Index

Functions

Polynomials

  1. Find zeros (roots) of the following polynomials using factorisation:

    (a)   \(p(x)=x^3+2x^2-15x\)

    (b)   \(p(x)=x^3-5x^2-4x+20\)

    (c)   \(p(x)=x^4-3x^3-x^2+3x\)

    Solutions:    (a)  \(x_1=0,~ x_2=3,~ x_3=-5\);     (b)  \(x_1=2,~ x_2=-2,~ x_3=5\);     (c)  \(x_1=0,~ x_2=1,~ x_3=-1,~ x_4=3\)
  2. Find zeros (roots) of the following polynomials using factorisation:

    (a)   \(p(x)=x^3-2x^2-4x+8\)

    (b)   \(p(x)=x^4-4x^2\)

    (c)   \(p(x)=x^5-4x^4+4x^3\)

    Solutions:    (a)  \(x_{1,2}=2,~ x_3=-2\);     (b)  \(x_{1,2}=0,~ x_3=2,~ x_4=-2\);     (c)  \(x_{1,2,3}=0,~ x_{4,5}=2\)
  3. Use PolyRoots tool to find zeros of the following polynomials:

    (a)   \(p(x)=x^3-x^2-14x+24\)

    (b)   \(p(x)=x^4-x^3-9x^2-11x-4\)

    (c)   \(p(x)=x^5-3x^4-5x^3+15x^2+4x-12\)

    (d)   \(p(x)=x^5-2x^4-5x^3+10x^2+4x-8\)

    (e)   \(p(x)=x^5-5x^4+4x^3-20x^2\)

    Solutions:    (a)  \(x_1=2,~ x_2=3,~ x_3=-4\);     (b)  \(x_1=4,~ x_{2,3,4}=-1\);     (c)  \(x_1=-1,~ x_2=1,~ x_3=-2,~ x_4=2,~ x_5=3\);     (d)  \(x_{1,2}=2,~ x_3=-2,~ x_4=-1,~ x_5=1\);     (e)  \(x_{1,2}=0,~ x_3=5\)
  4. Draw graphs and determine zeros of the following polynomials:

    (a)   \(p(x)=x^3+x^2-2x\)

    (b)   \(p(x)=x^3-3x\)

    (c)   \(p(x)=x^4-5x^2+4\)

    (d)   \(p(x)=x^5-4x^3+3x\)

    Solutions:    (a)  \(x_1=0,~ x_2=1,~ x_3=-2\);     (b)  \(x_1=0,~ x_2=\sqrt{3}\approx1.73,~ x_3=-\sqrt{3}\approx-1.73\);     (c)  \(x_1=1,~ x_2=-1,~ x_3=2,~ x_4=-2\);     (d)  \(x_1=0,~ x_2=1,~ x_3=-1,~ x_4=\sqrt{3}\approx1.73,~ x_5=-\sqrt{3}\approx-1.73\)
  5. Draw graphs and determine zeros of the following polynomials:

    (a)   \(p(x)=x^4-5x^3+6x^2\)

    (b)   \(p(x)=x^4+x^3-2x^2\)

    (c)   \(p(x)=x^4-2x^3\)

    (d)   \(p(x)=x^5+4x^4+4x^3\)

    Solutions:    (a)  \(x_{1,2}=0,~ x_3=2,~ x_4=3\);     (b)  \(x_{1,2}=0,~ x_3=1,~ x_4=-2\);     (c)  \(x_{1,2,3}=0,~ x_4=2\);     (d)  \(x_{1,2,3}=0,~ x_{4,5}=-2\)
  6. Use your GDC to draw graph of the polynomial \(f(x)=2x^3-3x^2+5\)

    (a)   Using GDC find zeros.

    (b)   Using GDC find \(f(0),~ f(-3),~ f(\frac{1}{2})\) and \(f(3.4)\).

    (c)   Using GDC find extreme points (maxima and minima).

    Solutions:    (a)  zero: \(x_1=-1\);     (b)  \(f(0)=5,~ f(-3)=-76,\) \(f(\frac{1}{2})=\frac{9}{2}=4.5,~ f(3.4)\approx48.9\);     (c)  maximum \(P_1(0,5)\), minimum \(P_2(1,4)\)
  7. Consider the polynomial \(p(x)=x^3-2x^2+x-1\)

    (a)   Draw the graph of this polynomial.

    (b)   Write down zeros.

    (c)   Calculate \(p(0.02),~ p(\sqrt{3}),~ p(321)\).

    (d)   Find extreme points (maxima and minima).

    Solutions:    (b)  zero: \(x_1\approx1.75\);     (c)  \(p(0.02)\approx-0.981,~ p(\sqrt{3})\approx-0.0718,~ p(321)\approx3.29\cdot10^7\);     (d)  maximum \(P_1(0.333,-0.852)\), minimum \(P_2(1,-1)\)
  8. A polynomial has the equation \(p(x)=x^3-3x^2+m\). Graph of this polynomial passes through the point \(A(1,2)\).

    (a)   Find \(m\).

    (b)   Draw the graph of this polynomial.

    (c)   Write down zeros.

    (d)   Find all values of \(x\) where \(p(x)=3\).

    (e)   Find extreme points (maxima and minima).

    Solutions:    (a)  \(m=4\);     (c)  zeros: \(x_1=-1,~ x_{2,3}=2\);     (d)  \(x\approx-0.532,~ x\approx0.653,~ x\approx2.88\);     (e)  maximum \(P_1(0,4)\), minimum \(P_2(2,0)\)
  9. A polynomial has the equation \(p(x)=x^3-6x^2+ax+b\). Graph of this polynomial passes through points \(A(1,2)\). and \(B(3,4)\).

    (a)   Find \(a\) and \(b\).

    (b)   Draw the graph of this polynomial.

    (c)   Write down zeros.

    This polynomial can be written as \(p(x)=(x-2)^3+m\).

    (d)   Find \(m\).

    Solutions:    (a)  \(a=12,~ b=-5\);     (c)  zero: \(x_1\approx 0.558\);     (d)  \(m=3\)
  10. Graph of the function \(y=x^3+ax^2+bx+c\) passes through points \(A(-1,-5),~ B(1,3)\) and \(C(2,-2)\).

    (a)   Find \(a,~ b\) and \(c\).

    (b)   Draw the graph of this function.

    (c)   Write the coordinates of extreme points.

    Solutions:    (a)  \(a=-5,~ b=3,~ c=4\);     (c)  max.: \(P_1(0.333,4.48)\), min.: \(P_2(3,-5)\)

Limits

  1. ?
    ?
    Limit is the value that a function approaches as \(x\) goes to positive or negative infinity.
    Evaluate the following limits:

    (a)   \({\displaystyle\lim_{x\to\infty}\frac{2x+3}{x-1}}\)

    (b)   \({\displaystyle\lim_{x\to\infty}\frac{x+2}{3x+5}}\)

    (c)   \({\displaystyle\lim_{x\to-\infty}\frac{5+6x}{1-4x}}\)

    Solutions:    (a)  \(\cdots=2\);     (b)  \(\cdots=\frac{1}{3}\);     (c)  \(\cdots=-\frac{3}{2}\)
  2. Evaluate the following limits:

    (a)   \({\displaystyle\lim_{x\to\infty}\frac{x^2+x+1}{x^2+5x}}\)

    (b)   \({\displaystyle\lim_{x\to-\infty}\frac{2x^2-x}{x^2+1}}\)

    (c)   \({\displaystyle\lim_{x\to\pm\infty}\frac{(x+1)^2}{2x(x+2)}}\)

    (d)   \({\displaystyle\lim_{x\to\pm\infty}\frac{3x^3+1}{(x+1)^3}}\)

    Solutions:    (a)  \(\cdots=1\);     (b)  \(\cdots=2\);     (c)  \(\cdots=\frac{1}{2}\);     (d)  \(\cdots=3\)
  3. Evaluate the following limits (if possible):

    (a)   \({\displaystyle\lim_{x\to\infty}\frac{x^2+2x}{x^3+1}}\)

    (b)   \({\displaystyle\lim_{x\to\infty}\frac{1}{x^2+1}}\)

    (c)   \({\displaystyle\lim_{x\to\infty}\frac{x^2}{2x+3}}\)

    Solutions:    (a)  \(\cdots=0\);     (b)  \(\cdots=0\);     (c)  Not possible – the limit doesn't exist.

Rational functions

  1. Write down zeros, vertical asymptotes and horizontal asymptotes of the following functions and draw the graphs:

    (a)   \({\displaystyle f(x)=\frac{x+1}{x-1}}\)

    (b)   \({\displaystyle f(x)=\frac{2x-3}{x-1}}\)

    (c)   \({\displaystyle f(x)=\frac{x+1}{2x+5}}\)

    Solutions:    (a)  zero: \(x=-1\), vertical asymptote: \(x=1\), horizontal asymptote: \(y=1\);     (b)  zero: \(x=\frac{3}{2}\), vertical asymptote: \(x=1\), horizontal asymptote: \(y=2\);     (c)  zero: \(x=-1\), vertical asymptote: \(x=-\frac{5}{2}\), horizontal asymptote: \(y=\frac{1}{2}\);
  2. Write down zeros, vertical asymptotes and horizontal asymptotes of the following functions and draw the graphs:

    (a)   \({\displaystyle f(x)=\frac{1}{x+2}}\)

    (b)   \({\displaystyle f(x)=\frac{2}{3x-4}}\)

    (c)   \({\displaystyle f(x)=\frac{1}{1-x}}\)

    Solutions:    (a)  zero: /, vertical asymptote: \(x=-2\), horizontal asymptote: \(y=0\);     (b)  zero: /, vertical asymptote: \(x=\frac{4}{3}\), horizontal asymptote: \(y=0\);     (c)  zero: /, vertical asymptote: \(x=1\), horizontal asymptote: \(y=0\);
  3. Given the function \({\displaystyle f(x)=\frac{3x-3}{2x-1}}\)

    (a)   write down the zero, vertical asymptote and horizontal asymptote,

    (b)   draw the graph,

    (c)   write the domain and range.

    Solutions:    (a)  zero: \(x=1\), vertical asymptote: \(x=\frac{1}{2}\), horizontal asymptote: \(y=\frac{3}{2}\);     (c)  domain: \(x\ne\frac{1}{2}\), range: \(y\ne\frac{3}{2}\)
  4. Given the function \({\displaystyle f(x)=\frac{1-x}{2+x}}\)

    (a)   write down the zero, vertical asymptote and horizontal asymptote,

    (b)   draw the graph,

    (c)   write the domain and range,

    (d)   find \(f^{-1}(x)\).

    Solutions:    (a)  zero: \(x=1\), vertical asymptote: \(x=-2\), horizontal asymptote: \(y=-1\);     (c)  domain: \(x\ne-2\), range: \(y\ne-1\);     (d)  \(f^{-1}(x)=\frac{-2x+1}{x+1}\)
  5. A rational function has the equation \({\displaystyle f(x)=\frac{x^2}{x^2+x-2}}\).

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    (c)   Find the point where the graph intersects the horizontal asymptote.

    Solutions:    (b)  zero \(x_{1,2}=0\), vertical asymptotes \(x=1\) and \(x=-2\), horizontal asymptote \(y=1\);     (c)  intersection: \(P(2,1)\)
  6. A rational function has the equation \({\displaystyle f(x)=\frac{x^2+4x+4}{x^2-1}}\).

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    (c)   Find the point where the graph intersects the horizontal asymptote.

    (d)   Find the extreme points.

    Solutions:    (b)  zero \(x_{1,2}=-2\), vertical asymptotes \(x=1\) and \(x=-1\), horizontal asymptote \(y=1\);     (c)  intersection: \(P(-1.2,1)\);     (d)  min.: \((-2,0)\), max.: \((-0.5,-3)\)
  7. A rational function has the equation \({\displaystyle f(x)=\frac{x+1}{x^2}}\).

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    (c)   Find the extreme points.

    Solutions:    (b)  zero \(x_1=-1\), vertical asymptotes \(x_{1,2}=0\), horizontal asymptote \(y=0\);     (c)  min.: \((-2,-0.25)\)
  8. A rational function has the equation \({\displaystyle f(x)=\frac{x-1}{x^2+5x+4}}\).

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    (c)   Find the extreme points. Round the coordinates to three decimals.

    Solutions:    (b)  zero \(x_1=1\), vertical asymptotes \(x=-1\) and \(x=-4\), horizontal asymptote \(y=0\);     (c)  min.: \((-2.162,1.481)\), max.: \((4.162,0.075)\)
  9. A rational function has the equation \({\displaystyle f(x)=\frac{x^2-3x}{x^2+1}}\).

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    (c)   Hence or otherwise, find the limit: \({\displaystyle \lim_{x\to\infty} \frac{x^2-3x}{x^2+1}}\)

    Solutions:    (b)  zeros \(x_1=0,~ x_2=3\), vertical asymptotes don't exist, horizontal asymptote \(y=1\);     (c)  limit = 1
  10. A rational function has the equation \({\displaystyle f(x)=\frac{x^3-2x^2}{x^2-2x+1}}\).

    (a)   Draw the graph.

    (b)   Find zeros, vertical asymptotes and horizontal asymptote.

    Solutions:    (b)  zeros \(x_{1,2}=0,~ x_3=2\), vertical asymptote \(x=1\), horizontal asymptote doesn't exist
  11. A rational function has the equation \({\displaystyle f(x)=\frac{x}{x+1}-\frac{1}{x-1}}\).

    (a)   Draw the graph.

    (b)   Write down vertical asymptotes and horizontal asymptote.

    (c)   Write down zeros (using GDC).

    (d)   Find the zeros algebraically and write down the exact values.

    Solutions:    (b)  vertical asymptotes \(x=1\) and \(x=-1\), horizontal asymptote \(y=1\);     (c)  zeros \(x_1\approx-0.414,~ x_2\approx2.41\);     (d)  zeros: \(x_1=1-\sqrt{2},~ x_2=1+\sqrt{2}\)
  12. Let \({\displaystyle f(x)=\frac{2x}{x-q}}\).

    (a)   Write down the horizontal asymptote.

    The line \(x=3\) is a vertical asymptote of this function.

    (b)   Find the value of \(q\).

    (c)   Draw the graph of this function.

    Solutions:    (a)  horizontal asymptote \(y=2\);     (b)  \(q=3\)
  13. Let \({\displaystyle f(x)=\frac{x+2}{2x-q}}\). The line \(x=2\) is a vertical asymptote of this function.

    (a)   Write down the horizontal asymptote.

    (b)   Find the value of \(q\).

    (c)   Find the \(y\)-axis intercept of this function.

    Solutions:    (a)  horizontal asymptote \(y=\frac{1}{2}\);     (b)  \(q=4\);     (c)  \(y=-\frac{1}{2}\)

Modelling

  1. Scheme We have a rectangular piece of cardboard with dimensions \(80\times60~\mathrm{cm}\). We'd like to make a box out of this piece of cardboard. We'll cut off a small square at each corner, fold the sides and glue them together.

    (a)   Write the volume of this box as a function of \(x\) (= the side of the small square).

    (b)   Draw this function in a coordinate system with appropriate units.

    (c)   Find the value of \(x\) where the volume is maximal.

    (d)   Write down the maximal volume (in \(\mathrm{cm}^3\) and in \(\ell\)).

    Solutions:    (a)  \(V=x(80-2x)(60-2x)\);     (b)  (use \(x\) from −10 to 50, \(y\) from −5000 to 25000);     (c)  \(x\approx11.3~\mathrm{cm}\);     (d)  \(V\approx24258~\mathrm{cm}^3\approx24.3\,\ell\)
  2. Doctors are studying the effects of a certain drug to the human body. They measured the concentration of this substance in blood and discovered the following model:
          \({\displaystyle y=\frac{85x}{x^2+5}}\)
    where \(y\) is concentration (in miligrams per litre) at time \(x\) hours after taking a standard oral dose.

    (a)   Draw this function in a coordinate system with appropriate units.

    (b)   Find the value of \(x\) where the concentration is maximal. Write \(x\) in hours and minutes.

    (c)   Write down the maximal concentration (in \(\mathrm{mg}/\ell\)).

    (d)   When is the concentration equal to one half of the maximal value? Write the time in hours and minutes.

    Solutions:    (b)  \(x_{\mathrm{max}}\approx2\,\mathrm{h}\,14\,\mathrm{min}\);     (c)  \(y_{\mathrm{max}}\approx19.0~\mathrm{mg}/\ell\);     (d)  \(x_1\approx0\,\mathrm{h}\,36\,\mathrm{min}\), \(x_2\approx8\,\mathrm{h}\,21\,\mathrm{min}\)
  3. A scientist was conducting a series of experiments. He was measuring two quantities, labelled as \(x\) and \(y\). The results of his measurements are written in the following table:
    \(\begin{array}{|c|c|}\hline x & y \\\hline -3 & 2.5 \\\hline -2 & 1.7 \\\hline -1 & 1.2 \\\hline 0 & 1.0 \\\hline 1 & 1.2 \\\hline 2 & 1.7 \\\hline 3 & 2.5 \\\hline \end{array}\)

    (a)   Draw the values as points in a coordinate system with appropriate units.

    (b)   Find an appropriate function \(y=f(x)\) which can be used for modelling his results.

    Hint:    Use the function \(y=x^2\) and apply transformations (stretch, shift) to adjust the graph.
    Solution:    (b)  \(y=\frac{1}{6}x^2+1\)
  4. A scientist was conducting a series of experiments. She was measuring two quantities, labelled as \(x\) and \(y\). The results of her measurements are written in the following table:
    \(\begin{array}{|c|c|}\hline x & y \\\hline 0.0 & 0.00 \\\hline 0.5 & 1.20 \\\hline 1.0 & 1.75 \\\hline 1.5 & 1.95 \\\hline 2.0 & 2.00 \\\hline 2.5 & 2.05 \\\hline 3.0 & 2.20 \\\hline 3.5 & 2.80 \\\hline \end{array}\)

    (a)   Draw the values as points in a coordinate system with appropriate units.

    (b)   Find an appropriate function \(y=f(x)\) which can be used for modelling her results.

    Hint:    Use the function \(y=x^3\) and apply transformations (stretch, shift) to adjust the graph.
    Solution:    (b)  \(y=\frac{1}{4}(x-2)^3+2\)

Powered by MathJax
Index

 Index