(a) \({\displaystyle \int (4x+5)\,dx}\)
(b) \({\displaystyle \int (x^2-6x+2)\,dx}\)
(c) \({\displaystyle \int (x^3-2x^2+5x-7)\,dx }\)
Solutions: (a) \(\cdots=2x^2+5x+C\); (b) \(\cdots=\frac{1}{3}x^3-3x^2+2x+C\); (c) \(\cdots=\frac{1}{4}x^4-\frac{2}{3}x^3+\frac{5}{2}x^2-7x+C\)(a) \({\displaystyle \int (x+2)(x+4)\,dx}\)
(b) \({\displaystyle \int (x-1)(x+1)\,dx}\)
(c) \({\displaystyle \int (3x+1)^2\,dx }\)
Solutions: (a) \(\cdots=\frac{1}{3}x^3+3x^2+8x+C\); (b) \(\cdots=\frac{1}{3}x^3-x+C\); (c) \(\cdots=3x^3+3x^2+x+C\)(a) \({\displaystyle \int \left(6x^2+e^x\right)\,dx}\)
(b) \({\displaystyle \int \left(7e^x+\frac{1}{x}\right)\,dx}\)
(c) \({\displaystyle \int \left(\frac{1}{x}+\frac{1}{x^2}\right)\,dx }\)
(d) \({\displaystyle \int \left(x^5-\frac{6}{x^3}\right)\,dx}\)
Solutions: (a) \(\cdots=2x^3+e^x+C\); (b) \(\cdots=7e^x+\ln |x|+C\); (c) \(\cdots=\ln |x| -\frac{1}{x}+C\); (d) \(\cdots=\frac{1}{6}x^6+\frac{3}{x^2}+C\)(a) \({\displaystyle \int (x+\sqrt{x}+1)\,dx}\)
(b) \({\displaystyle \int \frac{3}{\sqrt{x}}\,dx}\)
(c) \({\displaystyle \int (\sqrt[\scriptstyle3]{x}+\sqrt[\scriptstyle3]{x^2})\,dx }\)
Solutions: (a) \(\cdots=\frac{1}{2}x^2+\frac{2}{3}\sqrt{x^3}+x+C\); (b) \(\cdots=6\sqrt{x}+C\); (c) \(\cdots=\frac{3}{4}\sqrt[3]{x^4}+\frac{3}{5}\sqrt[3]{x^5}+C\)\({\displaystyle \int\limits_a^b f(x)\, dx = F(b)-F(a)}\)
Here \(F\) is the indefinite integral of \(f\):(a) \({\displaystyle \int\limits_{-1}^2 (-x^2+5)~ dx}\)
(b) \({\displaystyle \int\limits_0^2 (x^3-x+2)~dx }\)
(c) \({\displaystyle \int\limits_1^3 (x^3-3x^2+5)~ dx}\)
Solutions: (a) \(\cdots=12\); (b) \(\cdots=6\); (c) \(\cdots=4\)(a) \({\displaystyle \int\limits_1^2 x^{-2}~ dx}\)
(b) \({\displaystyle \int\limits_0^9 \sqrt{x}~ dx}\)
(c) \({\displaystyle \int\limits_0^1 e^x ~dx }\)
Solutions: (a) \(\cdots=\frac{1}{2}\); (b) \(\cdots=18\); (c) \(\cdots=e-1\approx1.72\)(a) \({\displaystyle \int\limits_{-2}^0 (x^3-4x)~ dx}\)
(b) \({\displaystyle \int\limits_0^2 (x^3-4x)~ dx}\)
(c) \({\displaystyle \int\limits_{-2}^2 (x^3-4x)~ dx}\)
Solutions: (a) \(\cdots=4\); (b) \(\cdots=-4\); (c) \(\cdots=0\)(a) Write down the intersection points of \(f\) and \(g\).
(b) Find the area of the region bounded by the graphs of \(f\) and \(g\).
Solutions: (a) \(P_1(-0.729,2.47),~ P_2(1.51,0.709)\); (b) \(A\approx6.45\)(a) Write down the equation of the tangent to \(f\) at \(x=0\).
(b) Find the area of the region bounded by the graph of \(f\) and this tangent.
Solutions: (a) \(y=x+3\); (b) \(A=6.75\)(a) Write down the equation of the tangent to \(f\) at \(x=0\).
(b) Find the area of the region bounded by the graph of \(f\) and this tangent.
Solutions: (a) \(y=2x\); (b) \(A\approx10.7\)(a) Write down the equation of the normal to \(f\) at point \(A(3,0)\).
This normal intersects the graph of the function at \(A\) and at another point \(B\).
(b) Write down the coordinates of \(B\).
(c) Find the area of the region bounded by the graph of \(f\) and the normal.
Solutions: (a) \(y=-\frac{1}{9}x+\frac{1}{3}\); (b) \(B(-0.693,0.410)\); (c) Area \(\approx4.74\)(a) Write down the equation of the tangent to \(f\) at \(x=0\).
(b) Write down the equation of the tangent to \(f\) at \(x=3\).
(c) Write down the intersection point of these tangents.
(d) Find the area of the region bounded by the graph of \(f\) and both tangents.
Solutions: (a) \(y=-4x+6\); (b) \(y=2x-3\); (c) \(P(1.5,0)\); (d) Area \(=\frac{9}{4}=2.25\)(a) Divide the interval in four parts.
(b) Divide the interval in eight parts.
(c) Compare both approximations with the exact value.
Solutions: (a) \(A\approx17.23\); (b) \(A\approx17.31\); (c) \(A=17\frac{1}{3}\)\(x\) | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 |
\(y\) | 1.75 | 2.25 | 3.25 | 2.75 | 2.5 | 2 | 1.25 |