

Inverse: Basic Information

Inverse is a general-purpose programme shell for solving optimization and additional definitions and data initialization. Analysis block defines the direct

inverse problems in conjunction with a simulation programme. Problems
solved by Inverse can usually be formulated as constraint minimization problems of
the form

()

()
() sconstraintequality

sconstraintinequality
objectiveonoptimizati

NMjg
Mig

f

j

i

−
−
−

+==
=≤

...,,1,0
...,,1,0

;min

x
x

xx

The simulation programme is used for evaluation of response of the system in
question. This is a part of evaluation of the objective (f) and constraint functions
(gi) and their derivatives, if needed. The shell performs optimization algorithms and
controls execution of the analysis programme.
 Problem definition: User defines the problem in the shell command file. Shell
interpreter interprets this file and executes its commands (functions) one by one.
Each interpreter function invokes its corresponding shell function (scheme on the
right). Shell functions are arranged in modules by their purpose. Modules provide a
variety of optimization tools and tools for solution of individual sub-problems that
can arise, e.g. optimization algorithms, interfacing utilities, basic matrix operations,
variable manipulation, etc.
 Syntax of interpreter commands is simple:
 command { arguments } command { arguments }...
Structure of argument blocks in curly brackets depends on the function. A special
sub-system, the expression evaluator (or calculator) evaluates mathematical
expressions, which can appear in argument blocks. A set of interpreter functions
enables flow control by implementing branches and loops. A system of user
defined variables of different types (vectors, matrices, files, etc.) enable data
storage and exchange.
Command file usually consists of three parts. Initialization part includes

analysis, i.e. evaluation of optimization and
derivatives at a specific set of parameters. Ac
that generate results. This includes running o
analyses and other tests like tabulation and num

Optimization shell

File interpreter Com

Analysis programme

Interpreter
functions

Built-in tools
and algorithms
Optimization
algorithms

Variable
manipulation

Iterfacing
utilities

 Analysis block is argument block of the a
definition of direct analysis and is executed (i.e
analysis is performed, typically on algorithm
function performs direct analyses and takes
algorithms and analysis definition. This is
variables with pre-defined meaning.

 Basic ModuFile Interpreter (1)
 By Igor Grešovnik,
March 2004.
Version 3.
 QQQUUUIIICCCKKK IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN TTTOOO

 OOOPPPTTTIIIMMMIIIZZZAAATTTIIIOOONNN SSSHHHEEELLLLLL “““IIINNNVVVEEERRRSSSEEE”””

constraint functions and their
tion part includes commands
f optimization algorithms, test
erical derivation tests.

mand file

Analysis block

Initialization part

Final part

nalysis command. It contains
. interpreted) every time direct
 request. A built-in analysis

care of data transfer between
 implemented through shell

les

 Optimization module includes optimization algorithms and other tools (e.g.
tabulating utilities, support for Monte Carlo simulations, etc.). It also
includes utilities for definition of direct analysis, including organization of
data transfer between analysis definition and optimization algorithms.
 File interpreter represents shell user interface.
 Expression evaluator (calculator) evaluates mathematical expressions,
which appear in argument blocks of file interpreter functions.
 Variable handling module includes basic operations on variables like
creation and deleting, copying, initialization, etc.
 Flow control module includes implementation of branches and loops, a
function definition utility, and some other flow control utilities.
 Syntax checker enables checking command file syntax before running it.
Some troublesome errors like parenthesis mismatches are easily discovered
by this tool. Arguments are also checked for some basic interpreter
commands (e.g. for flow control commands).
 Debugger allows step-by-step execution of commands, execution of
arbitrary portions of code, checking and changing values of variables in the
middle of execution, etc. This can be a valuable tool for error location and
dismiss.
 General file interface provides a set of functions for interfacing simulation
and other programmes.
 Interfacing modules provide tools for interfacing specific simulation
programmes, which includes execution control and data exchange functions.
An interface with a finite element programme Elfen has been implemented.
 Miscellaneous utilities module includes various auxiliary utilities, for
example utilities for interaction with the operating system. This module is
poor at the moment and will be extended in the future.
 File interpreter represents shell user interface. User defines the problem in
the command file, which is interpreted by the interpreter when the shell is
run. The command file name must be given as command-line argument at its
invocation, e.g.
 inverse test.cm
if inverse is programme name and test.cm is command file name.
 Syntax: File interpreter searches for commands (functions) and invokes
shell functions, which correspond to them. Each command is followed by
curly brackets, which contain its arguments. Commands and their arguments
can be separated by spaces, newlines, or tabs:
 command1{arg1 arg2 …} command2{arg1 arg2 … }
An important syntax rule is that all brackets must match (i.e. each bracket
must be closed within the first enclosing bracket) no matter where they occur
and what their function is. Function and variable names are case sensitive.

 FLOW CONTROL:
 If branch:
 if { (condition) [block1] else [block2]}
- code block block1 is interpreted (executed) if value of expression condition
is not zero. If it is zero and block2 is given, that block is is interpreted
(block2 is optional). Expression condition is evaluated in expression
evaluator.
 While loop:
 while { (condition) [block] }
- code block block is repetitively executed while termination condition
condition evaluates to a non-zero value. When condition becomes zero,
block is not executed any more.

 File Interpreter (2)

 Do loop:
 do { [block] while { condition } }
- executes code block block until the value of expression condition becomes
zero. Differently from while loop, block is executed at least once because the
termination condition is tested after its execution.
 Example:
 ={i:1}
 while{(i<=5)[write{$i \n} ={i:i+1}]}
-this code prints numbers from 1 to 5 separated by newlines on standard
output.
Interpretation of another file:
 interpret { filename }
- file named filename is interpreted. Interpretation then continues after this
command.
Exiting interpretation of the current code block:
 exit { < numlevels > }
- interpretation of the current code block stops, interpretation continues
numlevels interpretation levels lower. Interpretation level increases by one
every time a new code block is interpreted (e.g. in loops) and decreases back
when interpretation of that block stops. numlevels is an optional numerical
argument. If it is absent, all interpretation levels exit and interpretation stops.
 Definition of new interpreter functions:
 function { funcname (< arg1 arg2 … >) [defblock] }
- defines a new interpreter function named funcname. arg1, arg2, etc. are
formal argument names. defblock is a definition block, which is interpreted
every time so defined function is called. Marks that denote function
arguments can appear in this block. They are replaced (literally as strings) by
actual arguments before defblock is interpreted. Marks are of the form
 #argname
where argname is a formal argument name as it appears in round brackets of
function definition.

 File Interpreter (3)

 When function is called, actual arguments must be specified in its argument
block (within curly brackets following function name) in the same order as
the corresponding formal arguments are stated in function definition,
separated by blank characters (spaces, tabs, newlines). If a specific argument
includes blank characters, it must be contained in curly brackets which are
omitted when the argument replaces the corresponding argument mark in
function definition:
 funcname { act_arg_1 {act arg 2} … }
Arguments can be referred to in defblock by sequential numbers instead of
formal names. In this case the corresponding marks must be included in the
argument block of the update function and are of the form:
 update { code … #{ expr } … code }
Value of expression expr represents a sequential number of actual arguments
at function call. Function update evaluates such expressions, replaces
argument marks by the corresponding actual arguments, and interprets its
argument block. This can be used for definition of functions that take
variable number of arguments. Calculator function numargs, which returns
number of arguments passed at function call, is useful in this case.
 Example: implementation of for loop
 function { for (begin condition end body)
 [
 #begin
 while { (#condition)
 [
 #body
 #end
] }
] }
The following code then prints numbers from 1 to 5 to the standard output:
for :1} i<=5 ={i:i+1} { ={i
 { write { $i “\n” } }
}
Note that the last argument (write { $i “\n” }) must be in curly brackets because
it contains spaces. The for function definition block is actually interpreted,
which after replacement of argument marks by actual arguments looks like
this:
 ={i:1}
 while { (i<=5)
 [
 write { $i “\n” }
 = i:i+1} {
] }
 Comment:
 * { This is a comment. }
- this function does nothing; it enables comments between commands.

FUNCTION ARGUMENTS:
 Function arguments must be separated by blank characters (spaces, tabs,
newlines) or commas.
 String arguments may or may not be included in double quotes (must be if
they contain blank characters). Special characters can be represented by
escape sequences (\ followed by the corresponding character). Example:
 write { “This output include newlines\n\n” } }
 Numerical arguments can be given as decimal numbers or as calculator
variables or expression. In this case variables or expressions are evaluated
and replaced by their values. Numerical arguments specified by calculator
variables have the form
 $ varname
while arguments specified by expressions have the form
 $ { expression }
 Mathematical expressions are specified in usual way, e.g.
 3*sin[5/(2+0.5*x)^(3/2)]
 Shell variables are specified by their names. Variable elements are
specified by variable names followed by their indices in square brackets,
which specify their position in the variable element table:
 varname [ind1 ind2 …]
Indices are numerical arguments for which the above rules apply. For
variables of zero rank there are no indices since they contain only one
element of a specific type, and square brackets can also be omitted. In the
same form as individual elements, variable element sub-tables are specified.
 Objects of various types (e.g. matrices, vectors, files, scalars, etc.) have
their own rules of representation (see “Shell Variables”). Instead stating their
contents, these objects can be represented by specification of a variable
element of a given type in the following form:
 #varname[index1 index2 …]
A copy of the appropriate variable element is used in this case.
Expression Evaluator (Calculator) (1)
 Expression evaluator or calculator evaluates mathematical expressions,
which appear in argument blocks of interpreter functions. It contains a set of
built-in functions and binary operators, which can be arbitrarily combined
with variables and numbers to form expressions. Spaces and newness
between entities that form expressions are ignored. Function arguments must
be listed in square brackets and separated by commas. Names are case
sensitive. Calculator variables differ from shell variables.
 File interpreter functions = and $ are used for interaction with the
calculator: Function = assigns a value to a calculator variable and creates it if
necessary:
 = { varname : expression }
The current value of expression is assigned to a calculator variable named
varname.
Function $ defines a calculator variable by a mathematical expression or
defines a new expression evaluator function. The variable or function is
created if it has not been existed yet:
 $ { varname : expression }
- the expression itself is assigned to the variable named varname rather than
its value.
 $ { funcname [arg1, arg2, …] : expr }
- this defines a new calculator function named funcname. arg1, arg2, etc. are
formal argument names and expr is the mathematical expression that defines
how function is evaluated. This expression can contain variables named as
formal arguments, which are replaced by actual arguments at function
evaluation. Arguments must be separated by commas. For example, with the
following definition:
 ${ cubesum [x,y] : (x+y)^3 }
a new calculator function of two variables cubesum is defined and it
evaluates to the third power of sum of its arguments, e.g. cubesum[1,2]
evlauates to 27.

 Mathematical expressions are used as conditions in branching and looping
functions, for representation of numerical arguments to file interpreter
functions, and for other purposes. In principle every numerical argument can
be replaced by an expression evaluator variable in the form
 $ varname
or by an expression in the form
 $ { expression }

 Variables (1)

 Variables (2)

 Shell variables can hold objects (elements) of different types - options,
counters, scalars (decimal numbers), vectors, matrices, fields, files, and
strings. Their function is data storage, data exchange between different
functions, and support to specific operations like matrix operations, domain
transformation or file operations.
 Each variable can hold a multidimensional table of elements of a specific
type (see the figure below). Number of dimensions of this table is called
variable rank. Variables of rank zero can hold a single object.
 For each type of variables there exists a set of operations for their
manipulation, e.g. copying, moving, deleting, creation, initialization, etc.

EXAMPLE: MATRIX VARIABLES
 Let us create a matrix variable m with a 3*2*3-dimensional element table
(18 elements) and initialize the 1-2-2-th element to

 ⎥
⎦

⎤
⎢
⎣

⎡
3.22.21.2
3.12.11.1

This is done by commands newmatrix and setmatrix:
 newmatrix { m [3 2 3] }
 setmatrix { m [1 2 2]
 2 3 { { 1: 1.1 1.2 1.3 } { 2: 2.1 2.2 2.3 } } }
The first command creates a matrix variable m with a 3*2*3 element table,
and the second command creates its 1-2-2-th element set to the 2*3 matrix
above. After these commands variable m looks like in figure below:

Variable sub-table m[3]

m[3,2,3]

m[3,1,1] m[3,1,2] m[3,1,3]

m[2,2,3]

m[2,1,1] m[2,1,2] m[2,1,3]

Variable sub-
table m[1,2]

m[1,2,1] m[1,2,2] m[1,2,3]

m[1,1,1] m[1,1,2] m[1,1,3]

Matrix element m[1,2,2]
1.1 1.2 1.3
2.1 2.2 2.3

Matrix
variable m

getmatrix[“m”,2,1,1,2,2]

 If rank of matrix variable was zero, it would not be necessary to execute
the newmatrix command, since setmatrix would create the variable itself.
Square brackets following matrix name would not be necessary since there
would not be any indices (although placing empty square brackets is also
valid).
 Matrices can be stated in different forms. The above matrix could be
specified in the following ways:
 2 3 { { 1 1: 1.1 } { 1 2: 1.2 } { 1 3: 1.3 } { 2 1: 2.1 }
{ 2 2: 2.2 } { 2 3: 2.3 } } or
 2 3 { { 1.1 1.2 1.3 2.1 2.2 2.3 } }
If we just want to create a matrix with a given number of rows and columns
without specifying components, only dimensions can be given followed by
empty curly brackets, e.g.
 2 3 { }
If a matrix already exists, we can specify arbitrary number of its components
without dimensions, e.g.
 { { 1 1: 1.1 } { 2 2: 2.2 } { 2 3: 2.3 } }
We can also point to an existent matrix element instead of specifying matrix
contents, in this case a copy of that element is created:
 # { mat1 [4 1] }

 A number of other functions enable manipulation of matrix variables. Some
of them can operate on sub-tables of elements, e.g. copymatrix, which
copies matrices from one element sub-table to the corresponding elements of
another sub-table. Functions that operate on whole variables have the suffix
“var”, e.g. deletematrixvar.
 Individual matrix components can be accessed by the expression evaluator
function getmatrix. For example, getmatrix [“m”,2,1,1,2,2] refers to the
second row and the first column of matrix element 1-2-2 of matrix variable
m, and evaluates to 2.1 if m is defined as in the figure. The first argument is
variable name in double quotes, the second one is row number, the third one
is column number, and the rest are indices of matrix element in variable
element table. Dimensions of the variable element table can be obtained by
the getmatrixdim function, e.g. getmatrixdim [“m”,2] evaluates to the second
dimension of the matrix variable element table, which is 2. If the second
argument of getmatrixdim is 0, variable rank is returned.
 Other variable types have similar interpreter and calculator manipulation
functions than matrices. Their names are derived simply by replacing the
string “matrix” by the appropriate type name, e.g. “scalar”, “vector”,
“field”, “file”, etc. For example, copyscalar copies element sub-tables of
scalar variables.

 scalars are specified simply as numbers, fields are specified in the same
way as matrices and vectors are specified in a similar form. For example, a
zero rank vector variable v containing vector
 []T3.3,2.2,1.1=v
can be created like this:

 setvector { v 3 { {1:1.1} {2:2.2} {3:3.3} } }
setvector { v 3 { 1.1 2.2 3.3 } } or

As is the case with matrices, only dimensions or individual components can
be specified. We can use this to set components of vectors, matrices or fields
according to some rule. For example, we can create a 100-dimensional vector
variable v1 with components 1.01, 2.02, 3.03, …, 101, like this:
 setvector { v1 100 { } }
 = { j : 1 }
 while { (j<=100) [
 setvector { v1 { { $ j : $ { j+0.01*j } } } }
 = { j: j+1 }
]}
We exploited the possibility of replacing numbers by expression evaluator
variables and mathematical expressions.

 File variables deserve some additional attention. They carry file objects,
which are logical representations of files on the computer file system. File
manipulation functions (like functions of the general file interface) operate
on such variables. In order to use these functions, file objects must be
connected to files and files must be open. We can create a file object, connect
it with an actual file, and open the file with function setfile, e.g.
 setfile { outfile test.ct ab+ }
Expression Evaluator (Calculator) (2)
Definition of expression evaluator functions using file interpreter:
 definefunction { funcname [defblock] }
- defines a new calculator function named funcname. Block defblock is
interpreted at every evaluation of this function. User must define the return
value in this block using the return function, which requires one argument -
a mathematical expression whose value will be returned by the newly defined
function. The user can access values of actual arguments at function call by
calculator function argument, which takes as argument the ordinary number
of the required argument and returns its value. Another calculator function
numargs returns the number of arguments passed at function call. This
function enables definition of functions with variable number of arguments.
Example: Definition of a calculator function that returns sum of its
arguments:
 definefunction { Sumation
 [
 ={retsum:0}
 ={indsum:1}
 while { (indsum<=numargs[])}
 [
 ={retsum: retsum+argument [indsum] }
 ={indsum: indsum+1 }
] }
 return{retsum}
] }
After this definition, expression “Sumation[3,14,2]” will evaluate to 19, for
example.

 Variables (3)

 A file variable named outfile is created and its only element is connected
with the file “test.ct”, which is opened at the same time. “a+” is the mode in
which the file is open and can usually be omitted. In this case the shell
determines opening mode. Basic modes are “w” (file open for writing), “r”
(open for reading), “a” (open for appending), each of which can have suffices
“b” (binary mode –does not have effect on Unix systems) and/or “+” (file
open for both reading and writing).
 File variables are destroyed and the corresponding files closed by the
deletefilevar function, e.g.:
 deletefilevar { outfile }
 Four file variables have a pre-defined meaning, which are infile (shell
input file), outfile (shell output file – function fwrite writes to this file),
aninfile (simulation input file) and anoutfile (simulation output file).

Syntax Checker & Debugger

 Syntax checker checks the command file for syntax errors and reports
them. Identification of errors is limited; especially function arguments are not
checked for all functions. This is partially a consequence of the interpreter
concept itself since the meaning of arguments is many times known only
during the runtime. Checking arguments for all commands would also require
a tremendous overhead in the code, which would be hard to justify by the
gained benefit. However, the syntax checker can discover some frequent and
problematic errors like parenthesis mismatches and function names
misspellings. The checker is run by
 inverse test.cm -c
if inverse is the programme (optimization shell) name and test.cm is the name
of the command file. Option –c activates the checker.

 Debugger is used for tracing code execution and facilitates error location. It
allows step-by-step execution of arbitrary portions of code, checking and
changing variable values in the middle of execution, etc. It is run e.g. by
 inverse test.cm -d
Option –c activates the debugger.

DEBUGGER COMMANDS
? prints a short help.
q finishes the debugging process.
s executes the next file interpreter’s command.
S executes the next file interpreter’s command; commands that execute code
blocks are executed as single commands.
n num. executes the next num commands.
N num executes the next num commands; functions that contain code blocks
are executed as single commands.
x num executes the code until num levels lower lever of execution is reached.
Default value for num is 1.

c executes the code until the next active break command is reached.
ab id activates all breaks with the identification number id (“*” means all
identification numbers).
sb id suspends all breaks with the identification number id (“*” means all
identification numbers).
pb prints information about active breaks.
tb id prints status of breaks with identification number id.

v shift prints a segment of code around the current viewing position shifted
for shift lines.
vr shift prints a segment of code around the line of interpretation shifted for
shift lines.
va linenum prints a segment of code in the interpreted file around the line
linenum.
nv num1 num2 sets the number of printed lines before and after the centerline
when the code is viewed.

e expr evaluates the expression expr by the expression evaluator. If expr is
not specified the user can input expression in several lines, ending with an
empty line.
w expr adds expression expr to the watch table. Without the argument, values
of all expressions in the watch table are printed.
dw num removes the expression with serial number num from the watch
table.
aw switch with switch equal to zero turns automatic watching off; otherwise
it turns it on.
pw prints all expressions in the watch table.

r comblock interprets comblock by the file interpreter. If comblock is not
specified the user can input commands in several lines, ending with an empty
line.
rd comblock does the same as r, except that the code is also debugged.
rf filename sets the name of the file into which the user’s commands will be
written, to filename.

Breaks are set in the command file by function break, whose argument
(optional) is break identification number, e.g.
 break { 3 }
Shell Output

 Function write is a basic output function of the shell. It prints to the
programme standard output (usually a terminal window), but has equivalents
fwrite that prints to the shell output file (outfile) and dwrite that prints both
to the standard output and the shell output file.
 Function simply prints its arguments one by one. Arguments can be strings
in double quotes, e.g.
 “Normal termination.\n”
special character sequences, e.g.
 \n
expression evaluator variables, e.g.
 $ a1
or mathematical expressions, e.g.
 $ { a+3*sin[getvector[“parammom”,2]] }
 Strings are output directly. They can eventually include special character
sequences, which are replaced by the appropriate characters before the string
is printed (e.g. \n in the example above is replaced by the newline character).
Brackets that appear in strings must be stated by escape sequences if they are
not closed, because of the file interpreter rule that all brackets must be closed
no matter where they occur.
 Special character sequences are replaced by the appropriate special
characters and then printed. The most often used are \q for single quote ('),
\Q or \d for double quote (“), \\ for backslash (\), \n for newline character, \r
for carriage return, \t for tab character, \< or \5 for {, \> or \6 for }, \1 for (, \2
for), \3 for [, \4 for].
 Mathematical expressions and calculator variables are evaluated by the
expression evaluator and their values are printed. Variables are stated by the
$ sign followed by variable name, while expressions are stated by the $ sign
followed by curly brackets containing the expression.
 Expression evaluator functions for accessing contents of shell variables can
be used in expressions. The write function and its equivalents can therefore
be used to output any information available at a specific moment in a desired
format.
 Example:
 Write{ \n\n $i “th parameter: “
 ${getvector[“parammom”,i]} “.\n” }

 For each type of variable there exist functions, which their contents.
Typically there are two basic output functions for each type of variable, one
that outputs contents of the whole variable and one that outputs individual
elements or sub-tables of elements. For example, for matrix variable that
contains 2*3 matrix elements,
 printmatrixvar { m1 }
prints the whole matrix variable, which include information about element
table dimensions and contents of individual matrix elements, while
 printmatrix { m1 [2] }
prints the contents of three matrices contained in variable sub-table m1 [2],
i.e. matrices m1 [2,1], m1 [2,2] and m1 [2,3]. Command
 printmatrix { m1 [2 1] }
would print only one matrix since sub-table specification m1 [2 1] specifies a
single element.
 Equivalent functions exist for other types of variables. Their names are
derived by replacing parts of the above function names that are not
underlined by the appropriate variable types (e.g. scalar, vector, file, etc.).
Functions stated above print to the programme standard output. Their
equivalents whose names are derived by adding a prefix f, e.g.
fprintmatrixvar, print to the shell output file (outfile)

 Variables with Pre-defined Meaning

 Variables with pre-defined meaning are variables designed for carrying specific data relevant for optimization. Some interpreter and calculator functions
operate on specific variables with a pre-defined meaning, which therefore do not need to be specified as arguments. For example, there is a set of interfacing
functions that operate only on a file variable infile, which have a function of general input file.
 Of specific importance are variables that are responsible for data transfer between user definition of direct analysis (analysis block of the command file) and
optimization algorithms. The table below lists these variables:

Variable name [element table dim.] (element dim.)

Meaning

Scalar variables

objectivemom [] < [numobjectives] > Value(s) of the objective function(s) at the current parameter values.
constraintmom [numconstraints] Values of the constraint functions at the current parameter values.

Vector variables

parammom [] (numparam) Current vaules of parameters.
measmom [] (nummeas) Current values of simulated measurements.
gradobjectivemom [] < [numobjectives] > (numparam) Gradient of objective function(s) at the current parameter vlues
gradconstraintmom [numconstraints] (numparm) Gradients of constraint functions at the current parameter values.
gradmeasmom [nummeas] (numparam) Gradients of the simulated measurements at the current parameter values.

Matrix variables

der2objectivemom [] < [numobjectives] > (numparam,numparam) Second derivatives (Hessian) of the objective function(s) at the current
parameter values.

der2constraintmom [numconstraints] (numparam,numparam) Second derivatives (Hessian) of the constraint functions at the current
parameter values.

der2measmom [nummeas] (numparam,numparam) Second derivatives (Hessian) of the simulated measurements at the current
parameter values.

 Within the analysis block user must assign values to those of the above listed variables that are needed by the optimization algorithm. In this block the user
defines the direct analysis, i.e. the way in which these variables are evaluated at current parameter values. These reside in the vector parammom when the
analysis block is interpreted. If, for example, we have a constraint optimization problem and run an algorithm that requires the first derivatives, variables
objectivemom, constraintmom, gradobjectivemom and gradconstraintmom must be calculated and set within the analysis block.
 Each of the above variables has beside the current also its initial and optimal variant. The name of the initial variant is obtained by replacing suffix “mom”
by “0” while the optimal variant is obtained by replacing the suffix with “opt”. Optimal variants are used by some algorithms for storing results, while the
initial variants are currently not used.

 In the above table, dimensions of variable element tables are stated in square brackets while dimensions of individual elements (i.e. vectors or matrices) are
stated in round brackets. These are problem characteristic dimensions whose meaning is the following:

Dimension Meaning
numparam Number of optimization parameters
numconstraints Number of constraint functions
numobjectives Number of objective functions (usually equals 1)
nummeas Number of measurements (applicable for inverse problems)

 The above listed dimensions are not stored in shell user defined variables, but have a special storage. Each of them is accessed by its own expression evaluator
function, the name of which is the dimension name with prefix “get”, e.g. getnumparam [] returns number of optimization parameters. These dimensions are
set when a pre-defined variable or its element, for which a specific dimension is relevant, is created. For example, the command
 setvector { gradconstraintmom [2] 3 { } }
will set numparam to 3 and numconstraints to 2. There is also an inverse effect on the setvector function: if for example numparam is 4, we do not need to
state this dimension when we create related pre-defined variables and their elements (vector parammom, for example):
 setvector { parammom { 1.1 2.2 3.3 4.4 } }

 For inverse problems, there are two more pre-defined variables used for storing input data for an inverse analysis, i.e. measurements and their deviations:

Vector variable Meaning
meas [] (nummeas) Vector of experimental measurements.
sigma [] (nummeas) Vector of measurement errors.
Further Information & Support

Inverse mail: Documents related to Inverse:

 Igor.Gresovnik@c3m.si
Inverse R&Dhome page:
 http://www.c3m.si/inverse/
Unframed version of this page:
 http://www.c3m.si/inverse/invhome.html

 http://www.c3m.si/inverse/doc/
Inverse manuals (on-line & downloadable):
 http://www.c3m.si/inverse/doc/man/
Examples:
 http://www.c3m.si/inverse/examples/

 Short Example

 Let us solve the following two-dimensional constraint optimization problem: Lines 3 to 14 contain some preliminary definitions of new expression evaluator

 , () 2642

, 173,min xyxyyxyx −≥∧−≥+

which implies that the objective and the two constraint functions are

()
() ()
() yxyxg

yxyxg

yxyxf

−−=

−−=

+=

2
2

6
1

42

17,

3,

,

The shell run with the following command file solves the problem:

1. setfile{outfile quick.ct}

2. *{ Objective and constraint functions: }
3. ${f[x,y]: x^2+y^4 }
4. ${g1[x,y]: (x-3)^6-y }
5. ${g2[x,y]: 17-x^2-y }
6. *{ Objective function derivatives: }
7. ${dfdx[x,y]: 2*x }
8. ${dfdy[x,y]: 4*y^3 }
9. *{ First constraint function derivatives: }
10. ${dg1dx[x,y]: 6*(x-3)^5 }
11. ${dg1dy[x,y]: -1 }
12. *{ Second constraint function derivatives: }
13. ${dg2dx[x,y]: -2*x }
14. ${dg2dy[x,y]: -1 }

15. setvector{parammom 2 {} }
16. newscalar{objectivemom}
17. newscalar{constraintmom[2]}

18. analysis
19. {
20. ..={x:getvector["parammom",1]}
21. ..={y:getvector["parammom",2]}
22. ..setscalar{objectivemom ${f[x,y]} }
23. ..setvector{ gradobjectivemom
24.{..${dfdx[x,y]}..${dfdy[x,y]} }
25. ..}
26. ..setscalar{constraintmom[1] ${g1[x,y]} }
27. ..setvector{ gradconstraintmom[1]
28.{..${dg1dx[x,y]} ${dg1dy[x,y]}..}
29. ..}
30. ..setscalar{constraintmom[2] ${g2[x,y]} }
31. ..setvector{ gradconstraintmom[2]
32.{..${dg2dx[x,y]} ${dg2dy[x,y]}..}
33. ..}
34. }

35. setvector{parammom { 0 0 } }
36. analyse{}

37. optfsqp1{ 1 2 0 0 0 0.00001 0.00001 300 1
38. ..{ 2 { 15 -3 } }
39. ..{ 2 {} }
40. ..{ 2 {} }
41. }

 With the setfile command in line 1 we create the shell output file outfile
where functions will write their reports and error reports, and connect it with
the file “quick.ct”.

functions, which will be used later in the analysis block. Namely these are the
objective (line 3) and both constraint functions (lines 4 and 5), derivatives of the
objective function with respect to the first (line 7) and the second (line 8)
parameter, and derivatives of the first (lines 10 and 11) and the second (lines 13
and 14) constraint function with respect to both parameters. Note that x and y are
just names of function arguments that refer to the first and the second
optimization parameters, and can be chosen arbitrarily.
 In lines 15 to 16 we create variables with pre-defined meaning parammom,
objectivemom and constraintmom. The aim of this is merely to specify the
relevant characteristic dimensions of the problem. These are stored in internal
variables of the shell and are used when creating pre-defined variables, whose
dimensions are by definition equal to these characteristic dimensions. By creating
vector parammom, number of parameters numparam is defined, by creating
scalar objectivemom number of objective functions numobjectives is defined and
by creating scalar variable constraintmom number of constraints numconstraints
is defined. Note that no values are assigned to these variables. The same effect as
creating parammom would have for example creating paramopt, and creating
vector gradconstraintmom could replace both creating vector parammom and
scalar constraintmom, since both numconstraints and numparam are relevant for
this variable.

 Lines 20 to 33 form the analysis block, which is user definition of the direct
analysis and is interpreted at every analysis run. This block specifies how
relevant quantities like objective and constraint functions and their derivatives are
evaluated at a specific set of optimization parameters.
 In lines 20 and 21 current values of parameters are stored in expression
evaluator variables x and y. These values are obtained from vector parammom
where they are stored by the algorithm that requested execution of a direct
analysis.
 In lines 22 to 33 the relevant quantities are evaluated and stored into the
appropriate pre-defined variables where the requesting algorithm can obtain
them. Value of the objective function is stored into scalar objectivemom (line 22)
its gradient is stored into vector gradobjectivemom (lines 23 to 25), values of the
constraint functions are stored into scalar variable constraintmom (lines 26 and
30), and their gradients to vector variable gradconstraintmom (lines 27 to 29 and
31 to 33) Auxiliary functions that were defined in lines 3 to 14 of the
initialization part are used, called with the current parameters x and y. In more
realistic case this part would include running some numerical simulation at the
current parameters, the necessary interfacing with the simulation programme (for
updating simulation parameters and reading results) and possibly some
housekeeping for deriving final values from the simulation results.

 A test analysis at parameters [] T0,0 is run in line 36 by the analyse function.
This function takes parameter values from vector parammom; therefore this
vector is set in line 35.
 Finally, the problem is solved using function fsqp1, which runs the feasible
sequential quadratic programming optimization algorithm (lines 37 to 41). This
function requires nine numerical arguments, namely number of objective
functions, number of non-linear inequality constraints, number of linear
inequality constraints, number of non-linear equality constraints, number of
linear equality constraints, final norm requirement for the Newton direction,
maximum allowed violation of nonlinear equality constraints at an optimal point,
the maximum number of iterations, and information whether gradients are
provided, and three vector arguments, namely initial guess and lower and upper
parameter bounds.

 Let’s say that the above command file has been saved as “opt.cm” and that the
Inverse executable is named “inverse”. We can run the file by
 inverse opt.cm
which solves the problem. The report including final results can then be checked
in the file “quick.ct”.

A
na

ly
si

s b
lo

ck

Legend for command file code:
 pre-defined file interpreter function
 user-defined file interpreter function
 expression evaluator (calculator) expression
 user-defined calculator function or variable
 pre-defined calculator functions
 calculator function defined via definefunction
 user-defined shell variable
 shell variable with a pre-defined meaning
 character or string with special meaning

