

 User Defined Variables in the
Optimisation Shell INVERSE

(FOR VERSION 3.11)

Igor Grešovnik

Ljubljana, 27 September, 2005

INVERSE 3.11

5.2: User-defined Variables / Table of Contents

Contents:

5. User-defined Variables __ 6
5.1.1.1 How this Chapter is Organised___ 1

5.2 Important Note: Naming Recommendations ______________________________ 2
5.3 Basic Concepts of User-defined Variables ________________________________ 2

5.3.1 Tables of Elements __ 2
5.3.1.1 Addressing Variable Elements ___ 4
5.3.1.2 Addressing Variables and Variable Element Sub-tables _______________________ 4
5.3.1.3 Addressing Variables Using String Objects_________________________________ 5
5.3.1.4 Operations on Variable Sub-tables__ 5

5.4 Basic Operations on User-defined Variables ______________________________ 8
5.5 Variables with Local Definition Scope ___________________________________ 9

5.5.1 Definition of Local Scopes ___ 10
5.5.2 deflocvar { varname1 varname2 … }__ 11
5.5.3 undeflocvar { } __ 12
5.5.4 marklocvar { }___ 12
5.5.5 checklocvar { } __ 12

5.6 Special Expression Evaluator's Functions varindex and varcomponent _______ 13
5.6.1 varindex [indexnum] ___ 13
5.6.2 varcomponent [compnum] ___ 13

5.7 Matrix Variables __ 14
5.7.1 File Interpreter’s Functions for Manipulation of Matrix Variables ___________________ 14

5.7.1.1 newmatrix { varname < [dim1, dim2, ...] > } _____________________________ 14
5.7.1.2 dimmatrix { varname < [dim1, dim2, ...] > }______________________________ 15
5.7.1.3 setmatrix { elspec matspec } ___ 15
5.7.1.4 initmatrix { subspec matspec } ___ 17
5.7.1.5 copymatrixvar { varname1 varname2 } ___________________________________ 17
5.7.1.6 movematrixvar { varname1 varname2 } __________________________________ 17
5.7.1.7 deletematrixvar { varname }__ 17
5.7.1.8 printmatrixvar { varname } __ 17
5.7.1.9 fprintmatrixvar { varname } ___ 17
5.7.1.10 dprintmatrixvar { varname } ___ 18
5.7.1.11 copymatrix { subspec1 subspec2 } _______________________________________ 18
5.7.1.12 movematrix { subspec1 subspec2 } ______________________________________ 18
5.7.1.13 deletematrix { subspec }___ 18
5.7.1.14 printmatrix { subspec }__ 18
5.7.1.15 fprintmatrix { subspec } ___ 18
5.7.1.16 dprintmatrix { subspec }___ 18
5.7.1.17 setmatrixcomponents { subspec expr }, shortly setmatcomp___________________ 19
5.7.1.18 setmatcompcond { subspec (cond) expr }__________________________________ 19
5.7.1.19 matrixsum { subspec1 subspec2 subspecres }______________________________ 19
5.7.1.20 matrixdif { subspec1 subspec2 subspecres } _______________________________ 20
5.7.1.21 matrixop { spec = < operator > spec < operator spec > }, matop ______________ 20

5.7.2 Expression Evaluator’s Functions for Manipulating Matrix Variables ________________ 21
5.7.2.1 getmatrix [varname rownum colnum < elind1, elind2, ... >]__________________ 21
5.7.2.2 getmatrixdim [varname dimnum] ______________________________________ 22

5.8 Vector Variables __ 22

2

INVERSE 3.11

5.2: User-defined Variables / Table of Contents

5.8.1 File Interpreter’s Functions for Manipulating Vector Variables _____________________ 22
5.8.1.1 newvector { varname < [dim1, dim2, ...] > }______________________________ 22
5.8.1.2 dimvector { varname < [dim1, dim2, ...] > } ______________________________ 22
5.8.1.3 setvector { elspec vecspec }__ 22
5.8.1.4 initvector { subspec vecspec } __ 24
5.8.1.5 copyvectorvar { varname1 varname2 } ___________________________________ 24
5.8.1.6 movevectorvar { varname1 varname2 }___________________________________ 24
5.8.1.7 deletevectorvar { varname }__ 25
5.8.1.8 printvectorvar { varname } __ 25
5.8.1.9 fprintvectorvar { varname }__ 25
5.8.1.10 dprintvectorvar { varname } ___ 25
5.8.1.11 copyvector { subspec1 subspec2 } _______________________________________ 25
5.8.1.12 movevector { subspec1 subspec2 }_______________________________________ 25
5.8.1.13 deletevector { subspec } ___ 25
5.8.1.14 printvector { subspec } __ 25
5.8.1.15 fprintvector { subspec } ___ 25
5.8.1.16 dprintvector { subspec } ___ 25
5.8.1.17 setvectorcomponents { subspec expr }, shortly setveccomp ___________________ 25
5.8.1.18 setveccompcond { subspec (cond) expr }__________________________________ 26
5.8.1.19 vectorsum { subspec1 subspec2 subspecres } ______________________________ 26
5.8.1.20 vectordif { subspec1 subspec2 subspecres } _______________________________ 26

5.8.2 Expression Evaluator’s Functions for Manipulating Vector Variables ________________ 26
5.8.2.1 getvector [varname compnum < elind1, elind2, ... >] _______________________ 26
5.8.2.2 getvectordim [varname dimnum]_______________________________________ 27

5.9 Scalar Variables __ 27
5.9.1 File Interpreter’s Functions for Manipulating Scalar Variables______________________ 27

5.9.1.1 newscalar { varname < [dim1, dim2, ...] > } ______________________________ 27
5.9.1.2 dimscalar { varname < [dim1, dim2, ...] > } ______________________________ 27
5.9.1.3 setscalar { elspec scalspec } ___ 27
5.9.1.4 initscalar { subspec scalspec }__ 28
5.9.1.5 copyscalarvar { varname1 varname2 }____________________________________ 28
5.9.1.6 movescalarvar { varname1 varname2 } ___________________________________ 28
5.9.1.7 deletescalarvar { varname } __ 28
5.9.1.8 printscalarvar { varname }___ 28
5.9.1.9 fprintscalarvar { varname } __ 28
5.9.1.10 dprintscalarvar { varname }__ 28
5.9.1.11 copyscalar { subspec1 subspec2 } _______________________________________ 28
5.9.1.12 movescalar { subspec1 subspec2 } _______________________________________ 28
5.9.1.13 deletescalar { subspec } ___ 28
5.9.1.14 printscalar { subspec } __ 28
5.9.1.15 fprintscalar { subspec }__ 28
5.9.1.16 dprintscalar { subspec } ___ 28
5.9.1.17 setscalarcomponents { subspec expr }, shortly setscalcomp ___________________ 29
5.9.1.18 setscalcompcond { subspec (cond) expr } _________________________________ 29
5.9.1.19 scalarsum { subspec1 subspec2 subspecres } ______________________________ 29
5.9.1.20 scalardif { subspec1 subspec2 subspecres } _______________________________ 29

5.9.2 Expression Evaluator’s Functions for Manipulating Scalar Variables ________________ 30
5.9.2.1 getscalar [varname < elind1, elind2, ... >] _______________________________ 30
5.9.2.2 getscalardim [varname dimnum] _______________________________________ 30

5.10 Field Variables__ 30
5.10.1 File Interpreter’s Functions for Manipulating Field Variables ____________________ 30

5.10.1.1 newfield { varname < [dim1, dim2, ...] > } _______________________________ 30

3

INVERSE 3.11

5.2: User-defined Variables / Table of Contents

5.10.1.2 dimfield { varname < [dim1, dim2, ...] > } _______________________________ 30
5.10.1.3 setfield { elspec fieldspec }___ 30
5.10.1.4 initfield {subspec fieldspec } ___ 30
5.10.1.5 copyfieldvar {varname1 varname2}______________________________________ 30
5.10.1.6 movefieldvar { varname1 varname2 } ____________________________________ 31
5.10.1.7 deletefieldvar { varname } ___ 31
5.10.1.8 printfieldvar { varname } __ 31
5.10.1.9 fprintfieldvar { varname } ___ 31
5.10.1.10 copyfield { subspec1 subspec2 } ______________________________________ 31
5.10.1.11 movefield { subspec1 subspec2 } _____________________________________ 31
5.10.1.12 deletefield { subspec } __ 31
5.10.1.13 printfield { subspec } ___ 31
5.10.1.14 fprintfield { subspec } __ 31
5.10.1.15 setfieldcomponents { subspec expr } ___________________________________ 31
5.10.1.16 setfldcompcond { subspec (cond) expr } ________________________________ 31

5.10.2 Expression Evaluator's Functions for manipulating Field Variables _______________ 31
5.10.2.1 getfield {varname <elind1, elind2,...> rownum colnum } _____________________ 31
5.10.2.2 getfielddim {varname dimnum } __ 32

5.11 Counter Variables ___ 32
5.11.1 File Interpreter’s Functions for Manipulating Counter Variables__________________ 32

5.11.1.1 newcounter { varname < [dim1, dim2, ...] > }_____________________________ 32
5.11.1.2 dimcounter { varname < [dim1, dim2, ...] > } _____________________________ 32
5.11.1.3 setcounter { elspec countspec } ___ 32
5.11.1.4 initcounter { subspec countspec } _______________________________________ 33
5.11.1.5 copycountervar { varname1 varname2 } __________________________________ 33
5.11.1.6 movecountervar { varname1 varname2 }__________________________________ 33
5.11.1.7 deletecountervar { varname } ___ 33
5.11.1.8 printcountervar { varname } ___ 33
5.11.1.9 fprintcountervar { varname }___ 33
5.11.1.10 dprintcountervar { varname } __ 33
5.11.1.11 copycounter { subspec1 subspec2 }____________________________________ 33
5.11.1.12 movecounter { subspec1 subspec2 } ___________________________________ 33
5.11.1.13 deletecounter { subspec }__ 33
5.11.1.14 printcounter { subspec }___ 33
5.11.1.15 fprintcounter { subspec } __ 33
5.11.1.16 dprintcounter { subspec }__ 33
5.11.1.17 setcountercomponents { subspec expr }, shortly setcountcomp ______________ 34
5.11.1.18 setcountcompcond { subspec (cond) expr }______________________________ 34
5.11.1.19 countersum { subspec1 subspec2 subspecres }___________________________ 34

5.11.2 Expression Evaluator’s Functions for Manipulating Counter Variables_____________ 35
5.11.2.1 getcounter [varname < elind1, elind2, ... >] ______________________________ 35
5.11.2.2 getcounterdim [varname dimnum]______________________________________ 35

5.12 Options __ 35
5.12.1 File Interpreter’s Functions for Handling Options _____________________________ 35

5.12.1.1 setoption { optspec }__ 35
5.12.1.2 clearoption { optspec } __ 36

5.12.2 Expression Evaluator’s Functions for Handling Options ________________________ 36
5.12.2.1 getoption [varname < elind1, elind2, ... >] _______________________________ 36

5.13 Options __ 36
5.13.1.1 setoption { optspec }__ 36
5.13.1.2 clearoption { optspec } __ 36

4

INVERSE 3.11

5.2: User-defined Variables / Table of Contents

5.14 String Variables___ 36
5.14.1 File Interpreter Functions for Manipulating String Variables_____________________ 37

5.14.1.1 newstring { varname < [dim1, dim2, ...] > } ______________________________ 37
5.14.1.2 dimstring { varname < [dim1, dim2, ...] > } ______________________________ 37
5.14.1.3 setstring { elspec strspec }___ 37
5.14.1.4 initstring { subspec strspec } ___ 37
5.14.1.5 copystringvar { varname1 varname2 }____________________________________ 37
5.14.1.6 movestringvar { varname1 varname2 } ___________________________________ 38
5.14.1.7 deletestringvar { varname } __ 38
5.14.1.8 printstringvar { varname }___ 38
5.14.1.9 fprintstringvar { varname } __ 38
5.14.1.10 dprintstringvar { varname } ___ 38
5.14.1.11 copystring { subspec1 subspec2 } _____________________________________ 38
5.14.1.12 movestring { subspec1 subspec2 }_____________________________________ 38
5.14.1.13 deletestring { subspec } ___ 38
5.14.1.14 printstring { subspec } __ 38
5.14.1.15 fprintstring { subspec } ___ 38
5.14.1.16 dprintstring { subspec } ___ 38
5.14.1.17 printstring0 { elspec } __ 38
5.14.1.18 fprintstring0 { elspec }__ 38
5.14.1.19 fileprintstring0 { filespec elspec } _____________________________________ 39
5.14.1.20 setstringcomponents { subspec expr }, shortly setstrcomp __________________ 39
5.14.1.21 setstrcompcond { subspec (cond) expr } ________________________________ 39
5.14.1.22 stringcat { subspec1 subspec2 subspec3 } _______________________________ 39
5.14.1.23 copystringpart { subspec1 subspec2 from to } ____________________________ 40
5.14.1.24 stringwrite { elspec arg1 arg2 arg3 … } ________________________________ 40
5.14.1.25 stringappend { elspec arg1 arg2 arg3 … } ______________________________ 40
5.14.1.26 numtostring { elspec num < numdigits > } ______________________________ 41
5.14.1.27 appendnumtostring { elspec num < numdigits > } ________________________ 41
5.14.1.28 stringtonum { elspec varname }_______________________________________ 42

5.14.2 Expression Evaluator Functions for Manipulating String Variables________________ 42
5.14.2.1 getstring [varname which < elind1, elind2, ... >] __________________________ 42
5.14.2.2 getstringdim [varname dimnum] _______________________________________ 42

5.15 File Variables___ 42
5.15.1 File Interpreter’s Functions for Manipulating File Variables _____________________ 43

5.15.1.1 newfile { varname < [dim1, dim2, ...] > } ________________________________ 43
5.15.1.2 dimfile { varname < [dim1, dim2, ...] > } ________________________________ 43
5.15.1.3 setfile { elspec filespec } __ 43
5.15.1.4 copyfilevar { varname1 varname2 }______________________________________ 44
5.15.1.5 movefilevar { varname1 varname2 } _____________________________________ 44
5.15.1.6 deletefilevar { varname } __ 44
5.15.1.7 printfilevar { varname }___ 44
5.15.1.8 fprintfilevar { varname } __ 44
5.15.1.9 dprintfilevar { varname }__ 45
5.15.1.10 copyfile { subspec1 subspec2 } _______________________________________ 45
5.15.1.11 movefile { subspec1 subspec2 } ______________________________________ 45
5.15.1.12 deletefile { subspec } ___ 45
5.15.1.13 closefile { subspec }__ 45
5.15.1.14 flushfile { subspec }__ 45
5.15.1.15 printfile { subspec } __ 45
5.15.1.16 fprintfile { subspec } ___ 45
5.15.1.17 dprintfile { subspec } ___ 45

5.15.2 Expression Evaluator’s Functions for Manipulating File Variables ________________ 45

5

INVERSE 3.11

5.2: User-defined Variables / Table of Contents

5.15.2.1 getfile [varname dataid < elind1, elind2, ... >] ____________________________ 45
5.15.2.2 getfiledim [varname dimnum] ___ 46

5.16 Shell Variables with a Pre-defined Meaning _____________________________ 46
5.16.1 Pre-defined Matrix, Vector and Scalar Variables ______________________________ 47

5.16.1.1 Counter Pre-defined variables __ 48
5.16.1.2 Scalar Pre-defined Variables ___ 49
5.16.1.3 Vector Pre-defined Variables___ 49
5.16.1.4 Matrix Pre-defined Variables___ 50

5.16.2 File Interpreter’s Functions for Setting Shell’s Internal Data Related to Pre-defined
Variables 51

5.16.2.1 setnumparam { val } __ 51
5.16.2.2 setnumobjectives { val }___ 51
5.16.2.3 setnumconstraints { val } __ 51
5.16.2.4 setnummeas { val }___ 51

5.16.3 Expression Evaluator’s Functions for Accessing Shell’s Internal Data Related to Pre-
defined Variables __ 51

5.16.3.1 getnumparam []___ 51
5.16.3.2 getnumobjectives [] ___ 51
5.16.3.3 getnumconstraints [] ___ 52
5.16.3.4 getnummeas [] ___ 52

5.16.4 Pre-defined File Variables ___ 52
5.16.4.1 File Pre-defined Variables ___ 52

5. USER-DEFINED VARIABLES

User-defined variables are used to store different types of data in the shell. Results
of various operations and algorithms can be stored in these variables for further use in the
solution procedure.

Another important use of user-defined variables is for transferring data between
different modules, operations and algorithms of the shell. A typical example of that is
passing data between optimisation algorithms and the function which performs direct
analyses. Variables with a pre-defined meaning are used for this task.

Variable types that are currently implemented in the shell are scalar, vector,
matrix, file and field.

6

INVERSE 3.11

5.2: User-defined Variables / Important Note: Naming Recommendations

5.1.1.1 How this Chapter is Organised
In the first sub-chapter some basic concepts of user-defined variables and

functions for variable manipulation are explained. Understanding these concepts can help
the user to understand the behaviour of the supporting interpreter’s and calculator’s
functions. However, it is not absolutely necessary to read through this chapter to
comprehend the next ones. Therefore if you find the chapter boring and dry, simply skip
it. You can return back later when you will have some insight about what everything is
about, or when you feel the need for clearing some conceptual things.

The first part of the first sub-chapter explains what user-defined variables of the
shell actually are. The second part offers somehow more practical information about how
to address parts of the data stored in user-defined variables in the argument blocks of the
user-defined functions. The third part explains the concepts of operations which affect
groups of data objects of a given type. Storing groups of objects in a single variable and
performing operations on them is a strong feature of the shell. An experienced user can
easily take the advantage of this feature.

In the second sub-chapter a rough overview over the basic functions for variable

manipulation is made. The examples refer to matrix variables, but similar functions exist
for most of the variable types. The user is advised to read this sub-chapter to get a
compact view on the subject.

The third sub-chapter describes the functions which enable an advanced way of

setting components of the variables. The chapter is in that place because the described
functions are used for several variable types. The user is advised to skip the chapter and
return to it when needed.

The following sub-chapters include description of functions for handling of

different types of variables. The first of these sub-chapters is dedicated to matrix
variables. Many things described here are similar for other variable types. Especially the
treatment of vector, scalar and field variables is in many terms the same. The user can
therefore take this as an representative example which can ease the introduction to the
treatment of other variable types. In many cases it will happen, for example, that the user
will not need to read a description of a specific function for vector manipulation if he is
already familiar with the appropriate function for matrix manipulation.

The last sub-chapter is dedicated to variables with a pre-defined meaning. These

variables provide the necessary data links between different modules and operations of
the shell. They are of great importance for setting optimisation and inverse problems.

 Finally, let me conclude with a useful hint. Maybe it is not bad at all to start at the
chapter about matrix variables. At least you will quickly get a feeling about which
information you miss to get a clear insight. Have a nice reading!

1

INVERSE 3.11

5.2: User-defined Variables / Important Note: Naming Recommendations

5.2 Important Note: Naming Recommendations

Although it is currently possible to name two variables of different types by the
same name, this should be avoided in Inverse command files. The variable system will
undergo substantial changes in the future, and backward compatibility will only be
provided for scripts that follow this recommendation. Beside that, variable names should
be restricted to those which can be used in C and other language. Names should consist
of alphabetic characters (‘A’ to ‘Z’ and ‘a’ to ‘z’), underscores (‘_’) and digits (‘0’ to ‘9’)
and should begin either by an alphabetic character or an underscore.

5.3 Basic Concepts of User-defined Variables

Each type of the shell’s user-defined variables has its own set of file interpreter’s
and expression evaluator’s functions for manipulating variables of that type. Basic
manipulation includes creating, copying, renaming and deleting variables. Beside that, for
each type of variables there exists a specific set of operations typical for that type, i.e.
algebraic operations and setting or obtaining components for vector and matrix variables.

5.3.1 Tables of Elements

Each user-defined variable can hold a multi-dimensional table of elements of a
specific data type. Number of dimensions of this table is called rank of a variable.
Variable’s element tables can be thought of as a recursive tables, where the basic level
holds a specific number of sub-tables, each of which again holds a number of sub-tables,
etc., until the last level which holds a table of elements of a specific type. Numbers of
sub-tables or element which level holds are called variable dimensions, and the umber of
levels (or dimensions) of a variable is called variable rank. Variables with rank 0 can
hold only one element. Variables with rank greater than 0 can hold as many data elements
as is the product of variable dimensions.

Example:
Suppose we have a vector variable v with rank 3 and dimensions 2, 3 and 2. The

variable can hold 3*2*2=12 elements which are organised in the following way:
Table v: contains 3 sub-tables (because the first dimension is)
 Sub-table v[1]: contains 2 sub-tables (because the second dimension is 2)
 Sub-table v[1,1]: contains 2 elements (because the third dimension is 2)
 Element v[1,1,1]
 Element v[1,1,2]

2

INVERSE 3.11

5.3: User-defined Variables / Basic Concepts of User-defined Variables

 Sub-table v[1,2]: contains 2 elements (because the third dimension is 2)
 Element v[1,2,1]
 Element v[1,2,2]
 Sub-table v[2]: contains 2 sub-tables (because the second dimension is 2)
 Sub-table v[2,1]: contains 2 elements (because the third dimension is 2)
 Element v[2,1,1]
 Element v[2,1,2]
 Sub-table v[2,2]: contains 2 elements (because the third dimension is 2)
 Element v[2,2,1]
 Element v[2,2,2]
 Sub-table v[3]: contains 2 sub-tables (because the second dimension is 2)
 Sub-table v[3,1]: contains 2 elements (because the third dimension is 2)
 Element v[3,1,1]
 Element v[3,1,2]
 Sub-table v[3,2]: contains 2 elements (because the third dimension is 2)
 Element v[3,2,1]
 Element v[3,2,2]
The variable v containd three sub-tables, each of which contains two sub-sub tables, each
of which contains two vectors. Variable lazout is also shwn in Table 1.

Table 1: Variable v with dimensions 3*2*2.

Level 1: variable v
Level 2: v[1] v[2] v[3]
Level 3: v[1,1] v[1,2] v[2,1] v[2,2] v[3,1] v[3,2]
Elements: v[1,1,1]

v[1,1,2]
v[1,2,1]
v[1,2,2]

v[2,1,1]
v[2,1,2]

v[2,2,1]
v[2,2,2]

v[3,1,1]
v[3,1,1,2]

v[3,2,1]
v[3,2,2]

In the case of variables that hold elements which themselves contain tables of
elements, e.g. vectors and matrices, the same variable can contain elements of different
dimensions. Exept at variables with a pre-defined meaning, it is completely upon user's
will which are the dimensions of elements stored in a specific variable. However, this
freedom is seldomly used because it decreases the level of organisation.

In the case of multi-dimensional tables, each sub-table of the same level holds the

same number of sub-tables or elements, which equals the dimension of that level. Of
course, some elements can contain no data.

In the above example, the first level (i.e. the variable itself) contains three sub-
tables of the second level (because the first dimension is 3), i.e. v[1], v[2] and v[3]. Each
of these contains two sub-tables of the third level (because the second dimension is 2),
i.e. v[1] contains v[1,1] and v[1,2], v[2] contains v[2,1] and v[2,2] and v[3] contains
v[3,1] and v[3,2]. And each of these sub-tables of the third level contains two elements
because the third dimension is 2.

3

INVERSE 3.11

5.3: User-defined Variables / Basic Concepts of User-defined Variables

5.3.1.1 Addressing Variable Elements
Special conventions exist about referencing shell’s user-defined variables and their

elements in the argument blocks of the file interpreter’s functions.
First of all, each variable has its name. Variables of different types can have the

same names, e.g. we can have both matrix and vector variable names a1. Usual rules
apply for variable names. They are strings which consist of letters and numbers, while the
first character of a name must always be a letter.
 Since variables can hold multi-dimensional tables of elements, we must specify
which element of the variable’s element table is in question. This is done by indices
which specify the position of an element in the element table. Indices must be listed in
square brackets and be separated by spaces or commas. They specify, by turns, from
which sub-table of a specific level the element must be taken. Variable name followed by
a list of indices in square brackets form the specification of an element. Spaces are
allowed between the variable name and index list.

 Example:

Let us have a vector variable v of rank 3 and dimensions 3*2*2. The specification
v[3,1,2] refers to the second vector of the first sub-sub-table of the third sub-table of the
variable v.

Variables of rank 0 can hold only one element, therefore there is no need to

specify indices when addressing their only element. Element specification can in this case
be only a variable name, or eventually we can put empty square brackets behind the name
(e.g. v1, v1[]).

5.3.1.2 Addressing Variables and Variable Element Sub-tables
Some functions perform operations on whole sub-tables of elements rather than

on individual elements of variables. Specification of variables element sub-tables is
similar to specification of individual arguments. The only difference is that few last
indices are not specified, i.e. less indices are usually listed than the variable rank. It is
always considered than the last indices are missing. A sub-table spcified this way consists
of elements which have fixed first indices as specified in the specification, while the rest
indices vary in their range (from 1 to the appropriate dimension). As usual, the precedent
indices change faster while elements are listed by order.

Example:
Suppose we have a variable v of rank 3 and dimensions 3*2*2. The specification

v[2] then refers to a sub-table of rank 2 and dimensions 2*2 with elements v[2,1,1],
v[2,1,2], v[2,2,1] and v[2,2,2]. The specification v[2,1]refers to the first sub-table of this
table, which contains elements v[2,1,1] and v[2,1,2].

A sub-table specification can also refer to a whole element table of a variable. In

this case the specification consists only of a variable name, which can be eventionally
followed by empty square brackets, i.e. v or v[].

4

INVERSE 3.11

5.3: User-defined Variables / Basic Concepts of User-defined Variables

Some operations perform not on data elements or element sub-tables, but on

whole variables. The appropriate functions require variable specifications in their
argument blocks. These consist only of variable names and may not be followed by
square brackets, not even empty ones.

5.3.1.3 Addressing Variables Using String Objects
When addressing variables, their element sub-tables or individual elements,

elements of string variables can be referred to instead of variable names. Such references
must consist of the hash sign (#) followed by specification of a string object that is used
for variable name. Object specification must include square brackets, even if they are
empty in case of a zero-rank string variable, to avoid ambiguities.

Example:
The following commands create a zero-rank vector variable named v1 and set its

only vector element to . Instead of stating variable name directly, a
reference to a string object s[] that has been defined in the preceding line is used in the
setvector command. Although s is a zero-rank variable, square brackets must follow
variable name in string element specification:

[T3.3,2.2,1.1]

setstring { s v1 }
setvector { #s[] 3 { 1.1 2.2 3.3 } }

5.3.1.4 Operations on Variable Sub-tables
Some general rules apply to operations on the element sub-tables of variables.

These rules are mostly concerned with the dimension compatibility. The file interpreter’s
functions which operate on variable sub-tables can be divided into several sub-groups.

5.3.1.4.1 Functions that just Perform Operations on Elements (Simple Unary
operations)

These functions iterate over indices of the element sub-tables, take the appropriate
elements one by one and perform an operation on them. Sometimes it is important to
know which is the order in which elements are taken, because the operations which are
performed on the elements can depend on the state of other elements of the sub-table.

The operation begins with the element that has all indices of the sub-table set to 1.
indices are then incremented in turns, starting with the last one. When a certain index
reaches its range (i.e. the appropriate dimension of the sub-table), it is set to 1 and its
preceding index is incremented. This is repeated until all indices reach their range.

Example:
Suppose that we have a variable v of dimensions 3*2*2, and we perform an unary

operation named unopsimp on the elements of its sub-table v[2]. The code which does
that is

unopsimp { v[2] }
and the operation is performed on the elements in the following order:
 v[2,1,1], v[2,1,2], v[2,2,1], v[2,2,2].

5

INVERSE 3.11

5.3: User-defined Variables / Basic Concepts of User-defined Variables

The first index is fixet since it was given in the specification, while the rest two indices
change alternately in the above described way.

5.3.1.4.2 Functions that Perform Operations on Elements and Store Results in
Another Sub-table (Unary Operations Which Store Results)

These operations usually leave the elements on which they act unchanged, but
store the results of the performed operations in the elements of another table (there can be
exceptions).

The order in which operations are performed is the same as in the previous case.
The difference is that another element sub-table must be specified in which the results of
operations are stored. The result table must be of the same dimensions than the one on
which the operations are performed. The results of operations on elements of the first
sub-table are then stored in the appropriate elements of the result sub-table, i.e. in the
elements with the same indices.
 Usually, the elements of the result sub-table don’t need to be initialised. While the
results are stored in the table, the elements are appropriately initialised if necessary.

 Instead of properly specifying the result dabble of the appropriate dimensions, we
can only specify the variable name. If a variable with that name does not yet exist, it is
created before the beginning of the operation. It is created with the element table of the
same dimensions than the dimensions of the element sub-table on which the operation is
performed. If a whole variable table is specified (not a sub-table) which exists, but does
not have the right dimensions, it is deleted and created anew with the right dimensions. If
a result sub-table is specified with wrong dimensions, this is an error and the operation
will not be performed.

 Specifications of variables or sub-tables on which the operation is performed and
in which the results are stored are arguments of the file interpreter’s function that
performs the operation. Usually, the specification of the sub-table on which the operation
is performed, is the first argument, and the specification of the sub-table in which the
results are stored, is the second argument of such functions.

 Example:
 Let’s have a variable v of dimensions 3*2*2, a variable r1 with dimensions
4*2*2, a variable r2 with dimensions 3*2. Let’s say we want to perform the operation
unop on the sub-table v[3] and that we would like to use one of the variables r1 or r2 for
storing results of the operation. We can to that different ways:
 unop { r1[2] v[3] }
is legal since the dimensions of the sub-tables r2[2]and v[3] match. The operation is
performed in turns on elements v[3,1,1], v[3,1,2], v[3,2,1] and v[3,2,2] and the results of
the operation are stored in elements r1[3,1,1], r1[3,1,2], r1[3,2,1] and r1[3,2,2],
accordingly.
 unop { r2 v[3] }

6

INVERSE 3.11

5.3: User-defined Variables / Basic Concepts of User-defined Variables

is also legal because the first specification specifies the whole variable table. Since the
dimensions do not match, variable r2 is first deleted and then created anew with
dimensions 2*2 that match the dimensions of v[3]. The situation is similar if we perform
 unop { r1 v[3] }
We can not, however, perform the operation
 unop { r1[1] v[3] }
since r1[1] is a sub-table of the variable r1 and it does not have the same dimensions than
v[3].

5.3.1.4.3 Operations on Pairs of Variable Elements (Binary Operations)
Most of binary operations on pairs of elements of variable sub-tables store their

results in a third table of elements. For this result table the same results apply as in the
chapter about unary operations which store their results.

There are two possibilities for the element tables on which the operation is
performed. They can either be of the same dimensions or one table has a single element.
In the second case, the operation combines the single element with all elements of the
other sub-table.

At functions which perform binary operations, the specification of the result sub-
table (or variable), and specifications of the sub-tables on which the operation is
performed, are arguments of these functions. Usually the specifications of the sub-tables
on which the operation is performed, are the first two arguments, and the specification of
the result sub-table is the third argument of such functions. If the appropriate operations
are not commutative, the order of the first two arguments matters, too.

 Example:
 Let us say there are variables v1 of dimensions 3*2*2, v2 of dimensions 5*2*2, v3
of dimensions 4*2, r1 of dimensions 2*2*2, and r2 of dimension 2*3, and a binary
operation named binop. Then we can perform the following operations:
 binop { r1[2] v1[2] v2[4] }
is valid since all sub-tables have the same dimensions.
 binop { r1[] v1[2] v2[4] }
is also valid since the first argument specifies the whole element table of the variable r1.
This table is not of the same dimension as should the result table be, therefore variable r1
is first deleted and then created with write dimensions (2*2) before the operation is
performed.
 binop { r2[] v3[2,1,2] v2[5] }
is also legal because v3[2,1] specifies a single element. This element is in turns combined
with all four elements of the sub-table v2[5], the operation is performed on such pairs and
results are stored in the appropriate elements of variable r2. This variable is deleted and
then created anew with dimensions 2*2 before the operation begins.
 binop { r1[] v3 v2[1] }
is not legal since the dimensions of sub-tables v3 and v2[1] do not match.

7

INVERSE 3.11

5.4: User-defined Variables / Basic Operations on User-defined Variables

5.4 Basic Operations on User-defined Variables

For every type of the user-defined shell’s variables there is a set of interpreter’s
and calculator’s functions for manipulation of these variables. Some of these functions
are of a general character and are similar for almost all types of variables.

Among the most important are the file interpreter’s functions for creating
variables and setting their values. For matrix variables these are functions newmatrix,
dimmatrix and setmatrix.

The newmatrix function creates a matrix variable with specific dimensions. The
only argument of this function is the name of the matrix variable followed by the list of
dimensions in a square bracket. If this bracket is empty or if it is omitted, a variable with
rank 0 is created (such variable can hold a single element). If a matrix variable with a
given name exists when the newmatrix function is called, it is first deleted and then
created.

The dimmatrix function is similar than newmatrix, except that if a matrix
variables of a given name already exists and has right dimensions, it is leaved untouched.

The setmatrix function initialises individual elements of a matrix variable
according to the value given in its argument block. The first argument is the specification
of a matrix element, i.e. a variable name followed by a list of indices). The second
argument specifies the values that should be assigned to that matrix element. This
includes matrix dimension and all components, although only the dimension or individual
components can be given.

If the first argument of the setmatrix function is a complete element specification
with a list of indices, a given element must already exist. This can be assured by an
appropriate execution of the newmatrix or dimmatrix function. If the element
specification is given without an index list and a matrix variable with a given name does
not exist yet, it is first created with rank 0. This is the only case when the setmatrix
command creates a matrix variable. In other cases the variable must exist before.
 Similar functions than newmatrix and dimmatrix exist for other types of
variables. They only have different name (string “matrix” is replaced by the appropriate
type name). Similar functions to setmatrix exist for other types of variables, with
appropriately different names and formats of the second argument which specifies the
element values.

 Other important general functions are these for copying, moving and printing
variables or their elements. For matrix variables, the function movematrixvar renames a
matrix variable. The first name is the old and the second argument is a new name of the
variable. Function copymatrixvar copies a whole matrix variable to another matrix
variable. Again, names of the copied and the result variables are the two arguments of the
functions. The movematrixvar function first deletes the second variable if it already
exists, while the copymatrixvar function deletes it only if it is not of the right
dimensions, and the same applies for individual elements.

8

INVERSE 3.11

5.5: User-defined Variables / Variables with Local Definition Scope

 The copymatrix function copies sub-tables of elements of matrix variables to
another element sub-tables. It behaves like functions which perform unary operations on
element sub-tables and store results to another sub-tables. Similarly the movematrix
function moves sub-tables of elements to another sub-tables. It also behaves like
functions which perform unary operations on element sub-tables and store results to
another sub-tables. Particularity of this function is that the elements on which operation is
performed are also affected (they are deleted).
 The printmatrix prints a sub-table of elements of a matrix variable. It behaves
like a simple unary operation. The printmatrixvar function does the same, except that it
prints all matrices of the variable’s element table and also some additional data about the
variable.

 For each variable type there are usually one or more expression evaluator’s
functions which return specific information about the variable’s elements. For matrix
variables such functions are getmatrix, which returns matrix element's components or
dimensions, and getmatrixdim, which returns dimensions or rank of a matrix variable.

 For variables that contain numerical information (i.e. scalars, vectors or matrices),
there are functions which set the components of these information for sub-tables of
variables' elements. For matrix variables such function is setmatrixcomponents or
shortly setmatcomp. The first argument of this function is a specification of a sub-group
of elements on which the operation is performed. The second argument is a mathematical
expression the value of which is evauated and assigned to each component of the group
of matrices separately. Two special calculator's functions, namely varindex and
varcomponent can be used in functions similar to setmatcomp. The first one returns a
specific index of the matrix element, and the second one returns the specific component
number of the matrix component which is currently being assigned.

5.5 Variables with Local Definition Scope

When larger command files are used and a part of the code is organized in blocks
with a clearly defined functionality (e.g. user defined interpreter functions that perform
specific tasks), it is sometimes beneficial to define and use local variables. The reason for
this is that such isolated blocks of code often require use of auxiliary variables to
temporarily store data and operate on it. Such blocks can often offer some general
functionality and can be reused several times, therefore the creator can not know in
advance where his functions will be used. Use of global variables could be dangerous in
such instances because these variables can have some other function outside the block,
and their use for auxiliary data storage inside the block would corrupt their contents and
disable their functionality in the global scope.

9

INVERSE 3.11

5.5: User-defined Variables / Variables with Local Definition Scope

For the above reasons, a mechanism of declaring local variables, which can be
used only in their local definition scope, is provided. In this scope the local variable
names hide the global ones. All operations on a variable with a name that is made local to
this scope, will be performed on the local instance of a variable and will leave the global
variable with the same name untouched. When a local scope is exited, the local variables
are destroyed and global names are uncovered, so that any operation on a variable with a
given name will from then on be performed on the global instance of the variable with a
given name.

5.5.1 Definition of Local Scopes

The scopes in which local definitions apply must be explicitly defined by the user,
as well as variable names which are made local to a specific scope. This is done by nested
calls to pairs of functions deflocvar and undeflocvar.

The deflocvar function defines the beginning of a potentially nested local scope

(block) and the variable names that are made local to this scope, i.e. which hide names of
variables that are defined and used outside that scope. Arguments of this function are all
names (interpreted as string arguments) are made local to the scope.

The undeflocvar function exits the local scope defined by the corresponding call

to deflocvar and releases any storage related to use of local variables in this block. After
a call to undeflocvar, the variables outside the local scope, which have names that were
made local, are again accessible.

Definition of any number of nested local scopes is possible. The user must take

care that every local scope defined by deflocvar is exited by the corresponding call to
undeflocvar. undeflocvar always cancels the inner-most local scope. Local names
defined in a nested local scope hide local names in all outer scopes that include this
scope. When a nested scope is exited by undeflocvar, each local name defined in that
block uncovers the name in the innermost scope where that name is defined as a local
one. It is considered that all possible variable names are defined in the global scope. The
global scope does not need to be defined by a combined call to deflocvar and
undeflocvar.

There are some potential traps related with definition of local scopes. Similarly as

one must take care of properly closing brackets that define code blocks in branches and
loops, starts and ends of local definition blocks must be defined consistently by nested
calls to function pairs deflocvar and undeflocvar, which enclose these blocks. A
potential danger lies in the possibility that the corresponding undeflocvar is omitted, for
example because of exiting a code block where this function is called before the call,
which can be done by exiting the current interpretation level using the exit command. If
some inner local scope is not exited when it is supposed to be, a call to undeflocvar

10

INVERSE 3.11

5.5: User-defined Variables / Variables with Local Definition Scope

might undefine a nested scope instead of the one it should. A mechanism for discovering
such situations is provided through the functions marklocvar and checklocvar. When a
pair of these functions is called inside of the same local definition level, the checklocvar
reports an error if the level of the local definition scope is unexpectedly changed, e.g.
because of omitting a call to undeflocvar that should close a nested local scope, or
simply because of a coding error where the user forgets to call thefunction.

Warning:
Only shell variables can be made local by the mechanisms provided by deflocvar

and undeflocvar. All calculator variables are global.

5.5.2 deflocvar { varname1 varname2 … }

Defines a new local variable definition scope and makes shell interpreter or
calculator variable names var1, var2 , etc., local to this scope.

The scope defined by this function lasts until it is canceled by a call to the
undeflocvar function. Within the scope, all operations on variables named by local
names varname1, varname2, etc., affect local instances of these variables. Such
operations will not affect variables with the same name that were potentially initialized
outside of this scope. The same rules as apply for operations on global variables also
apply for operations on local ones. The call to undeflocvar, which ends the local
definition scope, destroys all local variables that were initialized within this scope (i.e.
the variables named varname1, varname2, etc., which were initialized within the scope).
It also restores eventual global variables with these names. Memory space that was
allocated to store these variables is released.

An arbitrary number of nested local definition scopes can be defined. A rule
applies that local names from inner scopes hide all variables carrying these names, which
are defined in the enclosing outer scopes. If some particular variable name is not defined
within the inner-most scope, operations on a variable with that name will affect the
variable in the first (i.e. inner-most) enclosing scope where this name is defined as a local
name, or a global variable, if this name is not defined as local in any of the enclosing
scopes.

Example:
In the example below a scalar variable s1 is defined in the global scope and

assigned value 1.1. Then a local scope is defined by a call to deflocvar with variable
names s1 and s3 made local to this scope. Then a local scalar variable s1 is defined and
assigned value 1.2, a global scalar value s2 (since the name s2 is not local to this scope) is
defined and assigned value 2.2, and a local scalar variable s3 is defined and assigned
value 3.2. Values of these variables are printed before the undeflocvar function is called,
which ends the local scope. Then all values are printed again. The undeflocvar removes
the memory space that was allocated for local storage of s1 and s3 and uncovers these
global names. When the scalar variable s1 is printed out, the value 1.1 is printed because
the print refers to the global s1 which was not affected by the setscalar function called

11

INVERSE 3.11

5.5: User-defined Variables / Variables with Local Definition Scope

within the local scope. Value 2.2 will be printed for a scalar variable s2, because the
appropriate call to the setscalar function within the local scope initialized a gloval s2 as
s2 was not defined as a local name for this scope. The third scalar variable that attempts
to be printed, s3, does not exist at all, because it was initialized only within the local
scope and its name was defined as local to this scope by the deflocvar function.

It should be noted that within the local scope s1 could be initialized as a variable
of some other type (e.g. as a vector variable) since the local s1 is not related to the global
s1 in any sense.

setscalar { s1 1.1}
deflocvar { s1 s3 }

setscalar { s1 1.2 } *{ refers to local s1 }
setscalar {s2 2.2 } *{ refers to global s2 }
setscalar { s3 3.2 } *{ refers to local s2 }
printscalar{ s1 }
printscalar { s2 }
printscalar { s3 }

undeflocvar{ }
printscalar{ s1 } *{ value 1.1 – assigned outside the local
scope }
printscalar { s2 } *{ value 2.2 – assigned in the local scope
to global s2 }
printscalar { s3 } *{ global s3 not defined }

5.5.3 undeflocvar { }

Ends the definition of the local scope whose beginning was defined by the last
call to the deflocvar that has not yet been canceled by undeflocvar. If any local variables
were allocated within this scope, they are destroyed and the memory space allocated for
their storage is released. Variable names defined in enclosing scopes, which were hidden
by local names to the scope that is being canceled, are uncovered.

5.5.4 marklocvar { }

Remembers the level of the innermost local variable definition scope, within
which the function is called. This function must be always called in combination with
checklocvar, which must be called within the same local definition scope within which
the corresponding marklocvar was called.

5.5.5 checklocvar { }

Checks if the level of the innermost local variable definition scope in which the
function was called, corresponds to the level of the local scope within which the

12

INVERSE 3.11

5.6: User-defined Variables / Special Expression Evaluator's Functions varindex and varcomponent

corresponding (preeeding) call to marclocvar was made. If it does not, it reports an error.
The function also writes a note about the number of the nested level of the local scope in
which it was called, to the standard output and to the output file.

5.6 Special Expression Evaluator's Functions varindex and
varcomponent

Calculator’s functions varindex and varcomponent are designed to support those
file interpreter’s functions that iterate over components of the variable’s element sub-
tables and assign them values specified by mathematical expressions. Such functions are,
for example, setmatomp, setveccomp, setscalcomp, etc.

5.6.1 varindex [indexnum]

Returns a specific index (defined by indexnum) of the variable's element which is
currently in the assigment procedure of a function like setmatcomp. The function can be
called only in the specific situation where a component of a variable's element is being
assigned by a function like setmatcomp.

If the value of indexnum is zero, the function returns the rank (i.e. number of
dimensions) of the element table of the variable in the assignment procedure.

Example:
Let us have a matrix variable m of dimensions 2*3 and let us execute the

command
setmatcomp { m[2] varindex[0] + 3 * varindex[2] }

When the components of the matrix sub-table are assigned, the term varindex[0] has the
value 2 since the rank of variable m is 2. The value of the expression varindex[2]
depends on which matrix element is currently in the evaluation procedure, since it returns
the second index of that element. For m[2,1] its value is 1, for m[2,2] its value is 2 and
for m[2,3] its value is 3. Therefore, all components of m[2,1] will be assigned the value 2
+ 3 * 1 = 5, all components of m[2,2] will be assigned the value 2 + 3 * 2 = 8, and all
components of m[2,3] will be assigned the value 2 + 3 * 3 = 11.

5.6.2 varcomponent [compnum]

Returns a specific component index (defined by compnum) of the variable
element's component which is currently in the assigment procedure of a function like

13

INVERSE 3.11

5.7: User-defined Variables / Matrix Variables

setmatcomp. The function can be called only in the specific situation where a component
of a variable's element is being assigned by a function like setmatcomp.

If the value of compnum is zero, the function returns the number of dimensions of
a variable element (e.g. 2 for matrices, 1 for vectors, 0 for scalars).

Example:
Let us have a matrix variable m of dimensions 3*2 where all its elements are 2 by

2 matrices. and let us execute the command
setmatcomp { m[3] 10 * varindex[1] + varindex[2] + 0.1 * varcomponent[1] + 0.01 *
varcomponent[2] }

The command affects matrix elements m[3,1] and m[3,2] and sets their components to
the following values:
 m[3,1]: {{31.11, 31.12}, {31.21, 31.22}}
 m[3,2]: {{32.11, 32.12}, {32.21, 32.22}}

5.7 Matrix Variables

Matrix variables hold matrix objects. These are two-dimensional arrays of
decimal numbers. Both dimensions of an array are also a part of a matrix object.

Elements of matrix variables can be empty (uninitialised) which means that they
contain no data.

5.7.1 File Interpreter’s Functions for Manipulation of Matrix
Variables

5.7.1.1 newmatrix { varname < [dim1, dim2, ...] > }
Creates a new matrix variable named varname with dimensions dim1, dim2, etc. It

does not initialise variable elements. The rank of the created matrix variable equals the
number of specified dimensions (dim1, dim2, etc.). If no dimensions are specified, a
variable with rank 0 is created. If a matrix variable named varname already exists, it is
firs deleted (together with its elements).

Explanation:
The shell’s variables can hold multi-dimensional tables of objects of a given type

(matrices in this case). Variable dimensions refer to the dimensions of such table, and
variable rank is the number of these dimensions.

14

INVERSE 3.11

5.7: User-defined Variables / Matrix Variables

5.7.1.2 dimmatrix { varname < [dim1, dim2, ...] > }
The same a newmatrix, except that if a matrix variable named varname with

proper dimensions already exists, it does not delete it.

5.7.1.3 setmatrix { elspec matspec }
Sets a matrix element specified by elspec to the values specified by matspec. The

specification of a matrix element elspec consists of a variable name and an optional index
list in square brackets, e.g. m1[2,3]. The index list is not necessary if the rank of the
matrix variable is 0.
 elspec must address an existing matrix element, except if no indices are specified.
In this case a matrix variable of rank 0 is created before the matrix element is set.

matspec specifies the contents, which are assigned to a matrix element. Matrix
dimensions and components are normally specified in matspec. Alternatively, only
dimensions, individual components, or groups of components can be specified in
matspec. If only dimensions are specified, they must be followed by an empty curly
bracket.

If matrix dimensions are specified in matspec, then if the matrix element specified
by elspec already exists, but has wrong dimensions, it is deleted and created again with
the right dimensions. If matrix element is not yet initialised, it is created anew. If it exists
and has the right dimensions, it is not changed before the components are read.

Just components can be specified in matspec only if the matrix element specified by
elspec already exists with the right dimensions.

All matrix components can be specified in matspec, but alternatively only one or
only few components can be specified. In this case the components which are not
specified remain the same. If these components have not been specified before, they will
have indefinite values.

The standard format of matspec is the following:
dim1 dim2 { {1 1 : comp1,1 } {1 2 : comp1,2 } ... {2 1 : comp2,1 } ... }

where dim1 and dim2 are the number of rows and columns, respectively, and comp1,1,
comp1,2, etc., are matrix components. In the brackets where we specify components,
component indices (i.e. the row number and the column number) are specified on the left
side of a colon.
 Alternatively, whole rows are given in one bracket:

 dim1 dim2 { {1: comp1,1 comp1,2 ... } {2: comp2,1 comp2,2 ... } ... }
or components are just listed by turns, listing row by row:
 dim1 dim2 { comp1,1 comp1,2 ... comp2,1 comp2,2 }
If row and column numbers are specified with the components, then the order in which
components are listed does not matter. Similarly, if only row numbers are specified, the
order in which rows are listed does not matter.

 All numbers, which occur in the matspec, can be given by mathemathical
expressions that are evaluated in the expression evaluator or by expression evaluator's
variables.

15

INVERSE 3.11

5.7: User-defined Variables / Matrix Variables

Examples:
Let us say that we have a matrix variable m of dimensions 2*3 and that we want to

assign a 2 by 2 matrix to its element m[1,3]. Let the assigned matrix be a diagonal matrix
with diagonal components set to 3.2. In a standard form this is done like this:

setmatrix { m[1 3] 2 2 {{1 1 : 3.2 } { 1 2 : 0 } { 2 1 : 0 } { 2 2 : 3.2 } }
Instead individual components, whole rows can be listed in curlz brackets:

setmatrix { m[1 3] 2 2 {{1 : 3.2 0 } { 2 : 0 3.2 } }
All components can be just listed without specifying their row and column numbers:

setmatrix { m[1 3] 2 2 { 3.2 0 0 3.2 } }
When component numbers are given, the order in which components are specified does
not matter. The same matrix can also be set like this:

setmatrix { m[1 3] 2 2 {{ 1 2 : 0 } { 2 2 : 3.2 } { 2 1 : 0 } {1 1 : 3.2 }}
or like this:

setmatrix { m[1 3] 2 2 {{ 2 : 0 3.2 } {1 : 3.2 0 } }
 If the matrix element is already initialised with proper dimensions, only
components can be specified with the setmatrix command. This can be illustrated with
an example where the dimensions and components are specified separately:

setmatrix { m[1 3] 2 2 { } }
setmatrix { m[1 3] { 3.2 0 0 3.2 } }

With the first setmatrix command the matrix element dimensions are initialised, i.e. a
matrix with two rows and two columns is created. With the second setmatrix command
the componenets of the matrix element are set. We can furtherly split the setting of
components into two parts:

setmatrix { m[1 3] 2 2 { } }
setmatrix { m[1 3] { 3.2 0 } }
setmatrix { m[1 3] { { 2: 0 3.2 } } }

With the second setmatrix command, only the first two matrix components were set.
This means that the whole second row remained unset. We set this row with the third
setmatrix command.

 All numbers in the setmatrix commands can be replaced by mathematical
expressions or by calculator's variables. We can simply put ${expr} or $varname in place
of numbers, where expr is a mathematical expression that can be evaluated in the
expression evaluator, and varname is a name of the expression evaluator's variable. This
and the fact that we can set only dimensions and individual components by the setmatrix
command enables additional matrix variables manipulation .

 Example:
 Let us have a matrix variable of rank 0 named m. The following code creates an
exact copy of m named mc regardless of the dimensions of m:
 if { (getmatrix[“m”,0,1]>0 && getmatrix[“m”,0,2]>0)
 [
 setmatrix { mc ${getmatrix[“m”,0,1]} ${getmatrix[“m”,0,2]} { } }
 = {countrow:1}

16

INVERSE 3.11

5.7: User-defined Variables / Matrix Variables

 while { (countrow<=getmatrix[“m”,0,1])
 [
 = {countcol:1}
 while { (countrow<=getmatrix[“m”,0,2])
 [
 setmatrix { mc { {
 $countrow $xountcol :
 ${getmatrix[“m”,countrow,countcol]}
 } }
 }

 = {countcol:countcol+1}
] }
 = {countrow:countrow+1}
] else
 [
 newmatrix { mc }
] }

5.7.1.4 initmatrix { subspec matspec }
Sets matrix elements contained in the element sub-table specified by subspec, to the

value specified by matspec. The form of matspec is the same as for function setmatrix.

5.7.1.5 copymatrixvar { varname1 varname2 }
Copies the matrix variable named varname1 to the variable named varname2. If

the second matrix variable does not yet exist, it is created first. If it exists, it is
overwritten.

5.7.1.6 movematrixvar { varname1 varname2 }
Moves the matrix variable named varname2 to the variable named varname1. If a

matrix named varname2 already exists, it is overwritten. After the operation the matrix
variable named varname1 no longer exists.

5.7.1.7 deletematrixvar { varname }
Deletes the matrix variable named varname, together with its elements. After the

operation the matrix variable named varname no longer exists.

5.7.1.8 printmatrixvar { varname }
Prints the information (dimensions and components) about all matrix elements

contained in the matrix variable named varname, to the standard output. General
information about the matrix variable (e.g. rank and dimensions) is also printed.

5.7.1.9 fprintmatrixvar { varname }
The same as the printmatrix function, except that it prints to the programme’s

output file.

17

INVERSE 3.11

5.7: User-defined Variables / Matrix Variables

5.7.1.10 dprintmatrixvar { varname }
The same as the printmatrix function, except that it prints to both the standard

output and programme’s output file.

5.7.1.11 copymatrix { subspec1 subspec2 }
Copies a sub-table of matrix elements specified by subspec1 to a sub-table

specified by subspec2. Elements are copied one by one from the first sub-table to the
appropriate places of the second sub-table. Dimensions of the sub-tables must be the
same, except if the second specification (subspec2) refers to the whole element table of a
matrix variable (i.e. the specification does not include an index list). In this case, the
second variable is created anew if necessary. The old variable is in this case first deleted
if it exists.

If the second sub-table already contains matrix elements, they are overwritten by
the elements of the first sub-table.

5.7.1.12 movematrix { subspec1 subspec2 }
Moves a sub-table of matrix elements specified by subspec1 to a sub-table specified

by subspec2. Elements are moved one by one from the first sub-table to the appropriate
places of the second sub-table. Dimensions of the sub-tables must be the same, except if
the second specification (subspec2) refers to the whole element table of a matrix variable
(i.e. the specification does not include an index list). In this case, the second variable is
created anew if necessary. The old variable is in this case first deleted if it exists.

If the second sub-table already contains matrix elements, they are overwritten by
the elements of the first sub-table. After the operation, the first sub-table contains only
empty (uninitialised) elements.

5.7.1.13 deletematrix { subspec }
Deletes a sub-table of matrix elements specified by subspec. Matrices in the sub-

table are deleted one by one. After the operation is performed, the sub-table contains only
empty (non-initialised) elements.

If subspec specifies a whole table of elements of a matrix variable, the matrix
variable itself is not deleted. Only its elements become empty (uninitialised).

5.7.1.14 printmatrix { subspec }
Prints information about elements of a sub-table of matrices specified by subspec.

5.7.1.15 fprintmatrix { subspec }
Prints information about elements of a sub-table of matrices specified by subspec to

the shell’s output file (outfile).

5.7.1.16 dprintmatrix { subspec }
Prints information about elements of a sub-table of matrices specified by subspec to

both the standard output and the shell’s output file (outfile).

18

INVERSE 3.11

5.7: User-defined Variables / Matrix Variables

5.7.1.17 setmatrixcomponents { subspec expr }, shortly setmatcomp
Sets the components of all matrices contained in the element sub-table specified by

subspec, to the value of the expression expr. The expression expr is evaluated by the
expression evaluator for each component separately. The function iterates over all
matrices of the sub-table specified by subspec and over all components of these matrices
and assigns them values specified by expr.

Two special expression evaluator’s functions, varindex and varcomponent are
designed for use with functions like setmatcomp. When the expressions expr is being
evaluated for a specific component of a specific matrix element, the varindex function
returns a specific index of the matrix element that is affected. The varcomponent
function returns a specific component index (row or matrix number) of the component,
which is currently in the evaluation procedure.

Setting matrix components by the setmatcomp function is much quicker than doing
it by programming loops which iterate over matrices of a variable's sub-table and over
their components. This is because we avoid iterative calls of interpreter’s functions.
Instead, only one interpreter’s function is called to do the job, the iteration loops are
implemented in advance in this function and only the expression exp is evaluated again
and again. The evaluation of this expression is very quick because it is parsed and
interpreted outside the iteration loops. An already parsed and interpreted expression is
evaluated within the iteration loops.

Example:
Let us have a matrix variable m which contains 5*2*3 matrices of dimension 5*2.

Let us assign values to all components of the sub-table m[4] in such a way that
component values will equal 100 times the first index of the sub-table element plus 10
times the second index of the sub-table element plus 0.1 times the row number plus 0.01
times the column number of components. This is done by the command

setmatcomp { m[4] 100 * varindex[2] + 10 * varindex[3] + 0.1 * varcomponent[1] +
0.01 * varcomponent[2] }

5.7.1.18 setmatcompcond { subspec (cond) expr }
Does the same as setmatcomp, except that only those components of the matrix

elements specified by subspec are set for which the condition cond is satisfied. cond is a
mathematical expression that can also include calls to expression evaluator's functions
varindex and varcomponent.

5.7.1.19 matrixsum { subspec1 subspec2 subspecres }
Adds together matrices from element tables specified by subspec1 and subspec2

and stores the results into matrices on the element table specified by subspecres.
The aim of this function is to demonstrate how binary operations on sub-tables of

matrix variables work.

19

INVERSE 3.11

5.7: User-defined Variables / Matrix Variables

5.7.1.20 matrixdif { subspec1 subspec2 subspecres }
Subtracts matrices from element tables specified by subspec1 and subspec2 and

stores the results into matrices on the element table specified by subspecres.

5.7.1.21 matrixop { spec = < operator > spec < operator spec > }, matop
Performs a matrix operation specified in the argument block. The operation

specification consists of object specifications (matrix, vector and scalar objects) and
operators.

This function performs some basic matrix and vector operations like multiplication
and addition, evaluation of norms and determinants, matrix inversion, solution of systems
of equations, etc.

One operation can be performed at a time. The argument block of the command is
an expression which consists of object specifications (operands) and operators. Object
specifications usually start with a two letter prefix which specifies the type of a specific
object: s_ for scalars, v_ for vectors and m_ for matrices. This is followed by the
specification of an element of a specific type, which is given by variable name and index
list in square brackets. No spaces are allowed between the prefix which specifies object
type and element specification. Element specification refers to a specific element of a
user-defined variable. The operations can be performed only on individual elements
(objects) within one call to the matop function, not on tables of elements.

Sometimes the object specification is a mathematical expression which can be
evaluated in the expression evaluator. In this case, the expression must be in curly
brackets.
 Usually the operations which are performed produce some results which is stored
in some object. In this case, in the argument block we gave first the specification of the
object (variable element) into which the result is stored, followed by the assignment
operator =.

The following operations can be performed by the matrixop function:

• matop{m_m0 = m_m1 + m_m2} : matrix m0 becomes the sum of matrices m1 snd

m2.
• matop{m_m0 = m_m1 - m_m2} :
• matop{v_v0 = v_v1 + v_v2} : vector v0 becomes the sum of vectors v1 and v2.
• matop{v_v0 = v_v1 - v_v2} : vector v0 becomes the difference between matrices v1

and v2.
• matop{m_m0 = m_m1 * m_m2} : matrix m0 becomes the product of matrices m1 snd

m2.
• matop{v_v0 = m_m1 * v_v2} : vector v0 becomes the product of matrix m1 and

vector v2.
• matop{s_s0 = v_v1 * v_v2} : Scalar variable s0 becomes the scalar product of vector

variables v1 and v2.

20

INVERSE 3.11

5.7: User-defined Variables / Matrix Variables

• matop{m_m0 = m_m1 * {expr}} : Matrix m0 becomes matrix m1 multiplied by the
value of the expression expr.

• matop{v_v0 = v_v1 * {expr}} : Vector v0 becomes vector v1 multiplied by the value
of the expression expr.

• matop{v_x = m_A solve v_b} : Vector x becomes the solution of the equation A x = b
• matop{m_m0 = transpose m_m1} : Matrix m0 becomes the transpose of the matrix

m1.
• matop{m_m0 = transpose v_v1} : Matrix m0 becomes th etranspose of the vector v1.
• matop{m_m0 = invert m_m1} : matrix m0 becomes the inverse of th ematrix m1.
• matop{s_s0 = norm m_m1} : Scalar s0 becomes the euclidian norm of the matrix m1

(the square root of the sum of squares of components).
• matop{s_s0 = norm v_v1} : Scalar s0 becomes the euclidian norm of the vector v1.
• matop{m_m0 = normalize m_m1} : Matrix m0 becomes the normalised matrix m1

(its component are divided by its norm).
• matop{v_v0 = normalize v_v1} : Vector v0 becomes the normalized vector v1.
• matop{m_m0 = identitymatrix {expr}} Matrix m0 becomes the identity square matrix

of dimension that equals the value of the expression expr.
• matop{m_m0 = zeromatrix {expr1} {expr2}} : .Matrix m0 becomes the zero matrix of

dimensions that equal the values of the expressions expr1 and expr2.
• matop{m_m0 = randommatrix {expr1} {expr2}} : Matrix m0 becomes a matrix of

dimensions that equal the values of the expressions expr and expr1 with random
components between 0 and 1. If only one expression is given, mo becomes a square
matrix of the appropriate dimension.

• matop{v_v0 = zerovector {expr}} : Vector v0 becomes a yero vector of the dimension
that equals the value of the expression expr.

• matop{v_v0 = randomvector {expr}} : Vector v0 becomes a zero vector of the
dimension that equals the value of the expression expr.

 Examples
 matop { m_m1[2,3] = transpose m_a0[1] }

5.7.2 Expression Evaluator’s Functions for Manipulating Matrix
Variables

5.7.2.1 getmatrix [varname rownum colnum < elind1, elind2, ... >]
Returns a specific matrix component. varname is the name of a matrix variable.

elind1, elind2, etc., are the indices, which specify the matrix element on the variable’s
element table. rownum is the row number and colnum is the column number of the
component, which is returned.

21

INVERSE 3.11

5.8: User-defined Variables / Vector Variables

If the variable named varname is of rank 0, then no indices elind1, elind2, etc. need
to be specified.

If rownim is 0, the function returns number of rows of the matrix if colnum is 1, or
number of columns of the matrix if colnum is 2.

5.7.2.2 getmatrixdim [varname dimnum]
Returns the dimnum-th dimension of the matrix variable named varname. If

dimnum is 0, it returns the rank of the variable, and if dimnum is –1, it returns the total
number of elements contained in the variable (which equals product of all dimensions if
rank is greater than zero), no matter if elements are initialised or not.

Warning:
If dimnum is –1, getmatrixdim does not report an error if matrix variable named

varname does not exists. It returns 0 in this case, therefore this function is suitable for
checking variable existence.

5.8 Vector Variables

Vector objects are one-dimensional arrays of decimal numbers. The dimension of
an array is also a part of a vector object.

Elements of vector variables can be empty (uninitialised) which means that they
contain no data. The dimension and components of such elements are not defined.

5.8.1 File Interpreter’s Functions for Manipulating Vector
Variables

5.8.1.1 newvector { varname < [dim1, dim2, ...] > }
Does the same as newmatrix, but for vector variables.

5.8.1.2 dimvector { varname < [dim1, dim2, ...] > }
Does the same asdimmatrix, but for vector variables.

5.8.1.3 setvector { elspec vecspec }
This function is similar to the corresponding matrix function setmatrix. It sets a

vector element specified by elspec to the values specified by vecspec. The specification
of a vector element elspec consists of a variable name and an optional index list in square
brackets, e.g. v1[2,3]. The index list is not necessary if the rank of the vector variable is
0.

22

INVERSE 3.11

5.8: User-defined Variables / Vector Variables

 elspec must address an existing vector element, except if no indices are specified.
In this case a vector variable of rank 0 is created before the vector element is set.

vecspec specifies the contents which are assigned to the vector element. Vector
dimension and components are normally specified in vecspec. Alternatively, only the
dimension, individual components, or groups of components can be specified in vecspec.
If only dimension is specified, it must be followed by an empty curly bracket.

If vector dimensions are specified in vecspec, then if the vector element specified
by elspec already exists, but have a wrong dimension, it is deleted and created again with
the right dimension. If vector element is not yet initialised, it is created anew. If it exists
and has the right dimension, it is not changed before the components are read.

Just components can be specified in vecspec only if the vector element specified by
elspec already exists with the right dimension.

All vector components can be specified in vecspec, but alternatively only one or
only few components can be specified. In this case the unspecified components remain
the same. If the components have not been specified before, their values will be
indefinite.

The standard format of vecspec is the following:
dim { {1 : comp1 } { 2 : comp2 } { 3 : comp3 } ... }

where dim is vector dimension (the number of components), and comp1, comp2, etc., are
vector components. In the brackets where we specify components, the component
numbers are specified on the left side of a colon.
 Alternatively, the components are just listed by turns:
 dim { comp1 comp2 comp3 ... }
If the component numbers are specified with the components, then the order in which
components are listed does not matter.

 All numbers that occur in the vecspec can be given by mathemathical expressions
that are evaluated in the expression evaluator or by expression evaluator's variables.

Examples:
Let us say that we have a vector variable v of dimensions 2*3 and that we want to

assign a 4 dimensional vector to its element v[1,3]. Let the assigned vector components
have values 1.1, 2.2, 3.3 and 4.4. In a standard form this is done like this:

setvector { v[1 3] 4 { {1 : 1.1 } { 2 : 2.2 } { 3 : 3.3 } { 4 : 4.4 } }
All components can be just listed without specifying their component numbers:

setvector { v[1 3] 4 { 1.1 2.2 3.3 4.4 } }
When component numbers are given, the order in which components are specified does
not matter. The same vector can also be set like this:

setvector { v[1 3] 4 { { 3 : 3.3 } {1 : 1.1 } { 4 : 4.4 } { 2 : 2.2 } }
 If a vector element is already initialised with proper dimensions, only components
can be specified by the setvector command. This can be illustrated with an example
where the dimensions and components are specified separately:

setvector { v[1 3] 4 { } }

23

INVERSE 3.11

5.8: User-defined Variables / Vector Variables

setvector { v[1 3] { 1.1 2.2 3.3 4.4 } }
With the first setvector command the vector element dimension is initialised, i.e. a vector
with four components is created. With the second setvector command the componenets
of the vector element are set. We can furtherly split the setting of components into two
parts:

setvector { v[1 3] 4 { } }
setvector { v[1 3] { 1.1 2.2 } }
setvector { v[1 3] { { 3 : 3.3 } { 4 : 4.4 } } }

With the second setvector command, only the first two vector components were set. The
rest components were set by the third setvector command.

 All numbers in the setvector commands can be replaced by mathematical
expressions or by calculator's variables. We can simply put ${expr} or $varname in place
of numbers, where expr is a mathematical expression that can be evaluated in the
expression evaluator, and varname is a name of an expression evaluator's variable. This
and the fact that we can set only dimensions and individual components by the setvector
command enables additional vector variables manipulation .

 Example:
 The following code creates a zero rank vector variable tab which holds a table of
valuesof the exponential function on the interval [0,1] with step 1:
 = {currentx: 0}
 = {lastx: 10}
 = {step: 1}
 = {dim: 11}
 setvector {tab dim { } }
 = {compnum : 1}
 while { (currentx<=lastx)
 [
 setvector {tab { { $compnum : exp[currentx] } }}
 = {currentx:currentx+step}
 = {compnum:compnum+1}
] }

5.8.1.4 initvector { subspec vecspec }
Sets vector elements contained in the element sub-table specified by subspec, to the

value specified by vecspec. The form of vecspec is the same as for function setvector.

5.8.1.5 copyvectorvar { varname1 varname2 }
Does the same as copymatrixvar, but for vector variables.

5.8.1.6 movevectorvar { varname1 varname2 }
Does the same as movematrixvar, but for vector variables.

24

INVERSE 3.11

5.8: User-defined Variables / Vector Variables

5.8.1.7 deletevectorvar { varname }
Does the same as deletematrixvar, but for vector variables.

5.8.1.8 printvectorvar { varname }
Does the same as printmatrixvar, but for vector variables.

5.8.1.9 fprintvectorvar { varname }
Does the same as frintmatrixvar, but for vector variables.

5.8.1.10 dprintvectorvar { varname }
Does the same as drintmatrixvar, but for vector variables.

5.8.1.11 copyvector { subspec1 subspec2 }
Does the same as copymatrix, but for vector variables.

5.8.1.12 movevector { subspec1 subspec2 }
Does the same as movematrix, but for vector variables.

5.8.1.13 deletevector { subspec }
Does the same as deletematrix, but for vector variables.

5.8.1.14 printvector { subspec }
Does the same as printmatrix, but for vector variables.

5.8.1.15 fprintvector { subspec }
Does the same as fprintmatrix, but for vector variables.

5.8.1.16 dprintvector { subspec }
Does the same as dprintmatrix, but for vector variables.

5.8.1.17 setvectorcomponents { subspec expr }, shortly setveccomp
This function is similar to its matrix equivalent setmatcomp. It sets the components

of all vectors contained in the element sub-table specified by subspec, to the value of the
expression expr. The expression expr is evaluated by the expression evaluator for each
component separately. The function iterates over all vectors of the sub-table specified by
subspec and over all components of these vectors and assigns them values specified by
expr.

Two special expression evaluator’s functions, varindex and varcomponent are
designed for use with functions like setveccomp. When the expressions expr is being
evaluated for a specific component of a specific vector element, the varindex function
returns a specific index of the vector element that is affected. The varcomponent
function returns the number of the component which is currently in the evaluation

25

INVERSE 3.11

5.8: User-defined Variables / Vector Variables

procedure. It must be called with argument 1, although vector objects have only one
dimension anyway (because of compatibility reasons).

Setting vector components by the setveccomp function is much quicker than doing
it by programming loops which iterate over vectors of a variable's sub-table and over
their components. This is because we avoid iterative calls to interpreter’s functions.
Instead, only one interpreter’s function is called to do the job, the iteration loops are
implemented in advance in this function and only the expression exp is evaluated again
and again. The evaluation of this expression is very quick because it is parsed and
interpreted outside the iteration loops.

Example:
Let us have a vector variable v which contains 6*3*4 vectors of dimension 10. Let

us assign values to all components of the sub-table v[3] in such a way that component
values will equal 10 times the first index of the sub-table element plus the second index
of the subtable element plus 0.1 times the component number. This is done by the
command

setveccomp { v[3] 10 * varindex[2] + varindex[3] + 0.1 * varcomponent[1] }

5.8.1.18 setveccompcond { subspec (cond) expr }
Does the same as setveccomp, except that only those components of the vector

elements specified by subspec are set for which the condition cond is satisfied. cond is a
mathematical expression that can also include calls to the expression evaluator's functions
varindex and varcomponent.

5.8.1.19 vectorsum { subspec1 subspec2 subspecres }
Does the same as matrixsum, but for vector variables. The aim of this function is

mostly to demonstrate how binary operations on variable sub-tables work.

5.8.1.20 vectordif { subspec1 subspec2 subspecres }
Does the same as matrixdif, but for vector variables.

5.8.2 Expression Evaluator’s Functions for Manipulating Vector
Variables

5.8.2.1 getvector [varname compnum < elind1, elind2, ... >]
Returns a specific vector component. varname is the name of a vector variable.

elind1, elind2, etc., are the indices which specify the vector element on the variable’s
element table. compnum is the number of the component which is returned.

If the variable named varname is of rank 0, then no indices elind1, elind2, etc. do
not need to be specified.

26

INVERSE 3.11

5.9: User-defined Variables / Scalar Variables

If compnum is 0, then the function returns the dimension (number of components)
of the vector element.

5.8.2.2 getvectordim [varname dimnum]
The same as getmatrixdim, but for vector variables.

5.9 Scalar Variables

Scalar objects are simply decimal numbers.
Elements of scalar variables can be empty (uninitialised) which means that they

contain no data, the same as elements of vector or matrix variables..

5.9.1 File Interpreter’s Functions for Manipulating Scalar
Variables

5.9.1.1 newscalar { varname < [dim1, dim2, ...] > }
Does the same as newmatrix, but for scalar variables.

5.9.1.2 dimscalar { varname < [dim1, dim2, ...] > }
Does the same asdimmatrix, but for scalar variables.

5.9.1.3 setscalar { elspec scalspec }
Sets a scalar element specified by elspec to the value specified by scalspec. The

specification of a scalar element elspec consists of a variable name and an optional index
list in square brackets, e.g. s1[2,3]. The index list is not necessary if the rank of the scalar
variable is 0.
 elspec must address an existing scalar element, except if no indices are specified.
In this case a scalar variable of rank 0 is created before the scalar element is set.

scalspec specifies the value which is assigned to the scalar object. It can be given as
a number, as a mathematical expression that can be evaluated by the expression
evaluator, or as an expression evaluator’s variable. Expressions in place of numbers must
be of the form ${expr} where expr is a mathematical expression, and calculator's
variables in place of numbers must be of the form $varname, where varname is the
calculator's variable name.

27

INVERSE 3.11

5.9: User-defined Variables / Scalar Variables

5.9.1.4 initscalar { subspec scalspec }
Sets scalar elements contained in the element sub-table specified by subspec, to the

value specified by scalspec. The form of scalspec is the same as for function setscalar.

5.9.1.5 copyscalarvar { varname1 varname2 }
Does the same as copymatrixvar, but for scalar variables.

5.9.1.6 movescalarvar { varname1 varname2 }
Does the same as movematrixvar, but for scalar variables.

5.9.1.7 deletescalarvar { varname }
Does the same as deletematrixvar, but for scalar variables.

5.9.1.8 printscalarvar { varname }
Does the same as printmatrixvar, but for scalar variables.

5.9.1.9 fprintscalarvar { varname }
Does the same as printmatrixvar, but for scalar variables.

5.9.1.10 dprintscalarvar { varname }
Does the same as dprintmatrixvar, but for scalar variables.

5.9.1.11 copyscalar { subspec1 subspec2 }
Does the same as copymatrix, but for scalar variables.

5.9.1.12 movescalar { subspec1 subspec2 }
Does the same as movematrix, but for scalar variables.

5.9.1.13 deletescalar { subspec }
Does the same as deletematrix, but for scalar variables.

5.9.1.14 printscalar { subspec }
Does the same as printmatrix, but for scalar variables.

5.9.1.15 fprintscalar { subspec }
Does the same as fprintmatrix, but for scalar variables.

5.9.1.16 dprintscalar { subspec }
Does the same as dprintmatrix, but for scalar variables.

28

INVERSE 3.11

5.9: User-defined Variables / Scalar Variables

5.9.1.17 setscalarcomponents { subspec expr }, shortly setscalcomp
This function is similar to its matrix equivalent setmatcomp. It sets the values of

all scalars contained in the element sub-table specified by subspec, to the value of the
expression expr. The expression expr is evaluated by the expression evaluator for each
scalar separately.

A special expression evaluator’s function varindex is designed for use with
functions like setscalcomp. When the expressions expr is being evaluated for a specific
scalar element, the varindex function returns a specific index of the scalar element that is
affected.

It makes sense to use this function only with scalar variables with rank greater than
zero, especially if they contain a large number of scalars. It is differently with matrix and
vector variables where element themselves hold more components.

The varcomponent function can not be used with setscalcomp since scalars are
simple objects without components.

Warning:
The setscalcomp function assigns values only to those scalars which are initialised.

It has no effect if it is performed on a sub-table the elements of which are not initialised.
Note that functions which create scalar variables like newscalar or dimscalar usually do
not initialise the scalars on variable’s element table.

Example:
Let us have a scalar variable s which contains 2*3*4 scalars. Let us assign values to

all components of the sub-table s[2] in such a way that scalar values will equal 10 times
the first index of the sub-table element plus the second index of the sub-table element.
This is done by the command

setscalcomp { s[3] 10 * varindex[2] + varindex[3] }

5.9.1.18 setscalcompcond { subspec (cond) expr }
Does the same as setscalcomp, except that only those scalar elements specified by

subspec are set for which the condition cond is satisfied. cond is a mathematical
expression that can also include calls to expression evaluator's function varindex.

5.9.1.19 scalarsum { subspec1 subspec2 subspecres }
Does the same as matrixsum, but for scalar variables. The aim of this function is

mostly to demonstrate the use of binary operations performed on sub-table of variable’s
elements.

5.9.1.20 scalardif { subspec1 subspec2 subspecres }
Does the same as matrixdif, but for scalar variables.

29

INVERSE 3.11

5.10: User-defined Variables / Field Variables

5.9.2 Expression Evaluator’s Functions for Manipulating Scalar
Variables

5.9.2.1 getscalar [varname < elind1, elind2, ... >]
Returns the value of a specific scalar object. varname is the name of a scalar

variable. elind1, elind2, etc., are the indices which specify the scalar element on the
variable’s element table.

If the variable named varname is of rank 0, then no indices elind1, elind2, etc. do
not need to be specified.

5.9.2.2 getscalardim [varname dimnum]
The same as getmatrixdim, but for scalar variables.

5.10 Field Variables

5.10.1 File Interpreter’s Functions for Manipulating Field
Variables

5.10.1.1 newfield { varname < [dim1, dim2, ...] > }
Does the same as newmatrix, but for field variables.

5.10.1.2 dimfield { varname < [dim1, dim2, ...] > }
Does the same as dimmatrix, but for field variables.

5.10.1.3 setfield { elspec fieldspec }
Does the same as setmatrix, but for field variables.

5.10.1.4 initfield {subspec fieldspec }
Does the same as initmatrix, but for field variables.

5.10.1.5 copyfieldvar {varname1 varname2}
Does the same as copymatrixvar, but for field variables.

30

INVERSE 3.11

5.10: User-defined Variables / Field Variables

5.10.1.6 movefieldvar { varname1 varname2 }
Does the same as movematrixvar, but for field variables.

5.10.1.7 deletefieldvar { varname }
Does the same as deletematrixvar, but for field variables.

5.10.1.8 printfieldvar { varname }
Does the same as printmatrixvar, but for field variables.

5.10.1.9 fprintfieldvar { varname }
Does the same as fprintmatrixvar, but for field variables.

5.10.1.10 copyfield { subspec1 subspec2 }
Does the same as copymatrix, but for field variables.

5.10.1.11 movefield { subspec1 subspec2 }
Does the same as movematrix, but for field variables.

5.10.1.12 deletefield { subspec }
Does the same as deletematrix, but for field variables.

5.10.1.13 printfield { subspec }
Does the same as printmatrix, but for field variables.

5.10.1.14 fprintfield { subspec }
Does the same as fprintmatrix, but for field variables.

5.10.1.15 setfieldcomponents { subspec expr }
Does the same as setmatrixcomponents, but for field variables.

5.10.1.16 setfldcompcond { subspec (cond) expr }
Does the same as setmatcompcond, but for field variables.

5.10.2 Expression Evaluator's Functions for manipulating Field
Variables

5.10.2.1 getfield {varname <elind1, elind2,...> rownum colnum }
Does the same as getmatrix, but for field variables.

31

INVERSE 3.11

5.11: User-defined Variables / Counter Variables

5.10.2.2 getfielddim {varname dimnum }
Does the same as getmatrixdim, but for field variables.

5.11 Counter Variables

Counter objects are integer numbers.
Elements of counter variables can be empty (uninitialised) which means that they

contain no data, the same as elements of vector or matrix variables.

5.11.1 File Interpreter’s Functions for Manipulating Counter
Variables

5.11.1.1 newcounter { varname < [dim1, dim2, ...] > }
Does the same as newmatrix, but for counter variables.

5.11.1.2 dimcounter { varname < [dim1, dim2, ...] > }
Does the same asdimmatrix, but for counter variables.

5.11.1.3 setcounter { elspec countspec }
Sets a counter element specified by elspec to the value specified by countspec. The

specification of a counter element elspec consists of a variable name and an optional
index list in square brackets, e.g. cc[2,3]. The index list is not necessary if the rank of the
counter variable is 0.
 elspec must address an existing counter element, except if no indices are
specified. In this case a counter variable of rank 0 is created before the counter element is
set.

countspec specifies the value which is assigned to the counter object. It can be
given as a number, as a mathematical expression that can be evaluated by the expression
evaluator, or as an expression evaluator’s variable. Expressions in place of numbers must
be of the form ${expr} where expr is a mathematical expression, and calculator's
variables in place of numbers must be of the form $varname, where varname is the
calculator's variable name.

Warning:
 countspec can also result in a decimal. In this case, it is first rounded and then
assigned to the appropriate element of a counter variable.

32

INVERSE 3.11

5.11: User-defined Variables / Counter Variables

5.11.1.4 initcounter { subspec countspec }
Sets counter elements contained in the element sub-table specified by subspec, to

the value specified by countspec. The form of contspec is the same as for function
setcounter.

5.11.1.5 copycountervar { varname1 varname2 }
Does the same as copymatrixvar, but for counter variables.

5.11.1.6 movecountervar { varname1 varname2 }
Does the same as movematrixvar, but for counter variables.

5.11.1.7 deletecountervar { varname }
Does the same as deletematrixvar, but for counter variables.

5.11.1.8 printcountervar { varname }
Does the same as printmatrixvar, but for counter variables.

5.11.1.9 fprintcountervar { varname }
Does the same as fprintmatrixvar, but for counter variables.

5.11.1.10 dprintcountervar { varname }
Does the same as dprintmatrixvar, but for counter variables.

5.11.1.11 copycounter { subspec1 subspec2 }
Does the same as copymatrix, but for counter variables.

5.11.1.12 movecounter { subspec1 subspec2 }
Does the same as movematrix, but for counter variables.

5.11.1.13 deletecounter { subspec }
Does the same as deletematrix, but for counter variables.

5.11.1.14 printcounter { subspec }
Does the same as printmatrix, but for counter variables.

5.11.1.15 fprintcounter { subspec }
Does the same as fprintmatrix, but for counter variables.

5.11.1.16 dprintcounter { subspec }
Does the same as dprintmatrix, but for counter variables.

33

INVERSE 3.11

5.11: User-defined Variables / Counter Variables

5.11.1.17 setcountercomponents { subspec expr }, shortly
setcountcomp

This function is similar to its matrix equivalent setscalcomp. It sets the values of all
counters contained in the element sub-table specified by subspec, to the value of the
expression expr. The expression expr is evaluated by the expression evaluator for each
counter separately.

A special expression evaluator’s function varindex is designed for use with
functions like setcountcomp. When the expressions expr is being evaluated for a specific
counter element, the varindex function returns a specific index of the counter element
that is affected.

It makes sense to use this function only with counter variables with rank greater
than zero, especially if they contain a large number of counters. It is differently with
matrix and vector variables where element themselves hold more components.

The varcomponent function can not be used with setcountcomp since counters are
simple objects without components.

Warning:
The setcountcomp function assigns values only to those counters which are

initialised. It has no effect if it is performed on a sub-table the elements of which are not
initialised. Note that functions which create counter variables like newcounter or
dimcounter usually do not initialise the counters on variable’s element table.

Example:
Let us have a counter variable c which contains 2*3*4 counters. Let us assign

values to all components of the sub-table c[2] in such a way that counter values will
equal 10 times the first index of the sub-table element plus the second index of the sub-
table element. This is done by the command

setcountcomp { c[3] 10 * varindex[2] + varindex[3] }

5.11.1.18 setcountcompcond { subspec (cond) expr }
Does the same as setcountcomp, except that only those counter elements specified

by subspec are set for which the condition cond is satisfied. cond is a mathematical
expression that can also include calls to expression evaluator's function varindex.

5.11.1.19 countersum { subspec1 subspec2 subspecres }
Does the same as matrixsum, but for counter variables. The aim of this function is

mostly to demonstrate the use of binary operations performed on sub-table of variable’s
elements.

34

INVERSE 3.11

5.12: User-defined Variables / Options

5.11.2 Expression Evaluator’s Functions for Manipulating Counter
Variables

5.11.2.1 getcounter [varname < elind1, elind2, ... >]
Returns the value of a specific counter object. varname is the name of a counter

variable. elind1, elind2, etc., are the indices which specify the counter element on the
variable’s element table.

If the variable named varname is of rank 0, then no indices elind1, elind2, etc. do
not need to be specified.

5.11.2.2 getcounterdim [varname dimnum]
The same as getmatrixdim, but for counter variables.

5.12 Options

Options are object that can have two values:0 or 1. We also say that they are unset
(value 0) or set (value 1). Usually they are used to control behaviour of various functions
of the shell.

No special type of variables is prepared for carrying options. Rather than that,
options are hold by counter variables. An option hold in a counter variable is considered
to be 0 if the appropriate counter is 0, and 1 if the appropriate counter is different than
zero.

If a counter that represents a specific option does not exist or is not initialised, the
appropriate option is considered to be 0.

Actually, the file interpreter’s and expression evaluator’s functions for
manipulating counter variables could be used for handling options. Nevertheless, there
are a few functions that are created especially for setting options and checking their
status. The main reason for that is maintaining greater clarity of the code in the command
file.

5.12.1 File Interpreter’s Functions for Handling Options

5.12.1.1 setoption { optspec }
Sets the option specified by optspec. optspec is the specification of the counter

element that represents the option. The appropriate counter element is set to 1.

35

INVERSE 3.11

5.13: User-defined Variables / Options

5.12.1.2 clearoption { optspec }
Clears the option specified by optspec. optspec is the specification of the counter

element that represents the option. The appropriate counter element is set to 0 if it exists,
otherwise nothing happens.

5.12.2 Expression Evaluator’s Functions for Handling Options

5.12.2.1 getoption [varname < elind1, elind2, ... >]
Returns 1 if the specified option is set and 0 if it is not set. varname is the name of a

counter variable. elind1, elind2, etc., are the indices which specify the counter element
that holds the option, on the variable’s element table. If the counter variable named
varname is of rank 0, then no indices elind1, elind2, etc. do not need to be specified.
 A specific option is considered to be set, if the appropriate counter element exists,
is initialised and is different than zero. Otherwise, this option is considered to be unset.

5.13 Options

5.13.1.1 setoption { optspec }
Sets the option specified by optspec. optspec is the specification of the counter

element that represents the option. The appropriate counter element is set to 1.

5.13.1.2 clearoption { optspec }
Clears the option specified by optspec. optspec is the specification of the counter

element that represents the option. The appropriate counter element is set to 0 if it exists,
otherwise nothing happens.

5.14 String Variables

String objects are character sequences of arbitrary length. They can not contain
null characters, i.e. characters with ASCII code 0.

36

INVERSE 3.11

5.14: User-defined Variables / String Variables

Elements of string variables can be empty (uninitialised) which means that they
contain no data, the same as elements of vector or matrix variables.

setstrcomp { s[3] 10 * varindex[2] + varindex[3] }

5.14.1 File Interpreter Functions for Manipulating String Variables

5.14.1.1 newstring { varname < [dim1, dim2, ...] > }
Does the same as newmatrix, but for string variables.

5.14.1.2 dimstring { varname < [dim1, dim2, ...] > }
Does the same asdimmatrix, but for string variables.

5.14.1.3 setstring { elspec strspec }
Sets a string element specified by elspec to the value specified by strspec. The

specification of a string element elspec consists of a variable name and an optional index
list in square brackets, e.g. s1[2,3]. The index list is not necessary if the rank of the string
variable is 0.

elspec must address an existing string element, except if no indices are specified. In
this case a string variable of rank 0 is created before the string element is set.

strspec specifies the value (string), which is assigned to the string object. It can be
specified directly or as reference to an existent string object. When specified directly, it
can contain special character sequences and must be stated inside double quotes if it
contains blank characters. When specified as reference to an existing string object, a copy
of that object is created and assigned to the element specified by elspec. In this case,
strspec consists of the hash character (#) followed by specification of the referenced
string element.

Examples:
setstring { s[3 2] xyz }
setstring { s1[] “This is my home.\n” }
setstring { s2 #s[3 2] }

5.14.1.4 initstring { subspec strspec }
Sets string elements contained in the element sub-table specified by subspec, to the

value specified by strspec. The form of strspec is the same as for function setstring.

5.14.1.5 copystringvar { varname1 varname2 }
Does the same as copymatrixvar, but for string variables.

37

INVERSE 3.11

5.14: User-defined Variables / String Variables

5.14.1.6 movestringvar { varname1 varname2 }
Does the same as movematrixvar, but for string variables.

5.14.1.7 deletestringvar { varname }
Does the same as deletematrixvar, but for string variables.

5.14.1.8 printstringvar { varname }
Does the same as printmatrixvar, but for string variables.

5.14.1.9 fprintstringvar { varname }
Does the same as printmatrixvar, but for string variables.

5.14.1.10 dprintstringvar { varname }
Does the same as drintmatrixvar, but for string variables.

5.14.1.11 copystring { subspec1 subspec2 }
Does the same as copymatrix, but for string variables.

5.14.1.12 movestring { subspec1 subspec2 }
Does the same as movematrix, but for string variables.

5.14.1.13 deletestring { subspec }
Does the same as deletematrix, but for string variables.

5.14.1.14 printstring { subspec }
Does the same as printmatrix, but for string variables.

5.14.1.15 fprintstring { subspec }
Does the same as fprintmatrix, but for string variables.

5.14.1.16 dprintstring { subspec }
Does the same as dprintmatrix, but for string variables.

5.14.1.17 printstring0 { elspec }
Prints the value of the string element specified by elspec to programme standard

output. Only bare string is printed without any accompanying comment, spaces or double
quotes.

5.14.1.18 fprintstring0 { elspec }
Does the same as printstring0, except that it writes to the programme output file

instead of standard output.

38

INVERSE 3.11

5.14: User-defined Variables / String Variables

5.14.1.19 fileprintstring0 { filespec elspec }
Does the same as printstring0, except that it writes to the file specified by filespec

instead of standard output.

5.14.1.20 setstringcomponents { subspec expr }, shortly setstrcomp
This function is similar to its matrix equivalent setmatcomp. It sets individual

characters of all strings contained in the element sub-table specified by subspec, to the
value of the expression expr. The expression expr is evaluated by the expression
evaluator for each component separately. The function iterates over all strings of the sub-
table specified by subspec and over all characters of these strings and assigns them values
specified by expr. These values must be integers between 1 and 255. They represent
ASCII codes of the assigned characters.

Two special expression evaluator’s functions, varindex and varcomponent are
designed for use with functions like setstrcomp. When the expressions expr is being
evaluated for a specific component of a specific string element, the varindex function
returns a specific index of the string element that is affected. The varcomponent function
returns the sequential number of the character which is currently in the evaluation
procedure. It must be called with argument 1, although string objects have only one
dimension anyway (because of compatibility reasons).

Example:
Let us create a string variable s which contains the string of the first four characters

of the alphabet, i.e. “abcd”. Then let us change this string so that it will contain the next
four characters of the alphabet. This is done by the following sequence of commands:

setstring {s abcd }
= { last: getstring["s",getstring["s",0]] }
setstrcomp {s last+varcomponent[1] }

In the first line we create a string object s and initialize it to “abcd”. In the second line
ASCII code of the last character of the string is obtained and assigned to calculator
variable last. Then characters of the string are set to new values so that the first character
has ASCII code last+1 and the consequent characters have ASCII codes incremented by
one. String object s so becomes “efg”.

5.14.1.21 setstrcompcond { subspec (cond) expr }
Does the same as setstrcomp, except that only those string characters (places)

specified by subspec are set for which the condition cond is satisfied. cond is a
mathematical expression that can also include calls to expression evaluator's functions
varindex and varcomponent.

5.14.1.22 stringcat { subspec1 subspec2 subspec3 }
Concatenates strings specified by subspec1 and subspec2, and stores resulting

strings to elements specified by subspec3. This means that strings specified by subspec2
are appended to strings specified by subpspec1. supspec1, subspec2 and subspec3 are
specifications of subtables of elements of string variables. Operation of concatenation is
performed on correspondent tripples of elements. Element sub-table specified by

39

INVERSE 3.11

5.14: User-defined Variables / String Variables

subspec3 can be equivalent to the sub-table specified by subspec1 or/and sub-table
specified by subspec2.

5.14.1.23 copystringpart { subspec1 subspec2 from to }
Copies parts of strings specified by subspec1 to string elements specified by

subspec2. from and to specify the first and the last character that is copied. If from is 0,
strings are copied from the first character, and if to is zero, strings are copied to the last
character. subspec1 and subspec2 specify sub-tables of string elements on which
operation is performed. They can specify identical sub-tables, in this case original strings
are replaced by copies of their parts.

5.14.1.24 stringwrite { elspec arg1 arg2 arg3 … }
Prints on the string specified by elspec in the same way as function write prints to

the programme standard output. arg1, arg2, etc. specify what is printed on the string.
Their meaning is the same as the meaning of arguments of function write.

If elspec contains any indices, then the string element specified by elspec must exist
before function execution. If elspec does not contain any indices, this is not necessary. If
the specified element does not exist, a zero-rank string variable of the appropriate name is
created first. Its only string element is then initialised to the contents printed according to
arguments arg1, arg2, etc.

Execution of stringwrite owerwrites contents of the string specified by elspec if it
has been initialised before.

Example:
Let us execute the following code:
newstring { errorstr[3] }
= { j : 1 }
while { (j<=3)
[
 stringwrite { errorstr[$j] “Error” ${1+0.1*j} “ detected.” }
 = { j:j+1 }
]}
errorstr[3] }

After execution of this code, elements of string vatiable errorstr have the following
values:

errorstr[1]: “Error 1.1 detected.”
errorstr[2]: “Error 1.2 detected.”
errorstr[3]: “Error 1.3 detected.”

5.14.1.25 stringappend { elspec arg1 arg2 arg3 … }
Similar to stringwrite, except that the string specified by elspec is not just

overwritten. What is printed according to arguments arg1, arg2 etc., is appended at the

40

INVERSE 3.11

5.14: User-defined Variables / String Variables

end of the string if it already exists. If the string element specified by elspec does not
exist or is not initialised, this function acts exactly in the same manner as stringwrite.

Examples:

Let us execute the following commands:
newstring { s[2 3] }
setstring { s[2 1] “/home/inverse/ex/opt/” }
= { i: 2 }
stringappend { s[2 1] “inv” ${i+1} “.cm” }

After execution of this code, string s[2 1] will have value
“/home/inverse/ex/opt/inv3.cm”.

If we execute command
stringappend {str1 “test” ${2+3} “.cm” }

and string variable str1 has not existed before, a new string variable of rank 0 str1 is first
created and its only element is set to “test5.cm”.

5.14.1.26 numtostring { elspec num < numdigits > <avoidexp> }
Converts number num to its string representation and assigns this string to the string

element specified by elspec. If the string specified by elspec is already initialised, it is
overwritten. An optional argument numdigits specifies the number of digits that are
printed to the string (0 means default), and optional argument avoidexp specifies whether
exponential notation should be avoided (see the note below).

The string element specified by elspec must exist before function execution if
elspec contains any indices. If it does not, a zero-rank variable of the appropriate name is
created first if it does not yet exist.

Note:
By default, this function avoids writing numbers in exponential notation (such as

“1.3e-5”, this number would be represented as “0.000013”). This is useful e.g. for
preparing string representations that can be correctly interpreted by programs that do not
understand the E notation, such as “Mathematica”, however it may lead to inaccurate
representation of small numbers (since the numdigits refers in this case to number of
written digits after the decimal point, not number of written digits after the first non-zero
digit as with exponential notation).

5.14.1.27 appendnumtostring { elspec num < numdigits > <avoidexp>
}

Similar to numtostring, except that the string specified by elspec is not just
overwritten. String representation of num is appended at the end of the string if it already
exists. If the string element specified by elspec does not exist or is not initialised, this
function acts exactly in the same manner as numtostring.

41

INVERSE 3.11

5.15: User-defined Variables / File Variables

See also description of numtostring and the note included in this description.

Example:
Let us execute the following code:
setstring { info[] “Pi: “ }
appendnumtostring { info[] ${2*arcsin[1]} 3 }

After execution of this code, string info[] will have value “Pi: 3.14”.

5.14.1.28 stringtonum { elspec varname }
Converts string specifiet by elspec to a number and assigns it to the expression

evaluator variable named varname. It is not necessary that the variable named varname
already exists. The string specified by elspec must exist and contain a valid string
representation of a number.

5.14.2 Expression Evaluator Functions for Manipulating String
Variables

5.14.2.1 getstring [varname which < elind1, elind2, ... >]
Returns required information for a specific string object. varname is the name of a

string variable. elind1, elind2, etc., are the indices which specify the string element on the
variable’s element table. which specifies which information should be returned. If which
is 0, string length is returned. If it is greater than zero, an ASCII code of the character
specified by which is returned.

If the variable named varname is of rank 0, then no indices elind1, elind2, etc. need
to be specified.

5.14.2.2 getstringdim [varname dimnum]
The same as getmatrixdim, but for string variables.

5.15 File Variables

File objects are used in the shell to establish the connection with files on the disk.
File objects hold basic information about files, i.e. the file pointer, the file name, the
current position, and the mode in which the file is open. Each file object can be connected

42

INVERSE 3.11

5.15: User-defined Variables / File Variables

with a physical file or not. Various shell’s functions that deal with files shell access files
through file objects.

Elements of file variables can be empty (uninitialised) which means that they
contain no data and that they are not connected with any files.

5.15.1 File Interpreter’s Functions for Manipulating File Variables

5.15.1.1 newfile { varname < [dim1, dim2, ...] > }
Does the same as newmatrix, but for file variables.

5.15.1.2 dimfile { varname < [dim1, dim2, ...] > }
Does the same as dimmatrix, but for file variables.

5.15.1.3 setfile { elspec filespec }
Sets a file element specified by elspec to the value specified by filespec. The

specification of a file element elspec consists of a variable name and an optional index
list in square brackets, e.g. f1[2,3]. The index list is not necessary if the rank of the file
variable is 0.
 elspec must address an existing file element, except if no indices are specified. In
this case a file variable of rank 0 is created before the file element is set.

filespec specifies the value of the file object. It consists of the file name (i.e. the
name of the physical file) and optional mode in which the file is open:

filespec = filename < openmode >
openmode ia a string which defines how the file must be open. It consists of one or two
letters, with the following possibilities: r, w, a, r+, w+, a+ (Table 1).

Table 2: Meaning of different opening modes for files.

mode meaning
r Opens the file for reading. The file must have existed before if we

want to open it in this mode. The file position is set to the beginning
of the file (i.e. 1).

w Opens the file for writing. If the file already exists, it is overwritten.
If it does not exist, it is created anew.

a Opens the file for appending. This option is similar to w, except that
the old content of the file is not overwritten if it has existed before.
The file position is set to the end of the file.

r+ The same as r, except that writing to the file is also possible.
w+ The same as w, except that reading from the file is also possible.
a+ The same as a, except that reading from the file is also possible.

43

INVERSE 3.11

5.15: User-defined Variables / File Variables

The setfile function opens the file in the mode specified. When the file is not used
any more, it should be removed by the deletefile function, which also closes the physical
file connected to the file object.

If the setfile function is called with the elspec argument that specifies an existent
and open file, then the result is unpredictable. Usually the file connected to that object is
closed and re-open. An error message should also be launched.

Warning:
Files must be handled with care. Take into account the fact that only a limited

number of files may be open simultaneously on a system, and especially the number of
files that can be open simultaneously by a single program is quite limited. Therefore, if
you need to deal with many files when solving some problem (e.g. when it is necessary to
store different kinds of intermediate results into different files), take care that only a
limited number of these files are actually open at a time. Close the file immediately when
you don’t need to access it any more. If there are iterative steps at which you need to
write something to several files or read something from them, you might consider at
every such step opening the first file, performing any necessary input/output operations
on it, closing this file, and then proceed with the second, third and other files. On the
other hand, successive I/O operations are slower if the file is closed and open between,
therefore the described approach may not be the best one when successive input and
output operations are frequent and there are only a few files involved.

5.15.1.4 copyfilevar { varname1 varname2 }
Does the same as copymatrixvar, but for file variables.

5.15.1.5 movefilevar { varname1 varname2 }
Does the same as movematrixvar, but for file variables.

5.15.1.6 deletefilevar { varname }
Does the same as deletematrixvar, but for file variables. The files that are deleted

are closed first.

5.15.1.7 printfilevar { varname }
Does the same as printmatrixvar, but for file variables. The name of the physical

file, the current position in the physical file and the opening mode of the file are printed
for each file element.

5.15.1.8 fprintfilevar { varname }
Does the same as printmatrixvar, but for file variables. The name of the physical

file, the current position in the physical file and the opening mode of the file are printed
for each file element.

44

INVERSE 3.11

5.15: User-defined Variables / File Variables

5.15.1.9 dprintfilevar { varname }
Does the same as dprintmatrixvar, but for file variables. The name of the physical

file, the current position in the physical file and the opening mode of the file are printed
for each file element.

5.15.1.10 copyfile { subspec1 subspec2 }
Does the same as copymatrix, but for file variables.

5.15.1.11 movefile { subspec1 subspec2 }
Does the same as movematrix, but for file variables.

5.15.1.12 deletefile { subspec }
Does the same as deletematrix, but for file variables. The files that are deleted are

closed first.

5.15.1.13 closefile { subspec }
Closes any open files connected to elements of file variables specified by subspec.

The opening mode is deleted on the file elements. subspec can specify an element or sub-
table of elements of a file variable.

5.15.1.14 flushfile { subspec }
Flushes any open files connected to elements of file variables specified by subspec.

The content of any related file buffers is updated in files, which ensures that the contents
of write operations can not be lost if the program execution is broken for any reason.

5.15.1.15 printfile { subspec }
Does the same as printmatrix, but for file variables.

5.15.1.16 fprintfile { subspec }
Does the same as fprintmatrix, but for file variables.

5.15.1.17 dprintfile { subspec }
Does the same as dprintmatrix, but for file variables.

5.15.2 Expression Evaluator’s Functions for Manipulating File
Variables

5.15.2.1 getfile [varname dataid < elind1, elind2, ... >]
Returns specific data about a specific file object. varname is the name of a file

variable. elind1, elind2, etc., are the indices which specify the file element on the

45

INVERSE 3.11

5.16: User-defined Variables / Shell Variables with a Pre-defined Meaning

variable’s element table. If the variable named varname is of rank 0, then no indices
elind1, elind2, etc. need to be specified.

dataid specifies which data about the file object must be returned. According to the
value of dataid, the function returns the following:

dataid what is returned by getfile
0 1 if the file is open, 0 otherwise.
1 1 if the file is open for reading, 0 otherwise.
2 1 if the file is open for writing, 0 otherwise.
3 The current position of the file; positions start with 1 and mean

the positions in the file in bytes where the operations act.

5.15.2.2 getfiledim [varname dimnum]
The same as getmatrixdim, but for file variables.

5.16 Shell Variables with a Pre-defined Meaning

Some variables of the shell have a pre-defined meaning and are supposed to be
used for a particular purpose. They are basically still user-defined variables and behave in
many terms the same as other user-defined variables. They are distinguished in a sense
that they are used to accomplish specific tasks. Besides, some operations that act on
variables of specific types treat the pre-defined variables in a slightly different way,
usually with some additional automatism.

Each pre-defined variable serves for specific tasks. Some of them store results of
operations and algorithms without this should be specified by the user. These results are
automatically available for further use after the appropriate operations are finished. The
others serve for data exchange between different shell’s functions, e.g. between
optimisation algorithms and the function, which performs the direct analysis. Both kinds
of variables are supposed to carry the information with exactly defined meaning, e.g. the
current value of the objective function or the optimised values of parameters. Furtherly,
we can find yet another group of pre-defined variables. These simply serve as variables
on which certain operations act without the variable in use is explicitly specified. A
typical example is the shell’s output file (variable outfile) to which the output of the
function fwrite (and many others) is directed, although this is never explicitly specified.

 There is usually some additional automatism connected with the pre-defined
variables. For example, when a pre-defined file outfile is open by the setfile function, the
file is open for writing without this is explicitly specified in the argument block of the
setfile command. When a pre-defined vector or matrix variable is set by the setvector or

46

INVERSE 3.11

5.16: User-defined Variables / Shell Variables with a Pre-defined Meaning

setmatrix command, it is not necessary to specify the variable dimensions if the
dimensions are known from what was done in the shell before.
 To generalise the above statements, we can establish that there is usually some
information related with the pre-defined variables which has more general meaning. Such
information is for example the number of optimisation parameters. Dimensions of several
pre-defined vector, matrix and scalar variables are bound to the number of parameter.
Once the number of parameters is known to the shell, the appropriate dimensions of pre-
defined variables that are bound to this information are also known and they need not to
be specified in some functions which operate on variables.

Such general information as the number of parameters are stored in the shell in
special places separated from the system of user-defined variables. These information
either exist in advance (e.g. the information that the pre-defined file outfile should
normally be open for writing) or are set when some related actions are undertaken. For
example, the number of parameters is set when the appropriate dimension of any pre-
defined variable related to this information is set (e.g. the dimension of the vector
parammom or paramopt). The user can access (i.e. set and get) these information in two
ways: through the dependent information about variables and through the appropriate
expression evaluator’s and file interpreter’s functions.

5.16.1 Pre-defined Matrix, Vector and Scalar Variables

Matrix, vector and scalar pre-defined variables hold general information which is
directly related to optimisation or inverse problems, like the initial, current and optimal
values of parameters, experimental measurements and their errors, simulated
measurements, the objective function and the constraint functions and their derivatives
with respect to parameters, etc. It is obvious that groups of these variables are related
through their dimensions. For example, the vector of (current) parameters has the same
dimension as the gradient of the objective function.

General information related to these pre-defined variables are listed in Table 3.
These information are not stored in the user-defined variables, but in the internal shell’s
variables. They can be obtained and set through special expression evaluator's and file
interpreter's functions.

Table 3: general information related to some pre-defined matrix, vector, and scalar
variables:

information meaning
numparam The number of optimisation parameters
numconstraints The number of constraint functions
numobjectives The number of the objective functions (usually equals 1)
nummeas The number of measurements (applicable for inverse problems)

47

INVERSE 3.11

5.16: User-defined Variables / Shell Variables with a Pre-defined Meaning

Some automatism is built in the shell regarding the pre-defined matrix, vector and
scalar variable. This especially concerns the file interpreter’s functions that assign values
to variable elements or allocate variables. When a specific dimensions of any of these
pre-defined variables or their elements is set, the appropriate internal shell’s variable
related to that dimension changes accordingly.

The opposite is also valid: When we call functions that set the values of variable
elements, we do not need to specify dimensions that are determined by the shell’s internal
variables that have defined values.

Example:
Let’s say that we set the vector of initial guesses param0 with dimension 3:
 setvector {param0 3 { 2.43 5.34 6.444 }}
Since this pre-defined vector has by definition the dimension numparam, the shell’s
internal variable numparam is automatically set to 3. The same effect would have, for
example, the code
 setvector {paramopt 3 }
since the pre-defined vector paramopt has by definition the same dimension (numparam).
If we then set the vector of current parameter values parammom, we do not need to
specify its dimension, although the vector variable does not yet exist and will be created
anew. This is because the dimension of this vector, which is by definition numparam, is
already known since it was set implicitly when the dimension of the vector param0 or
paramopt was set. Therefore, we can set the vector parammom simply by specifying
components:
 setvector {parammom { 1.64 22.3 101.1 }}

5.16.1.1 Counter Pre-defined variables
Pre-defined counter variables calcobj, calcconstr, calcgradobj and calcgradconstr

are reserved for evaluation flags that are intended to specify whether a given type of
response should be evaluated during the analysis or not, and afterwards to carry return
information on whether the corresponding response has actually been evaluated. What
concerns the command file, these flags are typically checked and set within the analysis
block.

They are usually set by internal analysis functions according to what is expected
to be calculated during a given analysis. These flags an be checked within the analysis
block of interpreter code to determine which parts of evaluation code must be executed
and which can eventually be skipped. If some part of the response can not be calculated
then value of the corresponding flags should be set to 0. calcobj refers to evaluation of
the objective function, calcconstr to evaluation of constraint functions, calcgradobj to
evaluation of objective function gradient, and calcgradconstr to evaluation of constraint
function gradients.

pre-defined scalar variable characterisation of the variable

48

INVERSE 3.11

5.16: User-defined Variables / Shell Variables with a Pre-defined Meaning

calcobj [] Intended to specify within the analysis block whether
to calculate the objective function (not defined or
defined with non-zero value) and to carry return
information (after the analysis block is interpreted)
whether the objective function has been calculated or
not.

calcconstr [] Intended to specify whether to calculate constraint
functions or not and to carry the corresponding return
information.

calcgradobj [] Intended to specify whether to calculate objective
gradients or not and to carry the corresponding return
information.

Calcgradconstr [] Intended to specify whether to calculate constraint
gradients or not and to carry the corresponding return
information.

5.16.1.2 Scalar Pre-defined Variables

pre-defined scalar variable characterisation of the variable
objectivemom [] < [numobjectives] > Value(s) of the objective function(s) at the current

parameter values.
objectiveopt [] < [numobjectives] > Value(s) of the objective function(s) at the optimal

values of parameters.
objective0 [] < [numobjectives] > Value(s) of the objective function(s) at the initial

guess.
constraintmom [numconstraints] Values of the constraint functions at the current

values of parameters.
constraintopt [numconstraints] Values of the constraint functions at the optimal

values of parameters.
constraint0 [numconstraints] Values of the constraint functions at the initial guess.

5.16.1.3 Vector Pre-defined Variables

pre-defined vector variable characterisation of the variable
parammom [] (numparam) Current values of parameters.
paramopt [] (numparam) Optimal values of parameters.
param0 [] (numparam) Initial guess for parameters.
parammomold [] (numparam) A copy of current parameter values (usually made

when the current parameters are transformed).
transf [] (numparam) Vector of transformed parameters.
direction [] (numparam) Direction of a line search.
startpoint [] (numparam) Initial point of the line search.
meas [] (nummeas) Experimental measurements (used at inverse

analyses)
sigma [] (nummeas) Vector of measurement errors.
measexact [] (nummeas) Exact measurements; Imaginary quantity that is used

e.g. at monte carlo simulations with aim to estimate

49

INVERSE 3.11

5.16: User-defined Variables / Shell Variables with a Pre-defined Meaning

the influence of the measurement errors on the
results.

measmom [] (nummeas) Current values of simulated measurements.
measopt [] (nummeas) Simulated measurements in the optimum (i.e.

solution of the inverse problem).
meas0 [] (nummeas) Simulated measurements at the starting guess (i.i.

param0).
gradobjectivemom [] <[numobjectives]>
(numparam)

Gradient of the objective function(s) at the current
parameter values.

gradobjectiveopt [] <[numobjectives]>
(numparam)

Gradient of the objective function(s) at the optimum.

gradobjective0 [] <[numobjectives]>
(numparam)

Gradient of the objective function(s) at the initial
guess.

gradconstraintmom [numconstraints]
(numparm)

Gradients of the constraint functions at the current
parameter values.

gradconstraintopt [numconstraints]
(numparam)

Gradients of the constraint functions at the optimal
values of parameters.

gradconstraint0 [numconstraints]
(numparam)

Gradients of the constraint functions at the initial
guess.

gradmeasmom [nummeas] (numparam) Gradients of the simulated measurements at the
current values of parameters.

gradmeasopt [nummeas] (numparam) Gradients of the simulated measurements at the
optimum.

gradmeas0 [nummeas] (numparam) Gradients of the simulated measurements at the initial
guess.

5.16.1.4 Matrix Pre-defined Variables

pre-defined matrix variable characterisation of the variable
der2objectivemom [] < [numobjectives] >
(numparam,numparam)

Second derivatives (Hessian) of the objective
function(s) at the current values of parameters.

der2objectiveopt[] < [numobjectives] >
(numparam,numparam)

Second derivatives (Hessian) of the objective
function(s) at the optimal values of parameters.

der2objective0[] < [numobjectives] >
(numparam,numparam)

Second derivatives (Hessian) of the objective
function(s) at the initial guess.

der2constraintmom [numconstraints]
(numparam,numparam)

Second derivatives (Hessian) of the constraint
functions at the current values of parameters.

der2constraintopt [numconstraints]
(numparam,numparam)

Second derivatives (Hessian) of the constraint
functions at the optimal values of parameters.

der2constraint0 [numconstraints]
(numparam,numparam)

Second derivatives (Hessian) of the constraint
functions at the initial guess.

der2measmom [nummeas]
(numparam,numparam)

Second derivatives (Hessian) of the simulated
measurements at the current values of parameters.

der2measopt [nummeas]
(numparam,numparam)

Second derivatives (Hessian) of the simulated
measurements at the optimal values of parameters.

der2meas0 [nummeas]
(numparam,numparam)

Second derivatives (Hessian) of the simulated
measurements at the initial guess.

50

INVERSE 3.11

5.16: User-defined Variables / Shell Variables with a Pre-defined Meaning

5.16.2 File Interpreter’s Functions for Setting Shell’s Internal Data
Related to Pre-defined Variables

5.16.2.1 setnumparam { val }
Sets the number of parameters numparam to val. Val is a numerical argument,

which means that it can be given as a number, as a mathematical expression in the form
${expr} or as an expression evaluator’s variable in the form $varname. If a non-integer
value is given for val, it is rounded.

5.16.2.2 setnumobjectives { val }
Sets the number of objective functions numobjective to val. By default, this number

is set to 1. Val is a numerical argument, which means that it can be given as a number, as
a mathematical expression in the form ${expr} or as an expression evaluator’s variable in
the form $varname. If a non-integer value is given for val, it is rounded.

5.16.2.3 setnumconstraints { val }
Sets the number of constraint functions numconstraints to val. Val is a numerical

argument, which means that it can be given as a number, as a mathematical expression in
the form ${expr} or as an expression evaluator’s variable in the form $varname. If a non-
integer value is given for val, it is rounded.

5.16.2.4 setnummeas { val }
Sets the number of measurements nummeas to val. Val is a numerical argument,

which means that it can be given as a number, as a mathematical expression in the form
${expr} or as an expression evaluator’s variable in the form $varname. If a non-integer
value is given for val, it is rounded.

5.16.3 Expression Evaluator’s Functions for Accessing Shell’s
Internal Data Related to Pre-defined Variables

5.16.3.1 getnumparam []
Returns the number of parameters numparam.

5.16.3.2 getnumobjectives []
Returns the number of objective functions numobjectives.

51

INVERSE 3.11

5.16: User-defined Variables / Shell Variables with a Pre-defined Meaning

5.16.3.3 getnumconstraints []
Returns the number of constraint functions numconstraints.

5.16.3.4 getnummeas []
Returns the number of measurements nummeas.

5.16.4 Pre-defined File Variables

The pre-defined file variables represent files which have a specific meaning in the
shell, e.g. the shell’s output file or the input and output file of the direct analysis. Some
operations act exclusively in these pre-defined files. For example, the fwrite function
prints its output to a pre-defined file outfile.
 The pre-defined file variables should have rank 0, although this is not always
necessary. However, in all cases only the first element of the file variable’s element table
can be involved in operations that act on pre-defined files. The user should avoid defining
pre-defined variables with rank greater than zero.

5.16.4.1 File Pre-defined Variables
pre-defined file variable characterisation of the variable
infile [] Shell-s input file.
outfile [] Shell-s output file.
aninfile [] The simulation (direct analysis) input file.
anoutfile [] The simulation (direct analysis) output file.

52

