Index

Functions

Polynomials

  1. Find zeros (roots) of the following polynomials using factorisation:

    (a)   p(x)=x3+2x215x

    (b)   p(x)=x35x24x+20

    (c)   p(x)=x43x3x2+3x

    Solutions:    (a)  x1=0, x2=3, x3=5;     (b)  x1=2, x2=2, x3=5;     (c)  x1=0, x2=1, x3=1, x4=3
  2. Find zeros (roots) of the following polynomials using factorisation:

    (a)   p(x)=x32x24x+8

    (b)   p(x)=x44x2

    (c)   p(x)=x54x4+4x3

    Solutions:    (a)  x1,2=2, x3=2;     (b)  x1,2=0, x3=2, x4=2;     (c)  x1,2,3=0, x4,5=2
  3. Use PolyRoots tool to find zeros of the following polynomials:

    (a)   p(x)=x3x214x+24

    (b)   p(x)=x4x39x211x4

    (c)   p(x)=x53x45x3+15x2+4x12

    (d)   p(x)=x52x45x3+10x2+4x8

    (e)   p(x)=x55x4+4x320x2

    Solutions:    (a)  x1=2, x2=3, x3=4;     (b)  x1=4, x2,3,4=1;     (c)  x1=1, x2=1, x3=2, x4=2, x5=3;     (d)  x1,2=2, x3=2, x4=1, x5=1;     (e)  x1,2=0, x3=5
  4. Draw graphs and determine zeros of the following polynomials:

    (a)   p(x)=x3+x22x

    (b)   p(x)=x33x

    (c)   p(x)=x45x2+4

    (d)   p(x)=x54x3+3x

    Solutions:    (a)  x1=0, x2=1, x3=2;     (b)  x1=0, x2=31.73, x3=31.73;     (c)  x1=1, x2=1, x3=2, x4=2;     (d)  x1=0, x2=1, x3=1, x4=31.73, x5=31.73
  5. Draw graphs and determine zeros of the following polynomials:

    (a)   p(x)=x45x3+6x2

    (b)   p(x)=x4+x32x2

    (c)   p(x)=x42x3

    (d)   p(x)=x5+4x4+4x3

    Solutions:    (a)  x1,2=0, x3=2, x4=3;     (b)  x1,2=0, x3=1, x4=2;     (c)  x1,2,3=0, x4=2;     (d)  x1,2,3=0, x4,5=2
  6. Use your GDC to draw graph of the polynomial f(x)=2x33x2+5

    (a)   Using GDC find zeros.

    (b)   Using GDC find f(0), f(3), f(12) and f(3.4).

    (c)   Using GDC find extreme points (maxima and minima).

    Solutions:    (a)  zero: x1=1;     (b)  f(0)=5, f(3)=76, f(12)=92=4.5, f(3.4)48.9;     (c)  maximum P1(0,5), minimum P2(1,4)
  7. Consider the polynomial p(x)=x32x2+x1

    (a)   Draw the graph of this polynomial.

    (b)   Write down zeros.

    (c)   Calculate p(0.02), p(3), p(321).

    (d)   Find extreme points (maxima and minima).

    Solutions:    (b)  zero: x11.75;     (c)  p(0.02)0.981, p(3)0.0718, p(321)3.29107;     (d)  maximum P1(0.333,0.852), minimum P2(1,1)
  8. A polynomial has the equation p(x)=x33x2+m. Graph of this polynomial passes through the point A(1,2).

    (a)   Find m.

    (b)   Draw the graph of this polynomial.

    (c)   Write down zeros.

    (d)   Find all values of x where p(x)=3.

    (e)   Find extreme points (maxima and minima).

    Solutions:    (a)  m=4;     (c)  zeros: x1=1, x2,3=2;     (d)  x0.532, x0.653, x2.88;     (e)  maximum P1(0,4), minimum P2(2,0)
  9. A polynomial has the equation p(x)=x36x2+ax+b. Graph of this polynomial passes through points A(1,2). and B(3,4).

    (a)   Find a and b.

    (b)   Draw the graph of this polynomial.

    (c)   Write down zeros.

    This polynomial can be written as p(x)=(x2)3+m.

    (d)   Find m.

    Solutions:    (a)  a=12, b=5;     (c)  zero: x10.558;     (d)  m=3
  10. Graph of the function y=x3+ax2+bx+c passes through points A(1,5), B(1,3) and C(2,2).

    (a)   Find a, b and c.

    (b)   Draw the graph of this function.

    (c)   Write the coordinates of extreme points.

    Solutions:    (a)  a=5, b=3, c=4;     (c)  max.: P1(0.333,4.48), min.: P2(3,5)

Limits

  1. ?
    ?
    Limit is the value that a function approaches as x goes to positive or negative infinity.
    Evaluate the following limits:

    (a)   limx2x+3x1

    (b)   limxx+23x+5

    (c)   limx5+6x14x

    Solutions:    (a)  =2;     (b)  =13;     (c)  =32
  2. Evaluate the following limits:

    (a)   limxx2+x+1x2+5x

    (b)   limx2x2xx2+1

    (c)   limx±(x+1)22x(x+2)

    (d)   limx±3x3+1(x+1)3

    Solutions:    (a)  =1;     (b)  =2;     (c)  =12;     (d)  =3
  3. Evaluate the following limits (if possible):

    (a)   limxx2+2xx3+1

    (b)   limx1x2+1

    (c)   limxx22x+3

    Solutions:    (a)  =0;     (b)  =0;     (c)  Not possible – the limit doesn't exist.

Rational functions

  1. Write down zeros, vertical asymptotes and horizontal asymptotes of the following functions and draw the graphs:

    (a)   f(x)=x+1x1

    (b)   f(x)=2x3x1

    (c)   f(x)=x+12x+5

    Solutions:    (a)  zero: x=1, vertical asymptote: x=1, horizontal asymptote: y=1;     (b)  zero: x=32, vertical asymptote: x=1, horizontal asymptote: y=2;     (c)  zero: x=1, vertical asymptote: x=52, horizontal asymptote: y=12;
  2. Write down zeros, vertical asymptotes and horizontal asymptotes of the following functions and draw the graphs:

    (a)   f(x)=1x+2

    (b)   f(x)=23x4

    (c)   f(x)=11x

    Solutions:    (a)  zero: /, vertical asymptote: x=2, horizontal asymptote: y=0;     (b)  zero: /, vertical asymptote: x=43, horizontal asymptote: y=0;     (c)  zero: /, vertical asymptote: x=1, horizontal asymptote: y=0;
  3. Given the function f(x)=3x32x1

    (a)   write down the zero, vertical asymptote and horizontal asymptote,

    (b)   draw the graph,

    (c)   write the domain and range.

    Solutions:    (a)  zero: x=1, vertical asymptote: x=12, horizontal asymptote: y=32;     (c)  domain: x12, range: y32
  4. Given the function f(x)=1x2+x

    (a)   write down the zero, vertical asymptote and horizontal asymptote,

    (b)   draw the graph,

    (c)   write the domain and range,

    (d)   find f1(x).

    Solutions:    (a)  zero: x=1, vertical asymptote: x=2, horizontal asymptote: y=1;     (c)  domain: x2, range: y1;     (d)  f1(x)=2x+1x+1
  5. A rational function has the equation f(x)=x2x2+x2.

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    (c)   Find the point where the graph intersects the horizontal asymptote.

    Solutions:    (b)  zero x1,2=0, vertical asymptotes x=1 and x=2, horizontal asymptote y=1;     (c)  intersection: P(2,1)
  6. A rational function has the equation f(x)=x2+4x+4x21.

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    (c)   Find the point where the graph intersects the horizontal asymptote.

    (d)   Find the extreme points.

    Solutions:    (b)  zero x1,2=2, vertical asymptotes x=1 and x=1, horizontal asymptote y=1;     (c)  intersection: P(1.2,1);     (d)  min.: (2,0), max.: (0.5,3)
  7. A rational function has the equation f(x)=x+1x2.

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    (c)   Find the extreme points.

    Solutions:    (b)  zero x1=1, vertical asymptotes x1,2=0, horizontal asymptote y=0;     (c)  min.: (2,0.25)
  8. A rational function has the equation f(x)=x1x2+5x+4.

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    (c)   Find the extreme points. Round the coordinates to three decimals.

    Solutions:    (b)  zero x1=1, vertical asymptotes x=1 and x=4, horizontal asymptote y=0;     (c)  min.: (2.162,1.481), max.: (4.162,0.075)
  9. A rational function has the equation f(x)=x23xx2+1.

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    (c)   Hence or otherwise, find the limit: limxx23xx2+1

    Solutions:    (b)  zeros x1=0, x2=3, vertical asymptotes don't exist, horizontal asymptote y=1;     (c)  limit = 1
  10. A rational function has the equation f(x)=x32x2x22x+1.

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    Solutions:    (b)  zeros x1,2=0, x3=2, vertical asymptote x=1, horizontal asymptote doesn't exist
  11. A rational function has the equation f(x)=xx+11x1.

    (a)   Draw the graph.

    (b)   Write down vertical asymptotes and horizontal asymptote.

    (c)   Write down zeros (using GDC).

    (d)   Find the zeros algebraically and write down the exact values.

    Solutions:    (b)  vertical asymptotes x=1 and x=1, horizontal asymptote y=1;     (c)  zeros x10.414, x22.41;     (d)  zeros: x1=12, x2=1+2
  12. Let f(x)=2xxq.

    (a)   Write down the horizontal asymptote.

    The line x=3 is a vertical asymptote of this function.

    (b)   Find the value of q.

    (c)   Draw the graph of this function.

    Solutions:    (a)  horizontal asymptote y=2;     (b)  q=3
  13. Let f(x)=x+22xq. The line x=2 is a vertical asymptote of this function.

    (a)   Write down the horizontal asymptote.

    (b)   Find the value of q.

    (c)   Find the y-axis intercept of this function.

    Solutions:    (a)  horizontal asymptote y=12;     (b)  q=4;     (c)  y=12

Modelling

  1. Scheme We have a rectangular piece of cardboard with dimensions 80×60 cm. We'd like to make a box out of this piece of cardboard. We'll cut off a small square at each corner, fold the sides and glue them together.

    (a)   Write the volume of this box as a function of x (= the side of the small square).

    (b)   Draw this function in a coordinate system with appropriate units.

    (c)   Find the value of x where the volume is maximal.

    (d)   Write down the maximal volume (in cm3 and in ).

    Solutions:    (a)  V=x(802x)(602x);     (b)  (use x from −10 to 50, y from −5000 to 25000);     (c)  x11.3 cm;     (d)  V24258 cm324.3
  2. Doctors are studying the effects of a certain drug to the human body. They measured the concentration of this substance in blood and discovered the following model:
          y=85xx2+5
    where y is concentration (in miligrams per litre) at time x hours after taking a standard oral dose.

    (a)   Draw this function in a coordinate system with appropriate units.

    (b)   Find the value of x where the concentration is maximal. Write x in hours and minutes.

    (c)   Write down the maximal concentration (in mg/).

    (d)   When is the concentration equal to one half of the maximal value? Write the time in hours and minutes.

    Solutions:    (b)  xmax2h14min;     (c)  ymax19.0 mg/;     (d)  x10h36min, x28h21min
  3. A scientist was conducting a series of experiments. He was measuring two quantities, labelled as x and y. The results of his measurements are written in the following table:
    xy32.521.711.201.011.221.732.5

    (a)   Draw the values as points in a coordinate system with appropriate units.

    (b)   Find an appropriate function y=f(x) which can be used for modelling his results.

    Hint:    Use the function y=x2 and apply transformations (stretch, shift) to adjust the graph.
    Solution:    (b)  y=16x2+1
  4. A scientist was conducting a series of experiments. She was measuring two quantities, labelled as x and y. The results of her measurements are written in the following table:
    xy0.00.000.51.201.01.751.51.952.02.002.52.053.02.203.52.80

    (a)   Draw the values as points in a coordinate system with appropriate units.

    (b)   Find an appropriate function y=f(x) which can be used for modelling her results.

    Hint:    Use the function y=x3 and apply transformations (stretch, shift) to adjust the graph.
    Solution:    (b)  y=14(x2)3+2

Powered by MathJax
Index

 Index