Index

Functions

Transformations of graphs

  1. ?
    ?
    Adding a number \(q\) to the equation of a function causes the translation in \(y\) axis (or vertical shift) of the graph:

    \(y=f(x)+q\)
    Using your GDC draw the graph of the function \(y=x^2\). Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   \(y=x^2+1\)

    (b)   \(y=x^2+3\)

    (c)   \(y=x^2-2\)

    Solutions:    (a)  Translation of 1 unit parallel to the \(y\)-axis (shift 1 unit upwards);     (b)  translation of 3 units parallel to the \(y\)-axis (shift 3 units upwards);     (c)  translation of  −2 units parallel to the \(y\)-axis (shift 2 units downwards)
  2. Using your GDC draw the graph of the function \(y=x^3-x\).

    (a)   Shift this function 4 units upwards. Write down the equation of the new function and draw the graph.

    (b)   Shift this function 1 unit downwards. Write down the equation of the new function and draw the graph.

    Solutions:    (a)  \(y=x^3-x+4\);     (b)  \(y=x^3-x-1\)
  3. ?
    ?
    Subtracting a number \(p\) from the unknown \(x\) inside the equation of a function causes the translation in \(x\) axis (or horizontal shift) of the graph:

    \(y=f(x-p)\)
    Using your GDC draw the graph of the function \(y=x^2\). Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   \(y=(x-1)^2\)

    (b)   \(y=(x-2)^2\)

    (c)   \(y=(x+3)^2\)

    Solutions:    (a)  Translation of 1 unit parallel to the \(x\)-axis (shift 1 unit to the right);     (b)  translation of 2 units parallel to the \(x\)-axis (shift 2 units to the right);     (c)  translation of  −3 units parallel to the \(x\)-axis (shift 3 units to the left)
  4. Using your GDC draw the graph of the function \(y=x^3-x\).

    (a)   Shift this function 2 units to the right. Write down the equation of the new function and draw the graph.

    (b)   Shift this function 1 unit to the left. Write down the equation of the new function and draw the graph.

    Solutions:    (a)  \(y=(x-2)^3-(x-2)\);     (b)  \(y=(x+1)^3-(x+1)\)
  5. Using your GDC draw the graph of the function \(f(x)=x^3-3x+2\). Then use your GDC to draw the following graphs. In each case write down the equation of the new function and explain the transformation used.

    (a)   \(y=f(x)+1\)

    (b)   \(y=f(x)-2\)

    (c)   \(y=f(x-3)\)

    (d)   \(y=f(x+2)\)

    (e)   \(y=f(x-2)-3\)

    Solutions:    (a)  \(y=x^3-3x+3\), shift 1 unit upwards;     (b)  \(y=x^3-3x\), shift 2 units downwards;     (c)  \(y=(x-3)^3-3(x-3)+2\), shift 3 units to the right;     (d)  \(y=(x+2)^3-3(x+2)+2\), shift 2 units to the left;     (e)  \(y=(x-2)^3-3(x-2)-1\), shift 2 units to the right and 3 units downwards
  6. Let \(f(x)=-x^2+4x-3\).

    (a)   Using your GDC draw the graph of the function \(f\).

    Consider the function \(g(x)=f(x+4)+2\)

    (b)   Write the equation of the function \(g\). Simplify this equation.

    (c)   Use your GDC to draw the graph of the function \(g\).

    Solutions:    (b)  \(g(x)=-(x+4)^2+4(x+4)-3+2\), simplified: \(g(x)=-x^2-4x-1\)
  7. ?
    ?
    Multiplying the equation of a function by a number \(a\) causes the dilation in \(y\) axis (or vertical stretch) of the graph:

    \(y=a\,f(x)\)
    Using your GDC draw the graph of the function \(f(x)=\frac{\textstyle 1}{\textstyle x^2+1}\). Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   \(y=2\,f(x)\)

    (b)   \(y=3\,f(x)\)

    (c)   \(y=\frac{1}{2}\,f(x)\)

    Solutions:    (a)  Dilation along the \(y\)-axis by a scale factor 2 (stretch in \(y\) by 2);     (b)  dilation along the \(y\)-axis by a scale factor 3 (stretch in \(y\) by 3);     (c)  dilation along the \(y\)-axis by a scale factor \(\frac{1}{2}\) (stretch in \(y\) by \(\frac{1}{2}\))
  8. Using your GDC draw the graph of the function \(f(x)=\frac{\textstyle 1}{\textstyle x^2+1}\). Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   \(y=-\,f(x)\)

    (b)   \(y=-2\,f(x)\)

    (c)   \(y=-\frac{1}{2}\,f(x)\)

    Solutions:    (a)  Dilation along the \(y\)-axis by a scale factor  −1  =  reflection in the \(x\)-axis (flip upside down);     (b)  dilation along the \(y\)-axis by a scale factor  −2 (flip upside down and stretch in \(y\) by 2);     (c)  dilation along the \(y\)-axis by a scale factor \(-\frac{1}{2}\) (flip upside down and stretch in \(y\) by \(\frac{1}{2}\))
  9. Let \(f(x)=x^2-4x\).

    (a)   Using your GDC draw the graph of the function \(f\).

    Consider the function \(g(x)=\frac{1}{2}f(x)\)

    (b)   Write the equation of the function \(g\). Simplify this equation.

    (c)   Use your GDC to draw the graph of the function \(g\).

    Solutions:    (b)  \(g(x)=\frac{1}{2}(x^2-4x)\), simplified: \(g(x)=\frac{1}{2}x^2-2x\)
  10. ?
    ?
    Dividing the unknown \(x\) inside the equation of a function by a number \(b\) causes the dilation in \(x\) axis (or horizontal stretch) of the graph:

    \(y=f(\frac{x}{b})\)
    Using your GDC draw the graph of the function \(f(x)=x^4\). Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   \(y=f(\frac{x}{2})\)

    (b)   \(y=f(\frac{x}{3})\)

    (c)   \(y=f(2x)\)

    Solutions:    (a)  Dilation along the \(x\)-axis by a scale factor 2 (stretch in \(x\) by 2);     (b)  dilation along the \(x\)-axis by a scale factor 3 (stretch in \(x\) by 3);     (c)  dilation along the \(x\)-axis by a scale factor \(\frac{1}{2}\) (stretch in \(x\) by \(\frac{1}{2}\))
  11. Using your GDC draw the graph of the function \(f(x)=2^x\). Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   \(y=f(-x)\)

    (b)   \(y=f(-2x)\)

    (c)   \(y=f(-\frac{x}{2})\)

    Solutions:    (a)  Dilation along the \(x\)-axis by a scale factor  −1  =  reflection in the \(y\)-axis (flip left-to-right);     (b)  dilation along the \(x\)-axis by a scale factor \(-\frac{1}{2}\) (flip left-to-right and stretch in \(x\) by \(\frac{1}{2}\));     (c)  dilation along the \(x\)-axis by a scale factor  −2 (flip left-to-right and stretch in \(x\) by 2)
  12. The graph of the function \(y=f(x)\) is drawn in the coordinate system below. Draw the following graphs using transformations:

    (a)   \(y=f(x)-2\)

    (b)   \(y=f(x-2)\)

    (c)   \(y=2f(x)\)

    (d)   \(y=-\frac{1}{2}f(x)\)

    (e)   \(y=f\left(\frac{1}{2}x\right)\)

    Function

    Solutions:    (a)  Translation of  −2 units along \(y\)-axis;     (b)  translation of 2 units along \(x\)-axis;     (c)  dilation along the \(y\)-axis by a scale factor 2;     (d)  dilation along the \(y\)-axis by a scale factor \(-\frac{1}{2}\);     (e)  dilation along the \(x\)-axis by a scale factor 2
  13. Function \(f\) has the equation \(f(x)=\frac{\textstyle 2x}{\textstyle x^2+1}\). Graph of this function is drawn in the coordinate system below (green graph). In the same coordinate system you can find the graph of the function \(g\) (red graph).

    Function

    (a)   Describe transformations required to transform \(f\) to \(g\).

    (b)   Write the equation of the function \(g\).

    (c)   Use your GDC to verify the equation you've just written.

    Solutions:    (a)  Flip upside-down followed by a vertical shift by 3 units;     (b)  \(g(x)=3-\frac{2x}{x^2+1}\)

Inverse function

  1. ?
    ?
    Inverse function is a function which operates in the opposite way as the given function:

    \(f^{-1}(a)=b\)    if    \(f(b)=a\)

    To find the equation of the inverse function you must start with the equation of the original function and swap \(x\) and \(y\).
    Find the inverse of each of the following functions:

    (a)   \(f(x)=2x+1\)

    (b)   \(f(x)=3x-2\)

    (c)   \(f(x)=\frac{1}{4}x+\frac{1}{2}\)

    Solutions:    (a)  \(f^{-1}(x)=\frac{x-1}{2}\);     (b)  \(f^{-1}(x)=\frac{x+2}{3}\);     (c)  \(f^{-1}(x)=4x-2\)
  2. Find the inverse of each of the following functions:

    (a)   \(f(x)=x^3+2\)

    (b)   \(f(x)=2x^3\)

    (c)   \(f(x)=\frac{1}{4}x^3\)

    Solutions:    (a)  \(f^{-1}(x)=\sqrt[3]{x-2}\);     (b)  \(f^{-1}(x)=\sqrt[3]{\frac{x}{2}}\);     (c)  \(f^{-1}(x)=\sqrt[3]{4x}\)
  3. Find the inverse of each of the following functions:

    (a)   \(f(x)=2^x\)

    (b)   \(f(x)=2^x+1\)

    (c)   \(f(x)=2^{x+1}\)

    Solutions:    (a)  \(f^{-1}(x)=\log_2 x\);     (b)  \(f^{-1}(x)=\log_2 (x-1)\);     (c)  \(f^{-1}(x)=\log_2 x-1\)
  4. Given the function \(f(x)=\sqrt[\scriptstyle3]{x+3}\)

    (a)   write down the inverse function \(f^{-1}(x)\)

    (b)   draw graphs of \(f(x)\) and \(f^{-1}(x)\) in the same coordinate system.

    Solutions:    (a)  \(f^{-1}(x)=x^3-3\)
  5. Find the inverse of each of the following functions:

    (a)   \({\displaystyle f(x)=\frac{x+5}{3x-2}}\)

    (b)   \({\displaystyle f(x)=\frac{3x}{x-2}}\)

    Solutions:    (a)  \(f^{-1}(x)=\frac{2x+5}{3x-1}\);     (b)  \(f^{-1}(x)=\frac{2x}{x-3}\)
  6. Find the inverse of each of the following functions:

    (a)   \({\displaystyle f(x)=\frac{x-5}{x+2}}\)

    (b)   \({\displaystyle f(x)=\frac{1+x}{1-x}}\)

    Solutions:    (a)  \(f^{-1}(x)=\frac{2x+5}{-x+1}\);     (b)  \(f^{-1}(x)=\frac{x-1}{x+1}\)
  7. Find the inverse of each of the following functions:

    (a)   \({\displaystyle f(x)=\frac{x+2}{x-1}}\)

    (b)   \({\displaystyle f(x)=\frac{2x}{x-2}}\)

    Solutions:    (a)  \(f^{-1}(x)=\frac{x+2}{x-1}\);     (b)  \(f^{-1}(x)=\frac{2x}{x-2}\)    —  in both cases \(f^{-1}(x)=f(x)\)
  8. Prove that the function \({\displaystyle f(x)=\frac{3x+1}{x-3}}\) is its own inverse.
    Solutions:    Show that \(f^{-1}(x)=f(x)\)
  9. Given the function \({\displaystyle f(x)=\frac{2x-5}{3x-4}}\) write down the following functions:

    (a)   \(f(x^{-1})\)

    (b)   \(\big(f(x)\big)^{-1}\)

    (c)   \(f^{-1}(x)\)

    Solutions:    (a)  \(f(x^{-1})=\frac{5x-2}{4x-3}\);     (b)  \(\big(f(x)\big)^{-1}=\frac{3x-4}{2x-5}\);     (c)  \(f^{-1}(x)=\frac{4x-5}{3x-2}\)
  10. Find the inverse of the function \(f(x)=x^2-3\)

    (a)   for \(x\geqslant 0\),

    (b)   for \(x\leqslant 0\).

    Solutions:    (a)  \(f^{-1}(x)=\sqrt{x+3}\);     (b)  \(f^{-1}(x)=-\sqrt{x+3}\)
  11. Find the inverse of the function \(f(x)=\sqrt{x^2+4}\) for \(x\geqslant 0\). Write down the domain and range of \(f^{-1}\).
    Solutions:    \(f^{-1}(x)=\sqrt{x^2-4}\),   domain \(=[2,\infty)\),   range \(=[0,\infty)\)
  12. Find the inverse of the function \(f(x)=\frac{\textstyle 4}{\textstyle x^2+1}\) for \(x\geqslant 0\). Write down the domain and range of \(f^{-1}\).
    Solutions:    \(f^{-1}(x)=\sqrt{\frac{4}{x}-1}\),   domain \(=(0,4]\),   range \(=[0,\infty)\)

Powered by MathJax
Index

 Index