(a) Write the table of probability distribution.
(b) Find the expected value \(E(X)\).
Solutions: (a) \(\begin{array}{|l|c|c|c|c|c|}\hline x & 0 & 1 & 2 & 3 & 4 \cr\hline P(X=x) & \frac{1}{16} & \frac{1}{4} & \frac{3}{8} & \frac{1}{4} & \frac{1}{16} \cr\hline \end{array}\) (b) \(E(X)=2\)(a) Write the table of probability distribution.
(b) Find the expected value \(E(X)\).
Solutions: (a) \(\begin{array}{|l|c|c|c|c|}\hline x & 0 & 1 & 2 & 3 \cr\hline P(X=x) & 2.1\% & 17.2\% & 44.3\% & 36.4\% \cr\hline \end{array}\) (b) \(E(X)=2.15\)(a) Find the unknown \(p\).
(b) Find the expected value \(E(X)\).
Solutions: (a) \(p=\frac{1}{20}\); (b) \(E(X)=5.1\)(a) Write the table of probability distribution.
(b) Find the expected value \(E(X)\).
Solutions: (a) \(\begin{array}{|l|c|c|c|c|}\hline x & 1 & 2 & 3 \cr\hline P(X=x) & \frac{5}{12} & \frac{1}{3} & \frac{1}{4} \cr\hline \end{array}\) (b) \(E(X)\approx1.83\)(a) Write the table of probability distribution.
(b) Find the expected value \(E(X)\).
Solutions: (a) \(\begin{array}{|l|c|c|c|c|}\hline x & 3 & 4 & 7 \cr\hline P(X=x) & \frac{8}{29} & \frac{9}{29} & \frac{12}{29} \cr\hline \end{array}\) (b) \(E(X)\approx4.97\)(a) \(P(X=0)\).
(b) \(P(X=1)\).
(c) \(P(X\geqslant1)\).
(d) \(P(X\geqslant2)\).
Solutions: (a) \(P(X=0)\approx16.2\%\); (b) \(P(X=1)\approx32.3\%\); (c) \(P(X\geqslant1)\approx83.8\%\); (d) \(P(X\geqslant2)\approx51.5\%\)(a) \(P(X=1)\) and \(P(X=2)\).
(b) \(P(X\leqslant 3)\) and \(P(X\gt 3)\).
(c) \(E(X)\) and \(\sigma\).
Solutions: (a) \(P(X=1)\approx0.269,~ P(X=2)\approx0.296\); (b) \(P(X\leqslant 3)\approx0.875,~ P(X\gt 3)\approx0.125\); (c) \(E(X)=np=2,~ \sigma=\sqrt{np(1-p)}\approx1.29\)(a) \(P(X=7)\), \(P(X\leqslant7)\) and \(P(X\lt7)\).
(b) \(P(7\leqslant X\leqslant 13)\) and \(P(7\lt X\lt 13)\).
(c) \(E(X)\) and \(\sigma\).
Solutions: (a) \(P(X=7)\approx0.0739,~ P(X\leqslant 7)\approx0.132,~ P(X\lt 7)\approx0.0577\); (b) \(P(7\leqslant X\leqslant 13)\approx0.885,~ P(7\lt X\lt 13)\approx0.737\); (c) \(E(X)=10,~ \sigma\approx2.24\)(a) Find the expected number of defective LCD screens.
(b) Find the probability that there are 3 defective LCD screens.
(c) Find the probability that the number of defective LCD screens is less or equal 4.
(d) Find the probability that the number of defective LCD screens is greater or equal 5.
Solutions: (a) \(E(X)=2\); (b) \(P\approx0.182\); (c) \(P\approx0.948\); (d) \(P\approx0.0515\)(a) Calculate \(P(65\leqslant X\leqslant 75)\).
(b) Calculate \(P(X\leqslant 50)\).
(c) Calculate \(P(X\geqslant 85)\).
Solutions: (a) \(P(65\leqslant X\leqslant 75)\approx0.383\); (b) \(P(X\leqslant 50)\approx0.0228\); (c) \(P(X\geqslant 85)\approx0.0668\)(a) Calculate \(P(15\leqslant X\leqslant 20)\).
(b) Calculate \(P(X\geqslant 23)\).
Hint: The notation \(X\sim N(20,25)\) means that \(X\) is normally distributed with the mean \(\mu=20\) and variance \(\sigma^2=25\) (which means that the standard deviation \(\sigma=5\)).(a) Find \(a\) where \(P(X\leqslant a)=0.75\).
(b) Find \(b\) where \(P(X\leqslant b)=0.31\).
Solutions: (a) \(a=\mathrm{invNorm}(0.75,70,10)\approx76.7\); (b) \(b=\mathrm{invNorm}(0.31,70,10)\approx65.0\)(a) Find \(a\) where \(P(X\leqslant a)=\frac{2}{3}\).
(b) Find \(m\) where \(P(X\geqslant m)=0.45\).
Solutions: (a) \(a\approx22.2\); (b) \(m\approx20.6\)(a) Write down \(\mu\) and \(\sigma\).
(b) Calculate \(P(X\leqslant 30)\).
(c) Find \(m\) where \(P(30\leqslant X\leqslant m)=0.6\).
Solutions: (a) \(\mu=40,~ \sigma=15\); (b) \(P(X\leqslant 30)\approx0.252\); (c) \(m\approx55.7\)(a) How many percent of the bottles contain less than 500 ml?
(b) How many bottles containing less than 500 ml are produced in one day?
Solutions: (a) \(P(X \lt 500)\approx0.820\%\); (b) 41 bottles(a) How many percent of tomatoes weight from 120 to 150 g?
(b) How many percent of tomatoes weight 150 g or more?
The 5% of heaviest tomatoes are considered "extra-large".
(c) Find the minimal weight of an extra-large tomato.
Solutions: (a) \(P(120\leqslant X\leqslant 150)\approx65.6\%\); (b) \(P(X\geqslant 150)\approx25.2\%\); (c) minimal weight: 165 g(a) How many percent of the population have the score greater than 100?
(b) How many percent of the population have the score between 70 and 80?
(c) How many percent of the population have the score smaller than 60?
(d) Find the value \(a\), given that 10% of the population have the score smaller than \(a\).
Solutions: (a) \(P(X \geqslant 100)\approx0.159=15.9\%\); (b) \(P(70\leqslant X\leqslant 80)\approx0.211=21.1\%\); (c) \(P(X\leqslant 60)\approx0.0478=4.78\%\); (d) \(a\approx65.8\)(a) Write down \(\mu\) and \(\sigma\) for the variable \(X\).
(b) Write down \(\mu\) and \(\sigma\) for the variable \(Y\).
(c) Calculate values of \(Y\) corresponding to \(X_1=16\) and \(X_2=30\).
(d) Calculate \(P(16\leqslant X\leqslant 30)\).
(e) Find the probability for the corresponding interval of \(Y\).
Hint: \(Y=5X+50\) means that the variable \(Y\) has the mean \(\mu_Y=5\cdot 20+50=150\) and standard deviation \(\sigma_Y=5\cdot 8=40\), so \(Y\sim N(150,40^2)\).(a) Calculate \(P(X\leqslant 11)\) and \(P(Y\leqslant 39)\).
(b) Calculate \(P(Y\geqslant 30)\) and find the appropriate interval for \(X\).
(c) Find \(a\) where \(P(Y\leqslant a)=\frac{1}{4}\).
(d) Find \(b\) where \(P(33\leqslant Y\leqslant b)=0.3\).
Solutions: (a) \(P(X\leqslant 11)=P(Y\leqslant 39)\approx0.691\); (b) \(P(X\geqslant 8)=P(Y\geqslant 30)\approx0.841\); (c) \(a\approx32.0\); (d) \(b\approx37.7\)(a) Write down \(\mu\) and \(\sigma\).
(b) Calculate \(P(X\leqslant \mu)\) and \(P(X\geqslant \mu)\).
(c) Calculate \(P(\mu\leqslant X\leqslant \mu+\sigma)\) and \(P(X\geqslant \mu+\sigma)\).
(d) Calculate \(P(\mu-\sigma\leqslant X\leqslant \mu+\sigma)\).
Solutions: (a) \(\mu=30,~ \sigma=3\); (b) \(P(X\leqslant \mu)=P(X\geqslant \mu)=0.5=50\%\); (c) \(P(\mu\leqslant X\leqslant \mu+\sigma)\approx0.341\), \(P(X\geqslant \mu+\sigma)\approx0.159\); (d) \(P(\mu-\sigma\leqslant X\leqslant \mu+\sigma)\approx0.683\)(a) Write down \(\mu\) and \(\sigma\).
(b) Calculate \(P(Z\leqslant \mu)\) and \(P(Z\geqslant \mu)\).
(c) Calculate \(P(\mu\leqslant Z\leqslant \mu+\sigma)\) and \(P(Z\geqslant \mu+\sigma)\).
(d) Calculate \(P(\mu-\sigma\leqslant Z\leqslant \mu+\sigma)\).
(e) Calculate \(P(\mu-2\sigma\leqslant Z\leqslant \mu+2\sigma)\).
(f) Calculate \(P(\mu-3\sigma\leqslant Z\leqslant \mu+3\sigma)\).
Solutions: (a) \(\mu=0,~ \sigma=1\); (b) \(P(Z\leqslant 0)=P(Z\geqslant 0)=0.5=50\%\); (c) \(P(0\leqslant Z\leqslant 1)\approx0.341\), \(P(Z\geqslant 1)\approx0.159\); (d) \(P(-1\leqslant Z\leqslant 1)\approx0.683\); (e) \(P(-2\leqslant Z\leqslant 2)\approx0.954\); (f) \(P(-3\leqslant Z\leqslant 3)\approx0.997\)(a) Find the standard score (the \(Z\)-score) for values: \(X_1=55\), \(X_2=60\) and \(X_3=20\).
Hence calculate:
(b) \(P(55\leqslant X \leqslant 60)\)
(c) \(P(X\leqslant 20)\)
Solutions: (a) \(Z_1=\frac{1}{3},~ Z_2=\frac{2}{3},~ Z_3=-2\); (b) \(P(55\leqslant X \leqslant 60)=P(\frac{1}{3}\leqslant Z \leqslant \frac{2}{3})\approx0.117\); (c) \(P(X\leqslant 20)=P(Z\leqslant -2)\approx0.0228\)(a) How many percent of the population have the score between \(\mu-\frac{1}{2}\sigma\) and \(\mu+\frac{1}{2}\sigma\)?
(b) Find \(\sigma\), given that only 5% of the population achieved score greater than 120.
Hint: Use \(Z\)-score in part (a). In part (b), first find the value \(z_0\) so that \(P(Z\geqslant z_0)=0.05\) and then use \(Z=\frac{\textstyle X-\mu}{\textstyle\sigma}\) to find \(\sigma\).