(a) \(f(x)=x^3-3x^2+4x+1\)
(b) \(f(x)=x^4+2x^3-5x\)
(c) \(f(x)=-2x^2+5x-13\)
Solutions: (a) \(f'(x)=3x^2-6x+4\); (b) \(f'(x)=4x^3+6x^2-5\); (c) \(f'(x)=-4x+5\)(a) \(f(x)=\frac{1}{2}x^2+3x-7\)
(b) \(f(x)=x^2(x^2+x-1)\)
(c) \(f(x)=(3x+2)^2\)
Solutions: (a) \(f'(x)=x+3\); (b) \(f'(x)=4x^3+3x^2-2x\); (c) \(f'(x)=18x+12\)(a) \(f(x)=x^2+\frac{\textstyle 1}{\textstyle x}\)
(b) \(f(x)=\frac{\textstyle 2}{\textstyle x^2}+\frac{\textstyle 1}{\textstyle x^3}\)
(c) \(f(x)=\frac{\textstyle x^2+3x+1}{\textstyle x}\)
Solutions: (a) \(f'(x)=2x-\frac{1}{x^2}\); (b) \(f'(x)=-\frac{4}{x^3}-\frac{3}{x^4}\); (c) \(f'(x)=1-\frac{1}{x^2}\)(a) \(y=\sqrt{x}\)
(b) \(y=\sqrt[\scriptstyle 3]{x}+\sqrt[\scriptstyle 4]{x}\)
(c) \(y=\frac{\textstyle 2}{\textstyle \sqrt{x^3}}\)
Solutions: (a) \(\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{2\sqrt{x}}\); (b) \(\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{3\,\sqrt[3]{x^2}}+\frac{1}{4\,\sqrt[4]{x^3}}\); (c) \(\frac{\mathrm{d}y}{\mathrm{d}x}=-\frac{3}{\sqrt{x^5}}\)(a) \(f(x)=2x+e^x\)
(b) \(f(x)=5e^x+x^2\)
(c) \(f(x)=x^3+\ln x\)
(d) \(f(x)=3e^x+2\ln x\)
Solutions: (a) \(f'(x)=2+e^x\); (b) \(f'(x)=5e^x+2x\); (c) \(f'(x)=3x^2+\frac{1}{x}\); (d) \(f'(x)=3e^x+\frac{2}{x}\)(a) Find the derivative \(f'(x)\).
(b) Calculate the gradient of the tangent.
(c) Write down the equation of the tangent.
Solutions: (a) \(f'(x)=3x^2-1\); (b) \(m=f'(1)=2\); (c) \(y=2x-1\)(a) \(P(0,3)\)
(b) \(P(2,y)\)
(c) \(P(1,y)\)
Solutions: (a) \(y=-3x+3\); (b) \(y=9x-13\); (c) \(y=1\)(a) Differentiate the function \(f\).
(b) Write down the equation of the tangent at \(x=4\).
(c) Show that this tangent is parallel to the straight line \(y=3x+1\).
Solutions: (a) \(f'(x)=\frac{2x+1}{3}\); (b) tangent: \(y=3x-5\); (c) they have the same gradient: \(m_1=m_2=3\)(a) at \(x=1\),
(b) at \(x=9\).
Solutions: (a) \(y=2x-4\); (b) \(y=\frac{2}{9}x\)(a) Draw the graph of this function.
(b) Find the equation of the tangent at \(x=1\).
(c) Find the equation of the normal at \(x=1\).
Solutions: (b) Tangent \(y=2x-1\); (c) normal: \(y=-\frac{1}{2}x+\frac{3}{2}\)(a) Draw the graph of this function.
(b) Write down the equation of the normal at point \(A(2,y)\).
(c) This normal intersects the function in point \(A\) and in another point \(B\). Find the coordinates of point \(B\).
Solutions: (b) \(y=2x-1\); (c) \(B(-3,-7)\)(a) Draw the graph of this function.
(b) Write down the equation of the normal at \(x=0\).
(c) Write down the equation of the normal at \(x=-3\).
(d) Find the intersection point of these two normals.
Solutions: (b) \(y=-2x\); (c) \(y=-\frac{1}{2}x+\frac{3}{2}\); (d) \(P(-1,2)\)(a) Write down the equation of the normal at \(x=1\).
This normal and both coordinate axes form a triangle.
(b) Write down the coordinates of the vertices of this triangle.
(c) Calculate the area of this triangle.
Solutions: (a) normal: \(y=-3x+6\); (b) vertices: \(P_1(0,0),~ P_2(2,0),~ P_3(0,6)\); (c) area: \(A=6\)(a) Find the derivative \(f'(x)\).
(b) Hence, find the point on the graph where the gradient is 1.
Solutions: (a) \(f'(x)=2x-3\); (b) \(P(2,-4)\)