Index

Differentiation

Finding the derivative

  1. ?
    ?
    Derivative of a function tells us how steep is this function at a given point.
    Derivative of the function \(f(x)=x^n\) is:

    \(f'(x)=n\,x^{n-1}\)

    Derivative can be written as \(f'(x)\)  or  \(y'\)  or  \(\frac{\mathrm{d}y}{\mathrm{d}x}\). The procedure of finding a derivative is called differentiation.
    Find derivatives of the following functions:

    (a)   \(f(x)=x^3-3x^2+4x+1\)

    (b)   \(f(x)=x^4+2x^3-5x\)

    (c)   \(f(x)=-2x^2+5x-13\)

    Solutions:    (a)  \(f'(x)=3x^2-6x+4\);     (b)  \(f'(x)=4x^3+6x^2-5\);     (c)  \(f'(x)=-4x+5\)
  2. Differentiate the following functions:

    (a)   \(f(x)=\frac{1}{2}x^2+3x-7\)

    (b)   \(f(x)=x^2(x^2+x-1)\)

    (c)   \(f(x)=(3x+2)^2\)

    Solutions:    (a)  \(f'(x)=x+3\);     (b)  \(f'(x)=4x^3+3x^2-2x\);     (c)  \(f'(x)=18x+12\)
  3. Find \(y'\) of the following functions:

    (a)   \(f(x)=x^2+\frac{\textstyle 1}{\textstyle x}\)

    (b)   \(f(x)=\frac{\textstyle 2}{\textstyle x^2}+\frac{\textstyle 1}{\textstyle x^3}\)

    (c)   \(f(x)=\frac{\textstyle x^2+3x+1}{\textstyle x}\)

    Solutions:    (a)  \(f'(x)=2x-\frac{1}{x^2}\);     (b)  \(f'(x)=-\frac{4}{x^3}-\frac{3}{x^4}\);     (c)  \(f'(x)=1-\frac{1}{x^2}\)
  4. Find \(\frac{\textstyle \mathrm{d}y}{\textstyle \mathrm{d}x}\) for the following functions:

    (a)   \(y=\sqrt{x}\)

    (b)   \(y=\sqrt[\scriptstyle 3]{x}+\sqrt[\scriptstyle 4]{x}\)

    (c)   \(y=\frac{\textstyle 2}{\textstyle \sqrt{x^3}}\)

    Solutions:    (a)  \(\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{2\sqrt{x}}\);     (b)  \(\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{3\,\sqrt[3]{x^2}}+\frac{1}{4\,\sqrt[4]{x^3}}\);     (c)  \(\frac{\mathrm{d}y}{\mathrm{d}x}=-\frac{3}{\sqrt{x^5}}\)
  5. ?
    ?
    Derivatives of functions \(e^x\) and \(\ln x\) are:

    \((e^x)'=e^x\)

    \((\ln x)'=\frac{1}{x}\)
    Find derivatives of the following functions:

    (a)   \(f(x)=2x+e^x\)

    (b)   \(f(x)=5e^x+x^2\)

    (c)   \(f(x)=x^3+\ln x\)

    (d)   \(f(x)=3e^x+2\ln x\)

    Solutions:    (a)  \(f'(x)=2+e^x\);     (b)  \(f'(x)=5e^x+2x\);     (c)  \(f'(x)=3x^2+\frac{1}{x}\);     (d)  \(f'(x)=3e^x+\frac{2}{x}\)

Tangents and normals

  1. ?
    ?
    Derivative of a function is equal to the gradient of the tangent at a given point:

    \(m=f'(x_1)\)

    Equation of the tangent can be found using the form:

    \(y=m\,x+c\)    or    \(y-y_1=m\,(x-x_1)\)
    Consider the function \(f(x)=x^3-x+1\) and point \(P(1,1)\) which lies on the graph of this function.

    (a)   Find the derivative \(f'(x)\).

    (b)   Calculate the gradient of the tangent.

    (c)   Write down the equation of the tangent.

    Solutions:    (a)  \(f'(x)=3x^2-1\);     (b)  \(m=f'(1)=2\);     (c)  \(y=2x-1\)
  2. Find the equation of the tangent to the curve \(y=x^3-3x+3\) at given points:

    (a)   \(P(0,3)\)

    (b)   \(P(2,y)\)

    (c)   \(P(1,y)\)

    Solutions:    (a)  \(y=-3x+3\);     (b)  \(y=9x-13\);     (c)  \(y=1\)
  3. Find the equation of the tangent to the graph of the function \(f(x)=\frac{1}{3}x^2+x-2\) at the point \(P(3,y)\).
    Solution:    Tangent: \(y=3x-5\)
  4. Find the equation of the tangent to the graph of the function \(y=x^3+2x^2\) at the point \(x=1\).
    Solution:    Tangent: \(y=7x-4\)
  5. Find the equation of the tangent to the graph of the function \(y=x-x^{-1}+1\) at the point \(x=-1\).
    Solution:    Tangent: \(y=2x+3\)
  6. Find the equation of the tangent to the graph of the function \(y=\sqrt{x}\) at the point \(x=9\).
    Solution:    Tangent: \(y=\frac{1}{6}x+\frac{3}{2}\)
  7. The function has the equation:  \(f(x)=\frac{\textstyle x^2+x+1}{\textstyle 3}\).

    (a)   Differentiate the function \(f\).

    (b)   Write down the equation of the tangent at \(x=4\).

    (c)   Show that this tangent is parallel to the straight line \(y=3x+1\).

    Solutions:    (a)  \(f'(x)=\frac{2x+1}{3}\);     (b)  tangent: \(y=3x-5\);     (c)  they have the same gradient: \(m_1=m_2=3\)
Use the derivative function on your GDC to solve the following exercises. The value of the derivative of the given function at given point can be obtained as  \(\frac{\textstyle d}{\textstyle dx}(function)|_{x=point}\).
  1. Find the equation of the tangent to the graph of the function \(f(x)=\sqrt{2x+3}\) at \(x=-1\).
    Solution:    Tangent: \(y=x+2\)
  2. Write the equation of the tangent to the graph of the function \(f(x)=(x+2)\sqrt{x}\) at \(x=4\).
    Solution:    Tangent: \(y=\frac{7}{2}x-2\)
  3. Find the equation of the tangent to the graph of the function \({\displaystyle f(x)=\frac{2}{x-1}}\) at \(x=2\).
    Solution:    Tangent: \(y=-2x+6\)
  4. Write the equation of the tangent to the graph of the function \({\displaystyle f(x)=\frac{2x-3}{3x+1}}\) at the point where the graph intercepts the ordinate axis.
    Solution:    Tangent: \(y=11x-3\)
  5. Write the equation of the tangent to the graph of the function \({\displaystyle f(x)=\frac{e^x}{x-1}}\) at \(x=0\).
    Solution:    Tangent: \(y=-2x-1\)
  6. Find the equation of the tangent to the graph of the function \({\displaystyle y=\frac{1+e^x}{1-x}}\) at \(x=0\).
    Solution:    Tangent: \(y=3x+2\)
  7. Find the equation of the tangent to the curve \({\displaystyle y=\frac{x-3}{\sqrt{x}}}\)

    (a)    at \(x=1\),

    (b)    at \(x=9\).

    Solutions:    (a)  \(y=2x-4\);     (b)  \(y=\frac{2}{9}x\)
  8. Write the equation of the tangent to the graph of the function \(f(x)=\frac{\textstyle x\ln x}{\textstyle 2}\) at the point \(P(1,y)\).
    Solution:    Tangent: \(y=\frac{1}{2}x-\frac{1}{2}\)
  9. Write the equation of the tangent to the graph of function \(f(x)=\ln(x^2-3)\) at point \(P(2,y)\).
    Solution:    Tangent: \(y=4x-8\)
  10. ?
    ?
    Normal is perpendicular to the graph.
    The gradient of the normal is:

    \({\displaystyle m_n=-\,\frac{1}{m_t}}\)
    Consider the function \(f(x)=x^3-x+1\).

    (a)   Draw the graph of this function.

    (b)   Find the equation of the tangent at \(x=1\).

    (c)   Find the equation of the normal at \(x=1\).

    Solutions:    (b)  Tangent \(y=2x-1\);     (c)  normal: \(y=-\frac{1}{2}x+\frac{3}{2}\)
  11. Write the equation of the normal to the curve \({\displaystyle y=\frac{2x}{2-x^2}}\) at the point \(P(2,y)\).
    Solution:    Normal: \(y=-\frac{1}{3}x-\frac{4}{3}\)
  12. Find the equation of the normal to the graph of the function \(f(x)=\ln(x-3)\) at \(x=4\).
    Solution:    \(y=-x+4\)
  13. Find the equation of the normal to the graph of the function \(f(x)=x\sqrt{x+4}\) at \(x=-3\).
    Solution:    \(y=2x+3\)
  14. Find the equation of the normal to the graph of the function \(y=(x-2)\sqrt{x+2}\) at \(x\)-axis intercept with positive abscissa.
    Solution:    \(y=-\frac{1}{2}x+1\)
  15. Write the equation of the normal to the curve \({\displaystyle y=\frac{1}{~\sqrt[\scriptstyle3]{x-9}~}}\) at the point \(P_0(8,y_0)\).
    Solution:    Normal: \(y=3x-25\)
  16. Function \(f\) has the equation \({\displaystyle f(x)=1+\frac{8}{x+2}}\)

    (a)    Draw the graph of this function.

    (b)    Write down the equation of the normal at point \(A(2,y)\).

    (c)    This normal intersects the function in point \(A\) and in another point \(B\). Find the coordinates of point \(B\).

    Solutions:    (b)  \(y=2x-1\);     (c)  \(B(-3,-7)\)
  17. Consider the function \({\displaystyle y=\frac{x}{x+2}}\)

    (a)    Draw the graph of this function.

    (b)    Write down the equation of the normal at \(x=0\).

    (c)    Write down the equation of the normal at \(x=-3\).

    (d)    Find the intersection point of these two normals.

    Solutions:    (b)  \(y=-2x\);     (c)  \(y=-\frac{1}{2}x+\frac{3}{2}\);     (d)  \(P(-1,2)\)
  18. The function has the equation:  \(f(x)=\sqrt{2x+7}\).

    (a)   Write down the equation of the normal at \(x=1\).

    This normal and both coordinate axes form a triangle.

    (b)   Write down the coordinates of the vertices of this triangle.

    (c)   Calculate the area of this triangle.

    Solutions:    (a)  normal: \(y=-3x+6\);     (b)  vertices: \(P_1(0,0),~ P_2(2,0),~ P_3(0,6)\);     (c)  area: \(A=6\)

Finding points with given gradient

  1. Consider the function \(f(x)=x^2-3x-2\).

    (a)   Find the derivative \(f'(x)\).

    (b)   Hence, find the point on the graph where the gradient is 1.

    Solutions:    (a)  \(f'(x)=2x-3\);     (b)  \(P(2,-4)\)
  2. The function has the equation \(f(x)=x^3-7x+1\). Find the points on the graph where the gradient of this function is 5. Write down the coordinates of these points.
    Solutions:    At points \(P_1(2,-5)\) and \(P_2(-2,7)\).
  3. The function has the equation \(f(x)=x^3-6x^2+9x+1\). Find the points on the graph where the gradient is 0. Write down the coordinates of these points.
    Solutions:    \(P_1(1,5),~ P_2(3,1)\)
  4. The function has the equation \(f(x)=\frac{1}{3}x^3-\frac{1}{2}x^2+1\). Find the points on the graph where the tangent is parallel to the line \(y=2x\). Write down the coordinates of these points.
    Solutions:    \(P_1(-1,\frac{1}{6}),~ P_2(2,\frac{5}{3})\)
  5. The function has the equation \(f(x)=x^3-3x^2\). Find the point on the graph where the tangent is parallel to the line \(y=-3x\). Write down the coordinates of this point.
    Solution:    \(P(1,-2)\)

Powered by MathJax
Index

 Index