcosBx+D.
    Solutions:    f(x)=12cos2x+12     (Use the GDC to verify your solution.)

Graphs of trig functions in radians

In all exercises in this section we'll be using radians as angular units. To draw graphs correctly you must set the angular unit setting to "Radians". Besides, you must fix the values in window settings: Xmin = −6.283 , Xmax = 6.283 (and Xscale = 1.571 might be a good idea, too).
  1. Draw the graph of the function f(x)=sinx and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: 1, max. value: 1;     (b)  period: 2π radians
  2. Draw the graph of the function f(x)=cosx and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: 1, max. value: 1;     (b)  period: 2π radians
  3. Draw the graph of the function f(x)=2cosx+1 and determine the following properties:

    (a)   find the principal axis,

    (b)   find the minimum value and the maximum value,

    (c)   find the period.

    Solutions:    (a)  principal axis: y=1;     (b)  min. value: 1, max. value: 3;     (c)  period: 2π
  4. Draw the graph of the function f(x)=sin2x+3 and determine the following properties:

    (a)   find the domain and range,

    (b)   find the period,

    (c)   write down minima and maxima.

    Solutions:    (a)  domain: R, range: [2,4];     (b)  period: π;     (c)  min.: (π4+kπ,2), max.:(π4+kπ,4),  kZ
  5. Draw the graph of the function f(x)=cos3x and determine the following properties:

    (a)   find all x-intercepts on 0x2π,

    (b)   write down minima and maxima on 0x2π.

    Solutions:    (a)  x-intercepts: π6, π2, 5π6, 7π6, 3π2, 11π6;     (b)  min.: (π3,1), (π,1), (5π3,1), max.:(0,1), (2π3,1), (4π3,1), (2π,1)
  6. Draw the graph of the function f(x)=4cos(xπ6) and determine the following properties:

    (a)   find y-intercept,

    (b)   find all x-intercepts on [0,2π],

    (c)   write down the greatest and the least value, and state the smallest non-negative value of x for which they occur.

    Solutions:    (a)  y-intercept: 23;     (b)  x-intercepts: 2π3, 5π3;     (c)  min. value 4 occurs at x=7π6, max. value 4 occurs at x=π6

Powered by MathJax
Index

 Index