(a) \(f(x)=x^2-1\)
(b) \(f(x)=x^2-4x\)
(c) \(f(x)=2x^2-8x+6\)
(d) \(f(x)=-x^2+2x-1\)
(e) \(f(x)=x^2+4x+5\)
Solutions: (a) \(V(0,-1),~ x_1=-1,~ x_2=1\); (b) \(V(2,-4),~ x_1=0,~ x_2=4\); (c) \(V(2,-2),~ x_1=1,~ x_2=3\); (d) \(V(1,0),~ x_1=x_2=1\); (e) \(V(-2,1)\)(a) \(f(x)=x^2-2x-3\)
(b) \(f(x)=x^2-x+\frac{1}{4}\)
(c) \(f(x)=2x^2-4x+4\)
(d) \(f(x)=-x^2+x\)
(e) \(f(x)=-x^2+5x-3\)
Solutions: (a) \(V(1,-4),~ x_1=-1,~ x_2=3\); (b) \(V(\frac{1}{2},0),~ x_1=x_2=\frac{1}{2}\); (c) \(V(2,2)\); (d) \(V(\frac{1}{2},\frac{1}{4}),~ x_1=0,~ x_2=1\); (e) \(V(2.5,3.25),~ x_1\approx0.697,~ x_2\approx4.303\)(a) \(f(x)=(x-2)(x-4)\)
(b) \(f(x)=-2(x-2)(x-3)\)
Solutions: (a) \(V(3,-1),~ x_1=2,~ x_2=4\); (b) \(V(2.5,0.5),~ x_1=2,~ x_2=3\)(a) \(f(x)=(x-2)^2-9\)
(b) \(f(x)=(x-3)^2+1\)
Solutions: (a) \(V(2,-9),~ x_1=-1,~ x_2=5\); (b) \(V(3,1)\)(a) Write the equation of this quadratic function in the intercept form \(f(x)=a(x-p)(x-q)\).
(b) Write the equation of this quadratic function in the standard form \(f(x)=ax^2+bx+c\).
(c) Draw the graph of \(f\).
Solutions: (a) \(f(x)=-1(x+3)(x-1)\); (b) \(f(x)=-x^2-2x+3\)(a) Write the equation of this quadratic function in the vertex form \(f(x)=a(x-h)^2+k\).
(b) Write the equation of this quadratic function in the standard form \(f(x)=ax^2+bx+c\).
(c) Draw the graph of \(f\).
Solutions: (a) \(f(x)=\frac{1}{2}(x-2)^2-4\); (b) \(f(x)=\frac{1}{2}x^2-2x-2\)(a) \(y=x^2-6x+8,~~~~ y=x+2\)
(b) \(y=x^2-x-2,~~~~ y=x-3\)
Solutions: (a) \(P_1(1,3),~ P_2(6,8)\); (b) \(P(1,-2)\)(a) \(y=x^2-2x-3,~~~~ y=-x^2+1\)
(b) \(y=x^2-4x,~~~~ y=\frac{1}{2}x^2-x-\frac{5}{2}\)
Solutions: (a) \(P_1(-1,0),~ P_2(2,-3)\); (b) \(P_1(1,-3),~ P_2(5,5)\)(a) \(y=x^2-5x+4\)
(b) \(y=x^2-2x+2\)
Hint: Draw the graph.(a) \(x^2-2x-3\leqslant 0\)
(b) \(x^2-6x+9\gt 0\)
Solutions: (a) \(-1\leqslant x\leqslant 3\); (b) any \(x\ne3\)(a) \(x^2-5x+6=0\)
(b) \(x^2=x+2\)
(c) \(2x^2+1=3x\)
(d) \(12x-9x^2=4\)
(e) \(5x^2=x-2\)
Solutions: (a) \(x_1=2,~ x_2=3~~ (\Delta=1)\); (b) \(x_1=-1,~ x_2=2~~ (\Delta=9)\); (c) \(x_1=\frac{1}{2},~ x_2=1~~ (\Delta=1)\); (d) one repeated root: \(x_1=x_2=\frac{2}{3}~~ (\Delta=0)\); (e) no real roots \((\Delta=-39)\)(a) \(x^2=2x+3\)
(b) \(3x^2+x=2\)
(c) \(4x^2-4x+1=0\)
(d) \(2x^2+2=3x\)
Solutions: (a) \(x_1=-1,~ x_2=3\); (b) \(x_1=-1,~ x_2\approx0.667\); (c) \(x_1=x_2=\frac{1}{2}=0.5\); (d) no real roots, \(x\) doesn't exist(a) \(x^2-4x+3=0\)
(b) \(3x^2+6=11x\)
(c) \(2x^2=8x-8\)
(d) \(x^2+5=2x\)
Solutions: (a) \(x_1=1,~ x_2=3\); (b) \(x_1\approx0.667,~ x_2=3\); (c) \(x_1=x_2=2\); (d) no real roots, \(x\) doesn't exist(a) \(2x(x-7)+15=0\)
(b) \((2x+1)(x-2)=(x+1)^2\)
Solutions: (a) \(x_1\approx5.68,~ x_2\approx1.32\); (b) \(x_1\approx5.54,~ x_2\approx-0.541\)(a) \(5x-4=\frac{\textstyle 1}{\textstyle x}\)
(b) \(x-2=\frac{\textstyle 20}{\textstyle x-1}\)
(c) \({\displaystyle\frac{x}{x-2}=\frac{4}{x-5}}\)
Solutions: (a) \(x_1=-\frac{1}{5}=-0.2,~ x_2=1\); (b) \(x_1=-3,~ x_2=6\); (c) \(x_1=1,~ x_2=8\)(a) \(2x^4-5x^2-12=0\)
(b) \((x^2+1)^2-12(x^2+1)+20=0\)
(c) \(x-7\sqrt{x}+10=0\)
Solutions: (a) \(x_1=2,~ x_2=-2\); (b) \(x_1=1,~ x_2=-1,~ x_3=3,~ x_4=-3\); (c) \(x_1=4,~ x_2=25\)Her first idea was to use equal lengths for sides \(a\) and \(b\).
(a) Find \(a\) and \(b\) in this case.
(b) Calculate the area in this case.
Then she started thinking of another interesting idea. Help her develop this idea:
(c) Express value of \(b\) with \(a\).
(d) Write down the area as a function of variable \(a\).
(e) Use your GDC to draw this function.
(f) Find out, for which \(a\) this garden has the largest area. Write the corresponding \(b\) and area, too
Solutions: (a) \(a=b=4~\mathrm{m}\); (b) \(A=16~\mathrm{m}^2\);