
 

  

Inverse: Basic Information 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inverse is a general-purpose programme shell for solving optimization and additional definitions and data initialization. Analysis block defines the direct 

inverse problems in conjunction with a simulation programme. Problems 
solved by Inverse can usually be formulated as constraint minimization problems of
the form 
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The simulation programme is used for evaluation of response of the system in
question. This is a part of evaluation of the objective (f) and constraint functions
(gi) and their derivatives, if needed. The shell performs optimization algorithms and
controls execution of the analysis programme. 
  Problem definition: User defines the problem in the shell command file. Shell 
interpreter interprets this file and executes its commands (functions) one by one.
Each interpreter function invokes its corresponding shell function (scheme on the
right). Shell functions are arranged in modules by their purpose. Modules provide a 
variety of optimization tools and tools for solution of individual sub-problems that 
can arise, e.g. optimization algorithms, interfacing utilities, basic matrix operations,
variable manipulation, etc. 
  Syntax of interpreter commands is simple: 
      command { arguments } command { arguments }... 
Structure of argument blocks in curly brackets depends on the function. A special
sub-system, the expression evaluator (or calculator) evaluates mathematical
expressions, which can appear in argument blocks. A set of interpreter functions
enables flow control by implementing branches and loops. A system of user
defined variables of different types (vectors, matrices, files, etc.) enable data 
storage and exchange. 
Command file usually consists of three parts. Initialization part includes 

analysis, i.e. evaluation of optimization and 
derivatives at a specific set of parameters. Ac
that generate results. This includes running o
analyses and other tests like tabulation and num
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   Optimization module includes optimization algorithms and other tools (e.g. 
tabulating utilities, support for Monte Carlo simulations, etc.). It also 
includes utilities for definition of direct analysis, including organization of 
data transfer between analysis definition and optimization algorithms. 
  File interpreter represents shell user interface. 
  Expression evaluator (calculator) evaluates mathematical expressions, 
which appear in argument blocks of file interpreter functions. 
  Variable handling module includes basic operations on variables like 
creation and deleting, copying, initialization, etc. 
  Flow control module includes implementation of branches and loops, a 
function definition utility, and some other flow control utilities. 
  Syntax checker enables checking command file syntax before running it. 
Some troublesome errors like parenthesis mismatches are easily discovered 
by this tool. Arguments are also checked for some basic interpreter 
commands (e.g. for flow control commands). 
  Debugger allows step-by-step execution of commands, execution of 
arbitrary portions of code, checking and changing values of variables in the 
middle of execution, etc. This can be a valuable tool for error location and 
dismiss. 
  General file interface provides a set of functions for interfacing simulation 
and other programmes. 
  Interfacing modules provide tools for interfacing specific simulation 
programmes, which includes execution control and data exchange functions. 
An interface with a finite element programme Elfen has been implemented. 
  Miscellaneous utilities module includes various auxiliary utilities, for 
example utilities for interaction with the operating system. This module is 
poor at the moment and will be extended in the future. 
   File interpreter represents shell user interface. User defines the problem in 
the command file, which is interpreted by the interpreter when the shell is 
run. The command file name must be given as command-line argument at its 
invocation, e.g. 
    inverse  test.cm 
if inverse is programme name and test.cm is command file name. 
  Syntax: File interpreter searches for commands (functions) and invokes 
shell functions, which correspond to them. Each command is followed by 
curly brackets, which contain its arguments. Commands and their arguments 
can be separated by spaces, newlines, or tabs: 
  command1{arg1 arg2 …} command2{arg1 arg2 … } 
An important syntax rule is that all brackets must match (i.e. each bracket 
must be closed within the first enclosing bracket) no matter where they occur 
and what their function is. Function and variable names are case sensitive. 
 
  FLOW CONTROL: 
  If branch: 
  if { ( condition ) [ block1 ] else [ block2 ]} 
- code block block1 is interpreted (executed) if value of expression condition 
is not zero. If it is zero and block2 is given, that block is is interpreted 
(block2 is optional). Expression condition is evaluated in expression 
evaluator. 
  While loop: 
  while { ( condition ) [ block ] } 
- code block block is repetitively executed while termination condition 
condition evaluates to a non-zero value. When condition becomes zero, 
block is not executed any more. 
 



 
 File Interpreter (2) 

   Do loop: 
  do { [ block ] while { condition } } 
- executes code block block until the value of expression condition becomes 
zero. Differently from while loop, block is executed at least once because the 
termination condition is tested after its execution. 
  Example: 
  ={i:1} 
  while{(i<=5)[ write{$i \n} ={i:i+1} ]} 
-this code prints numbers from 1 to 5 separated by newlines on standard 
output. 
Interpretation of another file: 
  interpret { filename } 
- file named filename is interpreted. Interpretation then continues after this 
command. 
Exiting interpretation of the current code block: 
  exit { < numlevels > } 
- interpretation of the current code block stops, interpretation continues 
numlevels interpretation levels lower. Interpretation level increases by one 
every time a new code block is interpreted (e.g. in loops) and decreases back 
when interpretation of that block stops. numlevels is an optional numerical 
argument. If it is absent, all interpretation levels exit and interpretation stops. 
  Definition of new interpreter functions: 
  function { funcname ( < arg1 arg2 … > ) [ defblock ] } 
- defines a new interpreter function named funcname. arg1, arg2, etc. are 
formal argument names. defblock is a definition block, which is interpreted 
every time so defined function is called. Marks that denote function 
arguments can appear in this block. They are replaced (literally as strings) by 
actual arguments before defblock is interpreted. Marks are of the form 
  #argname 
where argname is a formal argument name as it appears in round brackets of 
function definition. 
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 When function is called, actual arguments must be specified in its argument 
block (within curly brackets following function name) in the same order as 
the corresponding formal arguments are stated in function definition, 
separated by blank characters (spaces, tabs, newlines). If a specific argument 
includes blank characters, it must be contained in curly brackets which are 
omitted when the argument replaces the corresponding argument mark in 
function definition: 
  funcname { act_arg_1 {act arg 2} … } 
Arguments can be referred to in defblock by sequential numbers instead of 
formal names. In this case the corresponding marks must be included in the 
argument block of the update function and are of the form: 
  update { code …  #{ expr } … code } 
Value of expression expr represents a sequential number of actual arguments 
at function call. Function update evaluates such expressions, replaces 
argument marks by the corresponding actual arguments, and interprets its 
argument block. This can be used for definition of functions that take 
variable number of arguments. Calculator function numargs, which returns 
number of arguments passed at function call, is useful in this case. 
  Example: implementation of for loop 
  function { for ( begin condition end body ) 
  [ 
    #begin 
    while { ( #condition ) 
    [ 
      #body 
      #end 
    ] } 
  ] } 
The following code then prints numbers from 1 to 5 to the standard output: 
for :1}   i<=5   ={i:i+1} { ={i
  { write { $i “\n” } } 
} 
Note that the last argument (write { $i “\n” }) must be in curly brackets because 
it contains spaces. The for function definition block is actually interpreted, 
which after replacement of argument marks by actual arguments looks like 
this: 
  ={i:1} 
  while { ( i<=5 ) 
  [ 
    write { $i “\n” }  
    = i:i+1} {
  ] } 
  Comment: 
  * { This is a comment. } 
- this function does nothing; it enables comments between commands. 
 
FUNCTION ARGUMENTS: 
  Function arguments must be separated by blank characters (spaces, tabs, 
newlines) or commas. 
  String arguments may or may not be included in double quotes (must be if 
they contain blank characters). Special characters can be represented by 
escape sequences (\ followed by the corresponding character). Example: 
  write { “This output include newlines\n\n” } } 
  Numerical arguments can be given as decimal numbers or as calculator 
variables or expression. In this case variables or expressions are evaluated 
and replaced by their values. Numerical arguments specified by calculator 
variables have the form 
  $ varname 
while arguments specified by expressions have the form 
  $ { expression } 
  Mathematical expressions are specified in usual way, e.g. 
  3*sin[5/(2+0.5*x)^(3/2)] 
  Shell variables are specified by their names. Variable elements are 
specified by variable names followed by their indices in square brackets, 
which specify their position in the variable element table: 
  varname [ ind1 ind2 … ] 
Indices are numerical arguments for which the above rules apply. For 
variables of zero rank there are no indices since they contain only one 
element of a specific type, and square brackets can also be omitted. In the 
same form as individual elements, variable element sub-tables are specified. 
  Objects of various types (e.g. matrices, vectors, files, scalars, etc.) have 
their own rules of representation (see “Shell Variables”). Instead stating their 
contents, these objects can be represented by specification of a variable 
element of a given type in the following form: 
  #varname[index1 index2 … ] 
A copy of the appropriate variable element is used in this case. 
Expression Evaluator (Calculator) (1)
  Expression evaluator or calculator evaluates mathematical expressions, 
which appear in argument blocks of interpreter functions. It contains a set of 
built-in functions and binary operators, which can be arbitrarily combined 
with variables and numbers to form expressions. Spaces and newness 
between entities that form expressions are ignored. Function arguments must 
be listed in square brackets and separated by commas. Names are case 
sensitive. Calculator variables differ from shell variables. 
  File interpreter functions = and $ are used for interaction with the 
calculator: Function = assigns a value to a calculator variable and creates it if 
necessary: 
  = { varname : expression } 
The current value of expression is assigned to a calculator variable named 
varname. 
Function $ defines a calculator variable by a mathematical expression or 
defines a new expression evaluator function. The variable or function is 
created if it has not been existed yet: 
  $ { varname : expression } 
- the expression itself is assigned to the variable named varname rather than 
its value. 
  $ { funcname [ arg1, arg2, … ] : expr } 
- this defines a new calculator function named funcname. arg1, arg2, etc. are 
formal argument names and expr is the mathematical expression that defines 
how function is evaluated. This expression can contain variables named as 
formal arguments, which are replaced by actual arguments at function 
evaluation. Arguments must be separated by commas. For example, with the 
following definition: 
  ${ cubesum [x,y] : (x+y)^3 } 
a new calculator function of two variables cubesum is defined and it 
evaluates to the third power of sum of its arguments, e.g. cubesum[1,2] 
evlauates to 27. 
 
  Mathematical expressions are used as conditions in branching and looping 
functions, for representation of numerical arguments to file interpreter 
functions, and for other purposes. In principle every numerical argument can 
be replaced by an expression evaluator variable in the form 
  $ varname 
or by an expression in the form 
  $ { expression } 
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   Shell variables can hold objects (elements) of different types - options, 
counters, scalars (decimal numbers), vectors, matrices, fields, files, and 
strings. Their function is data storage, data exchange between different 
functions, and support to specific operations like matrix operations, domain 
transformation or file operations. 
  Each variable can hold a multidimensional table of elements of a specific 
type (see the figure below). Number of dimensions of this table is called 
variable rank. Variables of rank zero can hold a single object. 
  For each type of variables there exists a set of operations for their 
manipulation, e.g. copying, moving, deleting, creation, initialization, etc. 
 
EXAMPLE: MATRIX VARIABLES 
  Let us create a matrix variable m with a 3*2*3-dimensional element table 
(18 elements) and initialize the 1-2-2-th element to 

      ⎥
⎦

⎤
⎢
⎣
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3.22.21.2
3.12.11.1

This is done by commands newmatrix and setmatrix: 
  newmatrix { m [ 3 2 3 ] } 
  setmatrix { m [ 1 2 2 ]  
  2 3 { { 1: 1.1 1.2 1.3 } { 2: 2.1 2.2 2.3 } }  } 
The first command creates a matrix variable m with a 3*2*3 element table, 
and the second command creates its 1-2-2-th element set to the 2*3 matrix 
above. After these commands variable m looks like in figure below: 
 

    

Variable sub-table m[3]

m[3,2,3]

m[3,1,1] m[3,1,2] m[3,1,3]

m[2,2,3]

m[2,1,1] m[2,1,2] m[2,1,3]

Variable sub-
table m[1,2]

m[1,2,1] m[1,2,2] m[1,2,3]

m[1,1,1] m[1,1,2] m[1,1,3]

Matrix element m[1,2,2]
1.1 1.2 1.3
2.1 2.2 2.3

Matrix
variable m

getmatrix[“m”,2,1,1,2,2]

 
 
  If rank of matrix variable was zero, it would not be necessary to execute 
the newmatrix command, since setmatrix would create the variable itself. 
Square brackets following matrix name would not be necessary since there 
would not be any indices (although placing empty square brackets is also 
valid). 
  Matrices can be stated in different forms. The above matrix could be 
specified in the following ways: 
  2 3 { { 1 1: 1.1 } { 1 2: 1.2 } { 1 3: 1.3 } { 2 1: 2.1 }
{ 2 2: 2.2 } { 2 3: 2.3 }  }     or 
  2 3 { { 1.1 1.2 1.3 2.1 2.2 2.3 } } 
If we just want to create a matrix with a given number of rows and columns 
without specifying components, only dimensions can be given followed by 
empty curly brackets, e.g. 
  2 3 {  } 
If a matrix already exists, we can specify arbitrary number of its components 
without dimensions, e.g. 
  { { 1 1: 1.1 } { 2 2: 2.2 } { 2 3: 2.3 }  } 
We can also point to an existent matrix element instead of specifying matrix 
contents, in this case a copy of that element is created: 
  # { mat1 [4 1] } 
 
  A number of other functions enable manipulation of matrix variables. Some 
of them can operate on sub-tables of elements, e.g. copymatrix, which 
copies matrices from one element sub-table to the corresponding elements of 
another sub-table. Functions that operate on whole variables have the suffix 
“var”, e.g. deletematrixvar.  
   Individual matrix components can be accessed by the expression evaluator 
function getmatrix. For example, getmatrix [“m”,2,1,1,2,2] refers to the 
second row and the first column of matrix element 1-2-2 of matrix variable 
m, and evaluates to 2.1 if m is defined as in the figure. The first argument is 
variable name in double quotes, the second one is row number, the third one 
is column number, and the rest are indices of matrix element in variable 
element table. Dimensions of the variable element table can be obtained by 
the getmatrixdim function, e.g. getmatrixdim [“m”,2] evaluates to the second 
dimension of the matrix variable element table, which is 2. If the second 
argument of getmatrixdim is 0, variable rank is returned. 
  Other variable types have similar interpreter and calculator manipulation 
functions than matrices. Their names are derived simply by replacing the 
string “matrix” by the appropriate type name, e.g. “scalar”, “vector”, 
“field”,  “file”, etc. For example, copyscalar copies element sub-tables of 
scalar variables. 
 
  scalars are specified simply as numbers, fields are specified in the same 
way as matrices and vectors are specified in a similar form. For example, a 
zero rank vector variable v containing vector 
     [ ]T3.3,2.2,1.1=v
can be created like this: 
  
  setvector { v 3 { {1:1.1} {2:2.2} {3:3.3} } }  
setvector { v 3 { 1.1 2.2 3.3 } }        or 

As is the case with matrices, only dimensions or individual components can 
be specified. We can use this to set components of vectors, matrices or fields 
according to some rule. For example, we can create a 100-dimensional vector 
variable v1 with components 1.01, 2.02, 3.03, …, 101, like this: 
  setvector { v1 100 { } }  
  = { j : 1 } 
  while { (j<=100) [ 
    setvector { v1 { { $ j : $ { j+0.01*j } } } } 
    = { j: j+1 } 
  ]} 
We exploited the possibility of replacing numbers by expression evaluator 
variables and mathematical expressions. 
 
  File variables deserve some additional attention. They carry file objects, 
which are logical representations of files on the computer file system. File 
manipulation functions (like functions of the general file interface) operate 
on such variables. In order to use these functions, file objects must be 
connected to files and files must be open. We can create a file object, connect 
it with an actual file, and open the file with function setfile, e.g. 
  setfile { outfile  test.ct  ab+ } 
Expression Evaluator (Calculator) (2)
Definition of expression evaluator functions using file interpreter: 
 definefunction { funcname [ defblock ] } 
- defines a new calculator function named funcname. Block defblock is 
interpreted at every evaluation of this function. User must define the return 
value in this block using the return function, which requires one argument - 
a mathematical expression whose value will be returned by the newly defined 
function. The user can access values of actual arguments at function call by 
calculator function argument, which takes as argument the ordinary number 
of the required argument and returns its value. Another calculator function 
numargs returns the number of arguments passed at function call. This 
function enables definition of functions with variable number of arguments. 
Example: Definition of a calculator function that returns sum of its 
arguments: 
  definefunction { Sumation  
  [ 
    ={retsum:0} 
    ={indsum:1} 
    while { (indsum<=numargs[ ])} 
    [ 
     ={retsum: retsum+argument [indsum] } 
      ={indsum: indsum+1 } 
    ] } 
    return{retsum} 
  ] } 
After this definition, expression “Sumation[ 3,14,2 ]” will evaluate to 19, for 
example. 
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 A file variable named outfile is created and its only element is connected 
with the file “test.ct”, which is opened at the same time. “a+” is the mode in 
which the file is open and can usually be omitted. In this case the shell 
determines opening mode. Basic modes are “w” (file open for writing), “r” 
(open for reading), “a” (open for appending), each of which can have suffices 
“b” (binary mode –does not have effect on Unix systems) and/or “+” (file 
open for both reading and writing). 
  File variables are destroyed and the corresponding files closed by the 
deletefilevar function, e.g.: 
  deletefilevar { outfile } 
  Four file variables have a pre-defined meaning, which are infile (shell 
input file), outfile (shell output file – function fwrite writes to this file), 
aninfile (simulation input file) and anoutfile (simulation output file).  
 

Syntax Checker & Debugger 
 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

  Syntax checker checks the command file for syntax errors and reports
them. Identification of errors is limited; especially function arguments are not
checked for all functions. This is partially a consequence of the interpreter
concept itself since the meaning of arguments is many times known only
during the runtime. Checking arguments for all commands would also require
a tremendous overhead in the code, which would be hard to justify by the
gained benefit. However, the syntax checker can discover some frequent and
problematic errors like parenthesis mismatches and function names
misspellings. The checker is run by 
    inverse  test.cm -c 
if inverse is the programme (optimization shell) name and test.cm is the name
of the command file. Option –c activates the checker. 
 
  Debugger is used for tracing code execution and facilitates error location. It
allows step-by-step execution of arbitrary portions of code, checking and
changing variable values in the middle of execution, etc. It is run e.g. by  
    inverse  test.cm -d 
Option –c activates the debugger. 
 
DEBUGGER COMMANDS 
? prints a short help. 
q finishes the debugging process. 
s executes the next file interpreter’s command. 
S executes the next file interpreter’s command; commands that execute code
blocks are executed as single commands. 
n num. executes the next num commands. 
N num executes the next num commands; functions that contain code blocks
are executed as single commands. 
x num executes the code until num levels lower lever of execution is reached.
Default value for num is 1. 
 
c executes the code until the next active break command is reached. 
ab id activates all breaks with the identification number id (“*” means all
identification numbers). 
sb id suspends all breaks with the identification number id (“*” means all
identification numbers). 
pb prints information about active breaks. 
tb id prints status of breaks with identification number id. 
 
v shift prints a segment of code around the current viewing position shifted
for shift lines. 
vr shift prints a segment of code around the line of interpretation shifted for
shift lines. 
va linenum prints a segment of code in the interpreted file around the line
linenum. 
nv num1 num2 sets the number of printed lines before and after the centerline
when the code is viewed. 
 
e expr evaluates the expression expr by the expression evaluator. If expr is
not specified the user can input expression in several lines, ending with an
empty line. 
w expr adds expression expr to the watch table. Without the argument, values
of all expressions in the watch table are printed. 
dw num removes the expression with serial number num from the watch
table. 
aw switch with switch equal to zero turns automatic watching off; otherwise
it turns it on. 
pw prints all expressions in the watch table. 
 
r comblock interprets comblock by the file interpreter. If comblock is not
specified the user can input commands in several lines, ending with an empty
line. 
rd comblock does the same as r, except that the code is also debugged. 
rf filename sets the name of the file into which the user’s commands will be
written, to filename. 
 
Breaks are set in the command file by function break, whose argument
(optional) is break identification number, e.g. 
 break { 3 }
Shell Output 

  Function write is a basic output function of the shell. It prints to the 
programme standard output (usually a terminal window), but has equivalents 
fwrite that prints to the shell output file (outfile) and dwrite that prints both 
to the standard output and the shell output file. 
  Function simply prints its arguments one by one. Arguments can be strings 
in double quotes, e.g. 
  “Normal termination.\n” 
special character sequences, e.g. 
  \n 
expression evaluator variables, e.g. 
  $ a1 
or mathematical expressions, e.g. 
  $ { a+3*sin[getvector[“parammom”,2]] } 
  Strings are output directly. They can eventually include special character 
sequences, which are replaced by the appropriate characters before the string 
is printed (e.g. \n in the example above is replaced by the newline character). 
Brackets that appear in strings must be stated by escape sequences if they are 
not closed, because of the file interpreter rule that all brackets must be closed 
no matter where they occur. 
  Special character sequences are replaced by the appropriate special 
characters and then printed. The most often used are \q for single quote ('), 
\Q or \d for double quote (“), \\ for backslash (\), \n for newline character, \r 
for carriage return, \t for tab character, \< or \5 for {, \> or \6 for }, \1 for (, \2 
for ), \3 for [, \4 for ]. 
  Mathematical expressions and calculator variables are evaluated by the 
expression evaluator and their values are printed. Variables are stated by the 
$ sign followed by variable name, while expressions are stated by the $ sign 
followed by curly brackets containing the expression. 
  Expression evaluator functions for accessing contents of shell variables can 
be used in expressions. The write function and its equivalents can therefore 
be used to output any information available at a specific moment in a desired 
format. 
  Example: 
  Write{ \n\n $i “th parameter: “  
        ${getvector[“parammom”,i]} “.\n” } 
 
  For each type of variable there exist functions, which their contents. 
Typically there are two basic output functions for each type of variable, one 
that outputs contents of the whole variable and one that outputs individual 
elements or sub-tables of elements. For example, for matrix variable that 
contains 2*3 matrix elements, 
  printmatrixvar { m1 } 
prints the whole matrix variable, which include information about element 
table dimensions and contents of individual matrix elements, while 
  printmatrix { m1 [2] } 
prints the contents of three matrices contained in variable sub-table m1 [2], 
i.e. matrices m1 [2,1], m1 [2,2] and m1 [2,3]. Command 
  printmatrix { m1 [2 1] } 
would print only one matrix since sub-table specification m1 [2 1] specifies a 
single element. 
  Equivalent functions exist for other types of variables. Their names are 
derived by replacing parts of the above function names that are not 
underlined by the appropriate variable types (e.g. scalar, vector, file, etc.). 
Functions stated above print to the programme standard output. Their 
equivalents whose names are derived by adding a prefix f, e.g. 
fprintmatrixvar, print to the shell output file (outfile)  
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  Variables with pre-defined meaning are variables designed for carrying specific data relevant for optimization. Some interpreter and calculator functions 
operate on specific variables with a pre-defined meaning, which therefore do not need to be specified as arguments. For example, there is a set of interfacing 
functions that operate only on a file variable infile, which have a function of general input file. 
  Of specific importance are variables that are responsible for data transfer between user definition of direct analysis (analysis block of the command file) and 
optimization algorithms. The table below lists these variables: 
 

 

Variable name [ element table dim. ] ( element dim. ) 
 

 

Meaning 
 

 

Scalar variables 
 

objectivemom [] < [numobjectives] > Value(s) of the objective function(s) at the current parameter values. 
constraintmom [numconstraints] Values of the constraint functions at the current parameter values. 

 

Vector variables 
 

parammom [] (numparam) Current vaules of parameters. 
measmom [] (nummeas) Current values of simulated measurements. 
gradobjectivemom [] < [numobjectives] > (numparam) Gradient of objective function(s) at the current parameter vlues 
gradconstraintmom [numconstraints] (numparm) Gradients of constraint functions at the current parameter values. 
gradmeasmom [nummeas] (numparam) Gradients of the simulated measurements at the current parameter values. 

 

Matrix variables 
 

der2objectivemom [] < [numobjectives] > (numparam,numparam) Second derivatives (Hessian) of the objective function(s) at the current 
parameter values. 

der2constraintmom [numconstraints] (numparam,numparam) Second derivatives (Hessian) of the constraint functions at the current 
parameter values. 

der2measmom [nummeas] (numparam,numparam) Second derivatives (Hessian) of the simulated measurements at the current 
parameter values. 

 
  Within the analysis block user must assign values to those of the above listed variables that are needed by the optimization algorithm. In this block the user 
defines the direct analysis, i.e. the way in which these variables are evaluated at current parameter values. These reside in the vector parammom when the 
analysis block is interpreted. If, for example, we have a constraint optimization problem and run an algorithm that requires the first derivatives, variables 
objectivemom, constraintmom, gradobjectivemom and gradconstraintmom must be calculated and set within the analysis block. 
  Each of the above variables has beside the current also its initial and optimal variant. The name of the initial variant is obtained by replacing suffix “mom” 
by “0” while the optimal variant is obtained by replacing the suffix with “opt”. Optimal variants are used by some algorithms for storing results, while the 
initial variants are currently not used. 
 
  In the above table, dimensions of variable element tables are stated in square brackets while dimensions of individual elements (i.e. vectors or matrices) are 
stated in round brackets. These are problem characteristic dimensions whose meaning is the following: 
 

Dimension Meaning 
numparam Number of optimization parameters 
numconstraints Number of constraint functions 
numobjectives Number of objective functions (usually equals 1) 
nummeas Number of measurements (applicable for inverse problems) 

 
  The above listed dimensions are not stored in shell user defined variables, but have a special storage. Each of them is accessed by its own expression evaluator 
function, the name of which is the dimension name with prefix “get”, e.g. getnumparam [ ] returns number of optimization parameters. These dimensions are 
set when a pre-defined variable or its element, for which a specific dimension is relevant, is created. For example, the command 
  setvector { gradconstraintmom [2] 3 { } } 
will set numparam to 3 and numconstraints to 2. There is also an inverse effect on the setvector function: if for example numparam is 4, we do not need to 
state this dimension when we create related pre-defined variables and their elements (vector parammom, for example): 
  setvector { parammom { 1.1  2.2  3.3  4.4 } } 
 
  For inverse problems, there are two more pre-defined variables used for storing input data for an inverse analysis, i.e. measurements and their deviations: 
 

Vector variable Meaning 
meas [] (nummeas) Vector of experimental measurements. 
sigma [] (nummeas) Vector of measurement errors. 
Further Information & Support  

  

Inverse mail: Documents related to Inverse: 

    Igor.Gresovnik@c3m.si 
Inverse R&Dhome page: 
    http://www.c3m.si/inverse/ 
Unframed version of this page: 
    http://www.c3m.si/inverse/invhome.html 

    http://www.c3m.si/inverse/doc/ 
Inverse manuals (on-line & downloadable): 
    http://www.c3m.si/inverse/doc/man/ 
Examples: 
    http://www.c3m.si/inverse/examples/ 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Short Example 

 

 Let us solve the following two-dimensional constraint optimization problem:   Lines 3 to 14 contain some preliminary definitions of new expression evaluator 
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The shell run with the following command file solves the problem: 
 
 
1. setfile{outfile quick.ct} 
 
2. *{ Objective and constraint functions: } 
3. ${f[x,y]: x^2+y^4 } 
4. ${g1[x,y]: (x-3)^6-y } 
5. ${g2[x,y]: 17-x^2-y } 
6. *{ Objective function derivatives: } 
7. ${dfdx[x,y]: 2*x } 
8. ${dfdy[x,y]: 4*y^3 } 
9. *{ First constraint function derivatives: } 
10. ${dg1dx[x,y]: 6*(x-3)^5 } 
11. ${dg1dy[x,y]: -1 } 
12. *{ Second constraint function derivatives: } 
13. ${dg2dx[x,y]: -2*x } 
14. ${dg2dy[x,y]: -1 } 
 
15. setvector{parammom 2 {} } 
16. newscalar{objectivemom} 
17. newscalar{constraintmom[2]} 
 
18. analysis 
19. { 
20. ..={x:getvector["parammom",1]} 
21. ..={y:getvector["parammom",2]} 
22. ..setscalar{objectivemom ${f[x,y]} } 
23. ..setvector{ gradobjectivemom 
24. ....{..${dfdx[x,y]}..${dfdy[x,y]} } 
25. ..} 
26. ..setscalar{constraintmom[1] ${g1[x,y]} } 
27. ..setvector{ gradconstraintmom[1] 
28. ....{..${dg1dx[x,y]} ${dg1dy[x,y]}..}  
29. ..} 
30. ..setscalar{constraintmom[2] ${g2[x,y]} } 
31. ..setvector{ gradconstraintmom[2] 
32. ....{..${dg2dx[x,y]} ${dg2dy[x,y]}..} 
33. ..} 
34. } 
 
35. setvector{parammom { 0 0 } } 
36. analyse{} 
 
37. optfsqp1{ 1 2 0 0 0 0.00001 0.00001 300 1 
38. ..{ 2 { 15 -3 } } 
39. ..{ 2 {} } 
40. ..{ 2 {} } 
41. } 
 

 
  With the setfile command in line 1 we create the shell output file outfile 
where functions will write their reports and error reports, and connect it with 
the file “quick.ct”. 
 
 

functions, which will be used later in the analysis block. Namely these are the 
objective (line 3) and both constraint functions (lines 4 and 5), derivatives of the 
objective function with respect to the first (line 7) and the second (line 8) 
parameter, and derivatives of the first (lines 10 and 11) and the second (lines 13 
and 14) constraint function with respect to both parameters. Note that x and y are 
just names of function arguments that refer to the first and the second 
optimization parameters, and can be chosen arbitrarily. 
  In lines 15 to 16 we create variables with pre-defined meaning parammom, 
objectivemom and constraintmom. The aim of this is merely to specify the 
relevant characteristic dimensions of the problem. These are stored in internal 
variables of the shell and are used when creating pre-defined variables, whose 
dimensions are by definition equal to these characteristic dimensions. By creating 
vector parammom, number of parameters numparam is defined, by creating 
scalar objectivemom number of objective functions numobjectives is defined and 
by creating scalar variable constraintmom number of constraints numconstraints 
is defined. Note that no values are assigned to these variables. The same effect as 
creating parammom would have for example creating paramopt, and creating 
vector gradconstraintmom could replace both creating vector parammom and 
scalar constraintmom, since both numconstraints and numparam are relevant for 
this variable. 
 
  Lines 20 to 33 form the analysis block, which is user definition of the direct 
analysis and is interpreted at every analysis run. This block specifies how 
relevant quantities like objective and constraint functions and their derivatives are 
evaluated at a specific set of optimization parameters. 
  In lines 20 and 21 current values of parameters are stored in expression 
evaluator variables x and y. These values are obtained from vector parammom 
where they are stored by the algorithm that requested execution of a direct 
analysis. 
  In lines 22 to 33 the relevant quantities are evaluated and stored into the 
appropriate pre-defined variables where the requesting algorithm can obtain 
them. Value of the objective function is stored into scalar objectivemom (line 22) 
its gradient is stored into vector gradobjectivemom (lines 23 to 25), values of the 
constraint functions are stored into scalar variable constraintmom (lines 26 and 
30), and their gradients to vector variable gradconstraintmom (lines 27 to 29 and 
31 to 33) Auxiliary functions that were defined in lines 3 to 14 of the 
initialization part are used, called with the current parameters x and y. In more 
realistic case this part would include running some numerical simulation at the 
current parameters, the necessary interfacing with the simulation programme (for 
updating simulation parameters and reading results) and possibly some 
housekeeping for deriving final values from the simulation results.  
 
  A test analysis at parameters [ ] T0,0  is run in line 36 by the analyse function. 
This function takes parameter values from vector parammom; therefore this 
vector is set in line 35. 
  Finally, the problem is solved using function fsqp1, which runs the feasible 
sequential quadratic programming optimization algorithm (lines 37 to 41). This 
function requires nine numerical arguments, namely number of objective 
functions, number of non-linear inequality constraints, number of linear 
inequality constraints, number of non-linear equality constraints, number of 
linear equality constraints, final norm requirement for the Newton direction, 
maximum allowed violation of nonlinear equality constraints at an optimal point, 
the maximum number of iterations, and information whether gradients are 
provided, and three vector arguments, namely initial guess and lower and upper 
parameter bounds.  
 
  Let’s say that the above command file has been saved as “opt.cm” and that the 
Inverse executable is named “inverse”. We can run the file by 
  inverse opt.cm 
which solves the problem. The report including final results can then be checked 
in the file “quick.ct”. 
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Legend for command file code: 
  pre-defined file interpreter function 
  user-defined file interpreter function 
  expression evaluator (calculator) expression 
  user-defined calculator function or variable 
  pre-defined calculator functions 
  calculator function defined via definefunction 
  user-defined shell variable 
  shell variable with a pre-defined meaning 
  character or string with special meaning 
 


