

Interfaces Between the
Optimisation Shell INVERSE and

Simulation Programmes

(FOR VERSION 3.11)

Igor Grešovnik

Ljubljana, 27 September, 2005

INVERSE 3.11

Table fo contents12.1: Shell-Simulation Interfaces /

Contents:

12. Shell-Simulation Interfaces... 2
12.1 Elfen Interface .. 2

12.1.1 The expression evaluator's functions that return Elfen's result data from the output file... 1
12.1.2 The file interpreter’s functions for exchanging data with Elfen’s input and output files... 3

12. SHELL-SIMULATION INTERFACES

12.1 Elfen Interface

 Elfen is a general purpose finite element programme for solution of thermo-
mechanical problems in solid mechanics. It is capable of solving nonlinear problems
involving large strains and deformations, different material models, thermo-mechanical
coupling and contact phenomena. It is therefore convenient for simulation of a large
range of forming processes or product behavior in operating conditions.

At the current stage, a file interface between the shell Inverse and Elfen is
available. The interfacing utilities include reading individual results or result fields from
Elfen's output files, and replacing fields in the Elfen's input files. It is usually much more
comfortable to use these interfacing utilities than to use the general file interface.

A set of expression evaluator's functions that read individual results from the

analysis output file is available. These functions can be used in mathematical expressions
evaluated by the expression evaluator. This way, the analysis results can be grabbed and
used at in the evaluation of the objective and constraint functions and their derivatives.

2

INVERSE 3.11

Elfen Interface12.1: Shell-Simulation Interfaces /

An example is the expression evaluator's function noddisp that returns a specific
component of specific nodal displacement after a specific increment.

Before the appropriate expression evaluator's functions are used, the analysis
result file must be connected with the pre-defined file variable anoutfile and the
initoutput command must be executed.

There is a set of file interpreter's functions that read whole fields from analysis

result files and store them in field variables. These functions can be used when a lot of
individual field components are involved in calculation of the functions derived from
analysis result. Reading whole fields into field variables and then operating with
components of these variables can in such cases be quicker than using expression
evaluator's functions that return individual components of the result fields. Sometimes
whole result fields are used as an input for another analysis. For example, at shape
optimisation the parametrised mesh, which depends on optimisation (shape) parameters,
is often obtained by elastic deformation of a reference mesh. The initial mesh at specific
parameters is obtained by adding displacements from the elastic analysis to the reference
mesh.

12.1.1 The expression evaluator's functions that return Elfen's
result data from the output file

12.1.1.1 anerror []

 Returns 1 if error at analysis occurred according to what is written in the analysis
output file. Otherwise it returns 0.

12.1.1.2 ansuccess []

 Returns 1 if analysis has successfully completed according to what is written in
the analysis output file. Otherwise it returns 0.

12.1.1.3 nodcoord [node,coord]

Returns the coordinate coord of the initial position of the node node.

12.1.1.4 nodtemp [inc,nod,1]

Returns the temperature of the node node nod after the increment inc. The third
argument must be specified, even if it does not have any meaning. It is usually set to 1.

1

INVERSE 3.11

Elfen Interface12.1: Shell-Simulation Interfaces /

12.1.1.5 noddisp [inc,nod,comp]

Returns the component comp of the nodal displacement of the node nod after the
increment inc.

12.1.1.6 locnoddisp [inc,nod,comp]

 Returns the component comp of the nodal displacement of the node nod after the
increment inc in the local coordinate system.

12.1.1.7 nodreac [inc,nod,comp]

 Returns the component comp of the nodal reaction of the node nod after the
increment inc.

12.1.1.8 locnodreac [inc,nod,comp]

 Returns the component comp of the nodal reaction of the node nod after the
increment inc in the local coordinate system.

12.1.1.9 nodstrain [inc,nod,i,j]

Returns the i,j-th component of the nodal strain in the node nod after the increment
inc.

12.1.1.10 nodstress [inc,nod,i,j]

 Returns the i,j-th component of the nodal stress in the node nod after the
increment inc.

12.1.1.11 nodcontforc [inc,nod,comp]

Returns the component comp of the contact nodal force in the node nod after the
increment inc.

12.1.1.12 nodloccontforc [inc,nod,comp]

 Returns the component comp of the contact nodal force in the node nod after the
increment inc in the local coordinate system.

2

INVERSE 3.11

Elfen Interface12.1: Shell-Simulation Interfaces /

12.1.1.13 nodwear [inc,nod,comp]

Returns specific parameters of wear in the node nod after the increment inc. The
Stanislava Stupkiewicz's friction and wear model is used. comp specifies which data is to
be returned.

12.1.2 The file interpreter’s functions for exchanging data with
Elfen’s input and output files

12.1.2.1 freaddatfield { fieldspec fieldname searchpos <next>}

 Function searches the standard analysis input file (aninfile) for the first array with
name fieldname from position searchpos on. If array components are found they are
assigned to a programme’s field variable specified by fieldspec. Function is adapted to
reading arrays from Elfen control files of type *.dat. next is an optional argument. If it is
specified, the position of the first byte after the last array component is assigned to the
expression evaluator’s variable with the same name.

If aninfile is not defined, an error report is written to the standard output and to
the programme’s output file. If field variable fieldspec is not defined, a new field variable
with name fieldspec and rank 0 is created. This action is reported to the standard output
and to the programme’s output file. If creating is not successful an error report is written
to the standard output and to the programme’s output file. If field variable fieldspec exists
its contents is overwritten at function call. If an array with name fieldname is not found in
the aninfile an error report is written to the standard output and to the programme’s
output file. If the number of arguments is not equal 3 or 4 an error report is written to the
standard output and to the programme’s output file.

12.1.2.2 freadneufield { fieldspec fieldname searchpos <next>}

 Like freaddatfield, only that the function is adapted to reading Elfen control files
of type *.neu.

12.1.2.3 freadresfield { fieldspec fieldname searchpos <next>}

 Like freaddatfield, only that the function searches the standard analyse output
file (anoutfile) and is adapted to reading Elfen output files of type *.res.

12.1.2.4 filereaddatfield { filespec fieldspec fieldname searchpos <next>}

 Function searches an arbitrary file specified in filespec for the first array with
name fieldname from position searchpos on. If array components are found they are

3

INVERSE 3.11

Elfen Interface12.1: Shell-Simulation Interfaces /

assigned to a programme’s field variable specified by fieldspec. Function is adapted to
reading arrays from Elfen control files of type *.dat. next is an optional argument which
specifies the position of the first byte after the last array component. It is assigned to the
expression evaluator’s variable with the same name.

If input file filespec is not defined, an error report is written to the standard output
and to the programme’s output file. If field variable fieldspec is not defined, a new field
variable with name fieldspec and rank 0 is created. This action is reported to the standard
output and to the programme’s output file. If creating is not successful an error report is
written to the standard output and to the programme’s output file. If field variable
fieldspec exists its contents is overwritten at function call. If fieldname is not found an
error report is written to the standard output and to the programme’s output file. If
number of arguments is not equal 4 or 5 an error report is written to the standard output
and to the programme’s output file.

12.1.2.5 filereadneufield { filespec fieldspec fieldname searchpos <next>}

 Like filereaddatfield, only that the function is adapted to reading Elfen input files
of type *.neu.

12.1.2.6 filereadresfield { filespec fieldspec fieldname searchpos <next>}

 Like filereaddatfield, only that the function searches an arbitrary output file
(filespec) and is adapted to reading Elfen output files of type *.res.

12.1.2.7 freplacefield { fieldspec fieldname searchpos <start>}

Searches for the first array with name fieldname in a standard analysis input file
(aninfile) from position searchpos on and replaces its components by components stored
in field variable fieldspec. start is an optional argument. If it is specified, the position of
the beginning of an array of field components is assigned to the expression evaluator’s
variable with the same name.

Possible errors that can occur are:
◊ input file aninfile is not defined
◊ field variable fieldspec is not defined
◊ string fieldname is not found between the position searchpos and EOF
◊ number of arguments is not equal 3 or 4

In all of these cases an error report is written to the standard output and to the
programme’s output file.

12.1.2.8 filereplacefield { filespec fieldspec fieldname searchpos <start>}

Searches for the first field with name fieldname in an arbitrary input file filespec
from position searchpos on and replaces its components by components stored in field

4

INVERSE 3.11

Elfen Interface12.1: Shell-Simulation Interfaces /

variable fieldspec. start is an optional argument. If it is specified, the position of the
beginning of an array of field components is assigned to the expression evaluator’s
variable with the same name.

Possible errors that can occur are:
◊ input file filespec is not defined
◊ field variable fieldspec is not defined
◊ string fieldname is not found between position searchpos and EOF
◊ number of arguments is not equal 4 or 5

In all of these cases an error report is written to the standard output and to the
programme’s output file.

12.1.2.9 filegetgroupnodesvector { filespec vectorspec searchpos }

Searches for the first element group (IGROUP-Element_topology) in the input file
filespec (Elfen input file of type *.neu or new implicit) from position searchpos on and
stores its node numbers to the vector variable vectorspec. Error reports are written to
standard output and to the programme’s output file. Possible causes for errors are: input
file filespec is not defined or can’t be found, vector variable vectorspec can not be located
or created, searchpos is out of range, the number of arguments is not correct. Error
reports are written to the standard output and to the programme’s output file.

12.1.2.10 filegetsurfnodesvector { filespec vectorspec searchpos }

Searches for the first slideline definition (ISURF-Nodal_pointers_for_ segments)
in the input file filespec (Elfen control file of type *.neu or new implicit) from position
searchpos on and stores its node numbers to the vector variable vectorspec. Error reports
are written to standard output and to the programme’s output file. Possible causes for
errors are: input file filespec is not defined or can’t be found, vector variable vectorspec
can not be located or created, searchpos is out of range, the number of arguments is not
correct. Error reports are written to the standard output and to the programme’s output
file.

5

