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6. OPTIMIZATION AND INVERSE ANALYSES 

6.1 Definition of Optimization Problem and its Solution 

6.1.1 Basic Terms 

We state the optimization problem quite generally as  
 
minimise  ( ) nf RI, ∈xx   
subject to  ( ) 0,ic i I≤ ∈x  (6.1) 

and  ( ) 0,jc j E= ∈x ,  
where  , 1, 2, ...,k k kl x u k n≤ ≤ =  .  
 
Function f is called the objective function, ci and cj are called constraint functions 

and lk and uk are called upper and lower bounds. The second and third line of the equation 
are referred to as inequality and equality constraints, respectively (with I and E being the 
corresponding inequality and equality index sets). We will collectively refer to f, ,ic i I∈  
and  as constraint functions. Sometimes the algorithm can in addition take the 
advantage of explicitly stated eventual linear constraint functions, such as in the case of 
fsqp. 

,ic i E∈

The set of points in which all constraints are satisfied is called feasible region. 
Solution of the problem is contained in the feasibleregion. 
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6.1.2 Installing and running the optimization program Inverse 

 
In order to run Inverse, you need an executable for your platform and a I.G.’s 

software home directory referred to as ighome (which is default name for this directory). 
The executable is usually put to ighome.  

 
Installation procedure is simple: 

1. Copy the I.G.’s software home directory (ighome) somewhere on your 
hard disk, (e.g. in “c:\” on windows, in this case the I.G.’s software home 
would be “c:\ighome”). The location must be such that all users have read 
& write access to files in the directory. 

2. Set the value of environment variable IGHOME to the location of the 
I.G.’s software directory (ighome). Note that the case matters on some 
platforms. The environment variable must be created if it does not yet 
exist, otherwise its value must be changed such that it contains the 
absolute path of ighome. 

3. Add the bin subdirectory of the software home directory (ighome) to the 
path environment variable. You can usually use the previously defined 
variable IGHOME (e.g. %IGHOME%\bin on Windows or $IGHOME/bin 
on Unix-like systems) to refer to this directory. 

4. Copy the executable for your platform to the bin subdirectory of ighome. 
5. Now you can run the program in a terminal window. Usually you will 

have to re-open the terminal window so that the new environment 
variables will take effect. 

 
You run Inverse by typing the name of its executable followed by command-line 

arguments. Usually the first (and often the only) argument is the name of the command 
file (or path, if the file is not contained in the current directory). Command file must 
contain instructions that are executed by Inverse. 

 
On Windows, for example, provided that the file name of Inverse executable is 

inverse.exe and there is a command file named opt.cm in the current directory, you would 
run the program in the following way: 

 
inverse opt.cm 

 
The program, software home directory and some additional files can be 

downloaded from the download section of the Inverse home page. 
 

http://www.c3m.si/inverse/download/frame.html
http://www.c3m.si/inverse/download/index.html
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6.1.3 Definition of the Problem in the Command file 

The optimization problem and its solution procedure must be defined in the shell 
command file, which is interpreted by the interpreter. 

The command file typically consists of three parts: the preparation part, the 
analysis block and the final action part. In the preparation part variables are typically 
allocated, data initialized and functions defined for use at a later time. The analysis block 
defines how direct analysis is performed. This block is interpreted every time the direct 
analysis is performed, either run from within some algorithm or as a consequence of user 
request. In the action part the optimization algorithms that lead to problem solution are 
run. Test analyses at different parameter sets or some other tests (e.g. tabulating of the 
objective function) can also be run in this part. 

The preparation part and analysis block can usually be swapped. Individual 
allocations and definitions can be performed right before they are used, although the 
command file usually looks clearer if this is done in one place. The user must be careful 
about putting definitions and allocations in the analysis block because this block is 
iteratively interpreted. What concerns tasks that do not need to be performed in every 
analysis, it is better if they are invoked outside the analysis block so that they are 
performed only once. 

6.1.4 Defining the Direct Analysis 

The term “direct analysis” refers to the evaluation of the objective and constraint 
functions and possibly their gradients at a given set of optimization parameters. User 
defines how the direct analysis is performed in the analysis block of the shell command 
file. This is the block of code in the argument block of the analysis command, i.e. within 
the curly brackets that follow this command. 

The analysis block is interpreted by the shell interpreter every time the direct 
analysis is performed. Direct analysis can be called by an optimization algorithm or by 
some other function invoked by the interpreter. Typical examples are tabulating functions 
or the analyse function for performing test direct analyses. 

Data transfer between the direct analyses and the functions that invoke them is 
implemented through global shell variables with a pre-defined meaning. The shell takes 
care that the current set of optimization parameters is always in the vector variable 
parammom when the direct analysis is invoked. In the analysis block the user can 
therefore obtain parameter values from this variable using the interpreter and expression 
evaluator functions for accessing variables. In the similar way it is expected that after the 
direct analysis is performed its results will appear in the appropriate global shell 
variables. User must take care of that in the analysis block by storing results in these 
variables. For example, value of the objective function must appear in scalar variable 
objectivemom, values of constraint functions must appear in scalar variable 
constraintmom, objective function gradient in vector variable gradobjectivemom, 
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gradients of constraint functions in vector variable gradconstraintmom, simulated 
measurements (in the case of inverse analyses) in vector variable measmom, etc. These 
variables with a pre-defined meaning are treated just like other user-defined variables and 
the same functions can be used for their manipulation. There are however some 
particularities in behaviour of variable manipulation functions in the case of variables 
with a pre-defined meaning. Rules are more or less the same, there is only some 
additional intelligence incorporated, which enables user not to specify dimensions that 
are already known to the shell. For details, see the “Shell Variables with a Pre-defined 
Meaning” chapter of the “User Defined Variables in the Optimization Shell Inverse” 
manual. 

Within the analysis block the user is expected to run a numerical simulation with 
parameters found in vector parammom, combine its results to evaluate the requested 
function values (objective and constraint functions and their derivatives) and store these 
results in the appropriate variables with a pre-defined meaning. This can include a 
number of sub-tasks, for example parameter dependent domain transformation in the case 
of shape optimization problems (this is reduced to finite element mesh transformation in 
some cases). Interfacing the simulation programme, i.e. changing input data according to 
parameter values, running the programme and obtaining results, is usually an important 
issue, as well as combining of these partial results according to problem definition in 
order to derive final results. Several modules of the shell provide tools for performing 
such sub-task, and the user can combine these tools using the file interpreter according to 
the character of problems that are being solved. 

All tools and algorithms of the shell are accessed through the shell file interpreter. 
This, together with the expression evaluator (the “calculator”) and interpreter flow 
control functions, gives the user a great flexibility at defining different optimization 
problems and also the solution procedures. The shell is in the first place designed for use 
with simulation programmes. For test purposes, however, the user can define 
optimization problems in such way that evaluation of objective and other functions do not 
include numerical simulation. The functions are in this case defined analytically using 
shell variables and expression evaluator. Such examples can be found in the directory of 
training examples (subdirectory “opt”). 

6.1.5 Implicit Gradient Calculation 

Some optimization algorithms need gradients of the objective and constraint 
functions beside their values. Most commonly, these should be calculated in the analysis 
block and stored in the appropriate pre-defined variables (e.g. gradobjectivemom or 
gradconstraintmom, see the manual on variables, chapter on pre-defined variables). This 
essentially means that the algorithm for calculation of the objective and constraint 
functions must be differentiated with respect to the design parameters. This is sometimes 
difficult to achieve, especially when some numerical simulation is used as a “black box” 
and the user does not have access to its source code. 
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The derivatives can always be obtained numerically e.g.1 by sequentially 
perturbing values of individual parameters, calculating the functions at perturbed 
parameters and dividing the difference with respect to the response at original parameters 
by the perturbation (i.e. difference in parameter value or step size). This can be eventually 
programmed within the analysis block of the interpreter. Doing so, however, can 
significantly reduce the clearness and readability of the analysis block. 

The tools have been providing for automatic implicit numerical calculation of the 
derivatives. When implicit derivative calculation is switched on, on any request for 
performing the analysis at given parameter values, the (non-derivative) analysis is 
actually performed with the original and perturbed parameter values. Numerical 
approximation of gradients of the objective and constraint functions is calculated on the 
basis of the results and stored to the appropriate pre-defined variables (most commonly 
gradobjectivemom and gradconstraintmom) together with function values at the original 
parameters of the request (objectivemom and constraintmom are commonly used to store 
these). 

The interpreter functions for providing implicit numerical gradient calculation are 
described below. 

6.1.5.1 analysisnumgradfdvec { stepvec } 

Installs the implicit numerical calculation of gradients of the objective and 
constraint functions (if defined) with respect to optimization parameters by the forward 
difference scheme. This applies to the functions that are calculated by the direct analysis 
direct analysis, which includes interpretation of the analysis block. stepvec must be a 
vector value argument that specifies the step size for each parameter. Its dimension must 
therefore be the same as the number of parameters (i.e. the dimension of the pre-defined 
vector parammom). If stepvec is not specified, then the default step size (10-4) is taken for 
derivation with respect to all parameters. It is usually a very bad idea not to specify the 
step sizes because the accuracy of the derivatives depend essentially on it, and the 
optimal step size may vary drastically from case to case since it depends on scaling of the 
design parameters and on the level of noise of the differentiated functions. 

After the call to the function, every direct analysis at a given set of parameters is 
replaced by a number of plain analyses. The first one is performed at the requested 
parameters and n others are performed at the parameter sets in which one parameter is 
perturbed by the appropriate step size as specified by stepvec, n being the number of 
parameters. After this, the function values calculated with the requested parameter values 
are stored as usual (e.g. in the pre-defined variables objectivemom or/and 
constraintmom). In addition, numerical approximations to the parameter gradients of 
these values are calculated and stored at the appropriate place2 (e.g. in the pre-defined 
                                                 
1 This scheme is called the finite difference method. There are also more complex schemes for numerical 
derivative calculation, all of which include repeating calculation of function values at a number of 
perturbed parameters, but differ significantly in sampling strategies and underlying mathematics. 
Description of these schemes exceeds the scope of this manual. 
2 This would normally be done explicitly by the appropriate interpreter code in the analysis block. 
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variables gradobjectivemom and gradonstraintmom). See the manual on variables, 
chapter on pre-defined variables for more details regarding the meaning of specific pre-
defined variables and rules for their manipulation. 

The accuracy of the numerically calculated derivatives crucially depends on the 
step size. The derivative calculation is mathematically exact for linear functions, and 
therefore there are two sources of error. The first one is because the function is normally 
not linear and this contributes larger errors where the step size gets large and the function 
deviates more from the linear model. The second source is due to the noise in the function 
value. If there is no other source of noise, at least the function values are inexact because 
of finite precision that is used for all computer operations. Errors in calculated derivatives 
that come from this source are amplified when the step size is reduced, and die away 
when the step size gets large compared to the amplitude of noise. Therefore, there exists 
an optimal step size which is large enough with respect to noise amplitude and yet small 
enough that the function is adequately approximated by a linear model within the step 
size. The user should provide the step size that is not necessarily optimal, but is a good 
compromise for both sources of error. When it is hard to estimate the level of noise, the 
step size should be taken that is a bit smaller than the tolerance for the optimum, and the 
tolerance should be set rather conservatively in order to avoid failure of algorithms due to 
excessive noise. 

6.1.5.2 analysisnumgradfd { stepsize } 

Does the same as analysisnumgradfdvec, except that the step size for all 
parameters are set equal to stepsize, which is a scalar value argument. If stepsize is not 
specified then a default step size (10-4) is taken. However, it is usually a very bad idea not 
to specify the step size because the accuracy of the derivatives depend essentially on it, 
and the optimal step size may vary drastically from case to case since it depends on 
scaling of the design parameters and on the level of noise of the differentiated functions. 

6.1.5.3 analysisplain {  } 

Cancels the implicit numerical differentiation of the objective function (and 
constraint functions if defined) and places instead the original analysis function, which 
performs the direct analysis (including interpretation of the analysis block) at only one set 
of design parameters. 

6.1.5.4 analysisnumgradprn { doprn } 

If the counter value argument doprn is different than 0 then reporting on gradient 
calculation is switched on, which can be used for control. 
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6.2 Optimization algorithms 

6.2.1 optfsqp { numob numnonineq numlinineq numnoneq numlineq 
eps epseqn maxit grad   initial  < lowbound  upbound >  } 

Performs the fsqp (feasible sequential quadratic programming) optimization 
algorithm of Craig Lawrence, Jian L. Zhou and Andre Tits, which is the basic and most 
powerful nonlinear programming algorithm built in Inverse. 

Arguments: 
• numob – number of objective functions (should normally be 1) – counter value 

argument. 
• numnonineq - number of non-linear inequality constraints – counter value 

argument. 
• numlinineq -  number of linear inequality constraints – counter value argument. 
• numnoneq -  number of non-linear equality constraints – counter value argument. 
• numlineq -  number of linear equality constraints – counter value argument. 
• eps -  final norm requirement for the Newton direction – scalar value argument. 
• epseqn -  maximum violation of nonlinear equality constraints at an optimal point.  

Both criteria must be satisfied to stop the algorithm (the second one is in effect 
only if there are equality constraints) – scalar value argument. 

• maxit - maximum number of iterations – counter value argument. 
• grad - specifies if gradients are provided by the direct analyses (1) or should be 

calculated numerically (0) – counter value argument. 
• initial - initial guess – vector value argument. 
• lowbound – lower  bounds on parameters – vector value argument. 
• upbound - upper  bounds on parameters – vector value argument. 

 
If vector value arguments lowbound and upbound are not specified then 

parameters are not bounded below or above. If they are specified then those components 
for which the corresponding components of lowbound are greater or equal to the 
corresponding components of upbound are not bounded. 

 
Note: 
Inequality constraints are stated as in (6.1), namely 
 
 
 ( ) Ijc j ∈≤ ,0x , (6.1)
 

where cj are the constraint functions whose value is expected from the analysis function.  
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In variables which hold values or derivatives of constraint functions, these must 

appear in the appropriate order, the same as in the argument block of the function. First 
must be non-linear inequality constraints, then linear inequality constraints, then non-
linear equality constraints and finally linear equality constraints (if any of these are 
specified, of course). 

Remarks: 
See introductory section for how the problem should be defined! You can also 

take a look at inquick2.pdf, which can be obtained at 
http://www.c3m.si/inverse/doc/other/index.html . 
A detailed description of the fsqp algorithm can be found at 
http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html . 
 
 

6.2.2 minsimp { tolx tolf maxit printlevel initial step } 

Performs the non-gradient unconstrained minimization algorithm based on the 
Nelder-Mead simplex method. This is a non-gradient algorithm suitable also for non-
differentiable and even non-continuous functions that have a well defined unconstrained 
minimum. The basic principle is similar to the Nelder-Mead simplex algorithm. 

• tolx - tolerance on optimal parameters (approximate). It is a vector value 
argument, a tolerance is specified for each co-ordinate. If vector dimension is less 
than the problem dimension then missing components are replaced by the first 
component. For components that are 0, no tolerance is imposed. 

• tolf - tolerance on on optimal value of the objective function (scalar argument). If 
it is 0 then this tolerance is not imposed. 

• maxit – maximal number of iterations (counter argument) 
• printlevel – the level of output produced (counter argument). 0 or less is replaced 

by 2. 
o 1 - data about arguments and optimization results are printed. 
o 2 – basic information about iterations and more detailed information about 

results are also printed. 
o 3 – simplex (co-ordinates of apices and values of the objective function) is 

also printed during iterations and at the 
o 4 – Complete results are printed, included values of the constraint 

functions 
o 5 – at the end, all results of all analyses are also printed. Sets of results in 

all simplices over al iterations are also printed in the list form readable by 
Mathematica. 

• initial – initial guess (vector value parameter) 

http://www.c3m.si/inverse/doc/other/index.html
http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html
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• step – step sizes in different directions used to create the initial simplex (vector 
value parameter) 
 
Optimal parameters are written to paramopt and optimal value of the objective 

function to objectiveopt. Storage of other functions or gradients is not guaranteed. 
 
Remarks: 
See introductory section for how the problem should be defined! You can also 

take a look at inquick2.pdf, which can be obtained at 
http://www.c3m.si/inverse/doc/other/index.html . 
 

6.2.3 nlpsimp { numconstr tolx tolf tolconstr maxit printlevel initial 
step }IOptLib  

Performs the basic non-linear constraint simplex optimization algorithm of 
Igor Grešovnik. This is a non-gradient algorithm suitable also for non-differentiable and 
even non-continuous functions that have a well defined constrained minimum. The basic 
framework is similar to the Nelder-Mead simplex algorithm. 

• numconstr - the number of constraints (equality + inequality), counter argument  
• tolx - tolerance on optimal parameters (approximate). It is a vector value 

argument, a tolerance is specified for each co-ordinate. If vector dimension is less 
than the problem dimension then missing components are replaced by the first 
component. For components that are 0, no tolerance is imposed. 

• tolf - tolerance on on optimal value of the objective function (scalar argument). If 
it is 0 then this tolerance is not imposed. 

• tolconstr - tolerance for constraint residuum (scalar argument; if it is 0 then none 
of the constraints may be violated in the solution) 

• maxit – maximal number of iterations (counter argument) 
• printlevel – the level of output produced (counter argument). 0 or less is replaced 

by 2. 
o 1 - data about arguments and optimization results are printed. 
o 2 – basic information about iterations and more detailed information about 

results are also printed. 
o 3 – simplex (co-ordinates of apices and values of the objective function) is 

also printed during iterations and at the 
o 4 – Complete results are printed, included values of the constraint 

functions 
o 5 – at the end, all results of all analyses are also printed. Sets of results in 

all simplices over al iterations are also printed in the list form readable by 
Mathematica. 

• initial – initial guess (vector value parameter) 

http://www.c3m.si/inverse/doc/other/index.html
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• step – step sizes in different directions used to create the initial simplex (vector 
value parameter) 
 
Optimal parameters are written to paramopt and optimal value of the objective 

function to objectiveopt. Storage of other functions or gradients is not guaranteed. 
 
Note: 
Inequality constraints are stated as 
 
 ( ) Ijc j ∈≤ ,0x  (6.2) 
 

where cj are the constraint functions whose value is expected from the analysis function.  
 
Remarks: 
See introductory section for how the problem should be defined! You can also 

take a look at inquick2.pdf, which can be obtained at 
http://www.c3m.si/inverse/doc/other/index.html . 
 

6.2.4 NLPSimpS, nlpsimps  { numconstr tolx tolf tolconstr maxit 
printlevel initial step }  

A variant of the constraint nonlinear simplex method of Igor Grešovnik which 
ranges analysis results with violated constraints by the sum of constraint residuals. This is 
a non-gradient algorithm suitable also for non-differentiable and even non-continuous 
functions that have a well defined constrained minimum. The basic principle is similar to 
the Nelder-Mead simplex algorithm. 

Arguments are the same as for nlpsimp. 
 

6.2.5 nlpsimpbound0 { numconstr tolx tolf tolconstr maxit printlevel 
initial step bignum < lowbounds upbounds bignum < kpen kconstr < 
numviolations maxresid > > > }IOptLib   

Performs the basic non-linear constraint simplex optimization algorithm of 
Igor Grešovnik. This is a non-gradient algorithm suitable also for non-differentiable and 
even non-continuous functions that have a well defined constrained minimum. The basic 
framework is similar to the Nelder-Mead simplex algorithm. 

• numconstr - the number of constraints (equality + inequality), counter argument  

http://www.c3m.si/inverse/doc/other/index.html
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• tolx - tolerance on optimal parameters (approximate). It is a vector value 
argument, a tolerance is specified for each co-ordinate. If vector dimension is less 
than the problem dimension then missing components are replaced by the first 
component. For components that are 0, no tolerance is imposed. 

• tolf - tolerance on on optimal value of the objective function (scalar argument). If 
it is 0 then this tolerance is not imposed. 

• tolconstr - tolerance for constraint residuum (scalar argument; if it is 0 then none 
of the constraints may be violated in the solution) 

• maxit – maximal number of iterations (counter argument) 
• printlevel – the level of output produced (counter argument). 0 or less is replaced 

by 2. 
o 1 - data about arguments and optimization results are printed. 
o 2 – basic information about iterations and more detailed information about 

results are also printed. 
o 3 – simplex (co-ordinates of apices and values of the objective function) is 

also printed during iterations and at the 
o 4 – Complete results are printed, included values of the constraint 

functions 
o 5 – at the end, all results of all analyses are also printed. Sets of results in 

all simplices over al iterations are also printed in the list form readable by 
Mathematica. 

• initial – initial guess (vector value parameter) 
• step – step sizes in different directions used to create the initial simplex (vector 

value parameter) 
• lowbounds – vector of lower bounds on optimization parameters, see explanation 

below (vector value parameter) 
• upbounds – vector of upper bounds on optimization parameters, see explanation 

below (vector value parameter) 
• bignum – large positive value which is used for deciding whether components of 

lower and upper bound vectors actually define bound constraints, see explanation 
below (vector value parameter) 

• kpen – factor for penalty generating function, default 1.0; must be non-negative; if 
non-zero then parameter bounds are handled by simultaneous parameter 
transformation (such that bound constraints are always satisfied in all points in 
which the original analysis function is called) and addition of penalty terms 
according to bound violations of untransformed parameters (scalar value 
parameter) 

• kconstr – factor for constraint generating function, default 0.0; must be non-
negative; if non-zero then parameter bounds are converted to normal constraints 
that are added to problem definition (scalar value parameter) 

• numviolated – if non-zero then the number of violated constraints is used as the 
first criterion in comparison of analysis results (counter value parameter) 
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• maxresid – if non-zero then the maximal residuum (positive constraint function) is 
used in comparison of results instead of the sum of residua; either of these criteria 
is used right before comparison of the objective function values (counter value 
parameter) 
 
Bound constraints are specified by vector arguments lowbounds and upbounds, 

whose components specify lower and upper bounds, respectively, for individual 
components of the parameter vector.  

If for some index the specified lower bound is larger than the corresponding upper 
bound then it is understood that no bounds are defined for this component of the 
parameter vector.  

If absolute value of some component of either lower or upper bound is greater 
than bignum, then it is also assumed that the corresponding bound is not defined (which 
allows to define for a given component of the parameter vector only lower or only upper 
bound). If there are components of the parameter vector for which only lower or only 
upper bound is defined, then the large positive number bignum must be specified such 
that components of lower or upper bound vectors whose absolute vlue id larger than 
bignum are not taken into account. 

bignum can be set to 0. In this case, the default value is taken, but this value can 
not fit the actual problem that is solved. 

 
If lowbounds and upbounds are not specified then the normal nonlinear constraint 

simplex algorithm is performed. 
 
Optimal parameters are written to paramopt and optimal value of the objective 

function to objectiveopt. Storage of other functions or gradients is not guaranteed. 
 
Notes: 
Inequality constraints are stated as 
 
 ( ) Ijc j ∈≤ ,0x  (6.3) 
 

where cj are the constraint functions whose value is expected from the analysis function.  
 
Bound constraints specify that 
 
 i il x ri≤ ≤  , (4) 
 

where l is a vector of lower bounds (argument lowbounds) ant r is a vector of upper 
bounds (argument upbounds). Each bound (lower or upper) therefore defines an 
additional constraint. Corresponding to lower and upper bounds, constraint functions can 
be assigned  e.g. in the following way: 
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In standard form for definition of bound constraints in Inverse, neither lower nor 

upper bound on a given component of the parameter vector is considered defined if the 
corresponding component of the lower bound vector is larger than the corresponding 
component of the upper bound vector, i.e. if .  i il r>

In addition, a lower or uper bound is considered unspecified if absolute value of 
the corresponding component of the lower or upper bound vector is larger than some 
specified large positive number (argument bignum, denoted by B). 

If the corresponding components of the lower and upper bound vectors are the 
same, then this defines an equality constraint. To summarize, lower and upper bounds on 
optimization variables (parameters) are defined conditially in the following way: 

 

 
i i i i

i i i i

i i i i

l B l r l x

r B l r x

r B l r x

i

i

i

r

l

< ∧ < ⇒ <
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< ∧ = ⇒ =

 . (6) 

 
Handling of bound constraints 
Two ways of handling bound constraints can be combined and are governed by 

arguments kpen and kconstr (if not specified, the default values taken are 1 and 0, 
respectively). These coefficients must be non-negative. A zero coefficient means that the 
corresponding method of handling bound constraints is not imposed. 

Coefficient kpen corresponds to transformation of parameters with addition of 
penaty terms for violated bound constraints. The original analysis is always performed at 
transformed parameters that satisfy all bound constraints (original parameters taht do not 
satisfy bound constraints are simply shifted on bounds). In addition, penalty terms are 
added to the objective function for each bound constraint that is violated by non-
transformed parameters. The penalty term is zero for nonviolated constraints, and grows 
linearly with the magnitude of violation of a particular constraint, with factor kpen. 

Coefficient kconstr corresponds to conversion of bound constraints to usual 
constraints that are added to the original problem. Each bound constraint is represented 
by linear constraint function with coefficient kconstr, whose argument is a function of the 
difference between the parameter component and the corresponding bound (the sign is 
taken according to whether there is a lower or upper bound in question). The solution of 
the modified problem therefore satisfies the original constraints plus the bound 
constraints. 

Defining (i.e. setting non-zero) both kpen and kconstr is currently considered the 
best practice. Since bound constraints are convex it is recommendable that kconstr is set 
high enough that bound constraint functions grow more rapidly than other constraint 
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functions in the domain that is rougly defined as the domain between the starting guess 
and the closest point in the feasible region. 

 
Remarks: 
See introductory section for how the problem should be defined! You can also 

take a look at inquick2.pdf, which can be obtained at 
http://www.c3m.si/inverse/doc/other/index.html . 
 

6.2.6 solvopt { numconstr numconstreq tolx tolf tolconstr maxit 
lowgradstep initial } 

Performs the SolvOpt optimization algorithm of Alexei Kuntsevich & Franz 
Kappel. This algorithm is particularly suited for non-smooth differentiable functions. 

• numconstr - the number of constraints (equality + inequality), counter argument. 
• numconstreq - the number of equality constraints. If there are equality constraints, 

these must be returned at the ens (after inequality constraints), counter argument. 
• tolx - relative tolerance on optimal parameters (infinity norm), scalar argument. 
• tolf - relative tolerance on on optimal objective function, scalar argument. 
• tolconstr - tolerance for constraint residuum (maximal violation of any constraint 

– absolute value for equality constraints), scalar argument. 
• maxit – maximal number of iterations, counter argument. 
• lowgradstep – the smallest step size for numerical calculation of gradients. If 0 

then gradients provided by the analysis function are used, otherwise the algorithm 
will perform numerical differentiation of the constraint functions, scalar 
argument. 

• initial – initial guess (vector value parameter), vector argument. 
 
Optimal parameters are written to paramopt and optimal value of the objective 

function to objectiveopt. Storage of other functions or gradients is not guaranteed. 
 
Warning: 
Inequality constraints are stated as 
 
 
 ( ) Ijc j ∈≤ ,0x , (6.7) 
 

where cj are the constraint functions whose value is expected from the analysis function.  
 
Remarks: 
See introductory section for how the problem should be defined! You can also 

take a look at inquick2.pdf, which can be obtained at 

http://www.c3m.si/inverse/doc/other/index.html
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http://www.c3m.si/inverse/doc/other/index.html . 
A detailed description of the SolvOpt algorithm can be found at 
http://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/ . 
 
 

6.3 Older functions for optimization 

 

6.3.1 inverse { methodspec params } 

This function performs different types of optimization algorithm. methodspec 
determines which optimization algorithm is used. It is followed by parameter 
specifications params, which are dependent on the type of algorithm used. 
 
 methodspec begins either with string 1d or nd, indicating whether we will solve 
one-dimensional (one parameter) or multi-dimensional problems, respectively. The 
second part of methodspec is a string that specifies the method more precisely. Method 
and parameter specifications for different methods are described below. 

6.3.1.1 inverse { 1d  parabolic  x0 step0 tol maxitbrac maxit } 

Performs minimization of the objective function of one parameter. Successive three 
points quadratic approximations of the objective function are used where possible. The 
minimization is performed in two steps. 

In the first step, the interval containing a local minimum is searched for. This is 
achieved by searching for combination of three points such that the middle point has the 
lowest value of the objective function. The first point is given by the user (x0), and the 
second two points are obtained by adding the initial bracketing step (step0) to that point 
once and twice, respectively. Then the three points are moved, if necessary, until the 
bracketing condition is reached (i.e. the middle point has the lowest value of the objective 
function). 

In the second step, the bracketing interval that contains the three bracketing points 
is narrowed in such a way that the bracketing condition remains satisfied. In each 
iteration a new point is added in the larger of the two intervals defined by the three 
bracketing points. Among four points we obtain this way, those three which satisfy the 
bracketing condition and define the smallest interval are kept for the next iteration. The 
point that is added is usually chosen by finding the minimum of quadratic parabola that 

http://www.c3m.si/inverse/doc/other/index.html
http://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/
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through the current bracketing points. This is not done if one of the two intervals 
becomes much smaller, since in such cases successive quadratic approximations can 
converge slowly. 

x0 is the initial point, and step0 is the initial step of the bracketing stage. The 
second and the third point of the initial bracketing triple are obtained by adding step0 to 
x0 once and twice, respectively. tol is the tolerance for function minimum. The algorithm 
terminates when the difference between the highest and the lowest value of the objective 
function in the current three bracketing points is below tol. maxitbrac is the maximal 
allowed number of iterations at searching for bracketing triple. If the algorithm fails to 
find the three points satisfying the bracketing condition in maxitbrac iterations, it 
terminates and reports an error. maxit is the maximal allowed number of iterations in the 
second stage. 

6.3.1.2 inverse { nd  simplex  tol maxit startguess } 

 
Obsolete! Use other functions instead! 

 
Performs minimization of the objective function by simplex method. Apices of a 

simplex is successively moved in such a way that the simplex moves and shrinks toward 
function minimum. Simplex is a geometrical body in an n-dimensional space that has n+1 
dimensions. 

tol is tolerance for function minimum. The algorithm terminates when the 
difference between the greatest and the least value of the objective function in simplex 
apices becomes less than tol. maxit is the maximal allowed number of iterations. If the 
minimum is no reached in maxit iterations, the algorithm terminates and reports an error. 
startguess is the starting guess, containing the initial simplex. This must be a matrix of 
dimensions numparam+1 x numparam. Rows of this matrix represent apices of the initial 
simplex. 

 
Warning: 
Use optsimplex instead of this command! 
inverse is becoming an obsolete command and will be replaced by some other 

commands in the future. However, the command will remain implemented in the 
programme and will behave in the same way through a lot of future versions. 

 

6.3.2 optfsqp1 { numob numnonineq numlinineq numnoneq numlineq 
eps epseqn maxit grad { initial } { lowbound } { upbound } } 

Obsolete! Use optfsqp instead! 
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Performs the fsqp (feasible sequential quadratic programming) optimization 
algorithm of Craig Lawrence, Jian L. Zhou and Andre Tits, which is the basic and most 
powerful nonlinear programming algorithm built in Inverse.  

numob is the number of objective functions (usually one), numnonineq the 
number of non-linear inequality constraints, numlinineq the number of linear inequality 
constraints, numnoneq the number of non-linear equality constraints and numlineq the 
number of linear equality constraints. eps is the final norm requirement for the Newton 
direction and epseqn maximum violation of nonlinear equality constraints at an optimal 
point. Both criteria must be satisfied to stop the algorithm (the second one is in effect 
only if there are equality constraints). maxit is the maximum number of iterations. grad 
specifies if gradients are provided by direct analyses (1) or should be calculated 
numerically (0). initial is the initial guess and lowbound and upbound are vectors of 
lower and upper bounds on parameters. All three vectors must be in curly brackets. The 
components which are not specified in the lowbound or upbound vectors are not bounded 
below or above, respectively. Dimensions must be specified for all three vectors, and all 
components must be specified for initial. 

 

6.3.3 optsimplex { tol maxit startguess } 

 
Obsolete! Use minsimp instead! 
 
Performs unconstrained minimization by the Nelder-Mead simplex method. 

Scalar argument tol is a tolerance, counter argument maxit is maximal number of 
iterations and matrix argument startguess is a matrix whose rows are co-ordinates of 
apices of the initial simplex. One should take care that startguess represents a simplex 
with non-zero volume, which means that all vectors along the edges of the simplex 
joining in a given common apex are linearly independent.  
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6.4 Auxiliary tools 

6.4.1 Built-in test analysis problems 

6.4.1.1 testanalysis { < testname > } 

Performs a direct analysis for one of the built-in test problems. Normally this function 
should be run within the analysis block. 

The function extracts analysis parameters (optimization parameters and 
calculation request flags) from pre-defined interpreter variables and performs calculation 
of the response according to a chosen internal test problem definition. After calculation, it 
stores the results to the appropriate pre-defined interpreter variables. 

If a string argument testname is specified then a particular test is performed. 
Otherwise, the default test with 2 parameters and 2 constraint functions is solved. 

6.4.2 Testing the Direct Analysis 

6.4.2.1 analyse { < param calcobj calcconstr calcgradobj calcgradconstr > 
} 

Performs the direct analysis at the specified parameter param. 
If param is not specified then the direct analysis is performed at parameters stored 

in the pre-defined variable parammom. The pre-defined vector parammom must therefore 
be set in this case before the function is called. The values of the pre-defined global 
variables that hold analysis results are printed to the programme’s standard output and 
output file. 

If the vector value argument param is specified then the analysis is performed at the 
specified parameters. In this case, the scalar value arguments calcobj, calcconstr, 
calcgradobj and calcgradconstr are the evaluation flags that define which response 
functions should be evaluated (they refer to the objective function, constraint function(s), 
gradient of the objective function and gradient(s) of the constraint function(s), 
respectively). 
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6.4.2.2 analysenoprint { < param calcobj calcconstr calcgradobj 
calcgradconstr > } 

The same as analyse {}, except that no output is generated. This function is 
predominantly intended for use in interfaces (e.g. in interface with Mathematica to define 
an analysis function that runs the analysis defined in Inverse).  

 

6.4.3 Tabulating Functions 

 

6.4.3.1 taban, taban1d { point0 point1 numpt centered factor scaling < 
printtab printparam printlist printobj printconstr printgradobj 
printgradconstr >  } 

Performs a one dimensional table of analyses with endpoints point0 and point1 
and prints the results according to specifications. 

Arguments: 
• point0 – starting point of the table in the parameter space. vector value 

argument. 
• point1 – end point of the table in the parameter space. - vector value 

argument. 
• numpt – Number of analysis points. - counter value argument. 
• centered – Flag for a centered table. If non-zero then the table is centered 

around the starting point point0. If table is centered with geometrically 
growing intervals then the interval lengths first fall from point1 reflected over 
point0 until point0, and then grow from point0 to point1. - counter value 
argument. 

• factor – Factor of interval length growth. If 0 or 1 then intervals between table 
points are uniform. If it is greater than 1 then intervals grow in such a way that 
each successive interval length is the previous length multiplied by factor. If it 
is smaller than 1 then factors fall in the same way. - scalar value argument. 

• scaling – Additional scaling factor by which intervals are multiplied. The 
factor can be used e.g. if we want the table extend a bit over some special 
point of interest which we set as endpoint. Regardless of its size, the table 
remains to be centered (if centered is non-zero) or starting in point0. - scalar 
value argument. 

• printtab – if non-zero then data is also printed in table form. - counter value 
argument. 
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• printparam – if non-zero then a table of parameters in sampled points is 
printed together with the corresponding table indices and factors defining 
relative position with respect to point0 and point1. - counter value argument. 

• printlist – if non-zero then data is also printed in list form. - counter value 
argument. 

 

6.4.3.2 taban2d { point0 point1 point2 numpt1 centered1 factor1 scaling1  
numpt2 centered2 factor2 scaling2 < printparam printlist printobj 
printconstr printgradobj printgradconstr >  } 

Performs a two dimensional table of analyses with endpoints point0 and point1 
and prints the results according to specifications. 

Arguments: 
• point0 – starting point of the table in the parameter space. vector value 

argument. 
• point1 – The first end point of the table, defines the first table direction 

together with point0. - vector value argument. 
• point2 – The second end point of the table, defines the second table direction 

together with point0. - vector value argument. 
• numpt1 – Number of analysis points (divisions) in the first direction. - counter 

value argument. 
• centered1 – Flag for a centered table in the first direction. If non-zero then the 

table is centered around the starting point point0. If table is centered with 
geometrically growing intervals then the interval lengths first fall from point1 
reflected over point0 until point0, and then grow from point0 to point1. - 
counter value argument. 

• factor1 – Factor of interval length growth in the first direction. If 0 or 1 then 
intervals between table points are uniform. If it is greater than 1 then intervals 
grow in such a way that each successive interval length is the previous length 
multiplied by factor. If it is smaller than 1 then factors fall in the same way. - 
scalar value argument. 

• scaling1 – Additional scaling factor by which intervals are multiplied in the 
first direction. The factor can be used e.g. if we want the table extend a bit 
over some special point of interest which we set as endpoint. Regardless of its 
size, the table remains to be centered (if centered is non-zero) or starting in 
point0. - scalar value argument. 

• numpt2 – Number of analysis points in the second direction. - counter value 
argument. 

• centered2 – Flag for a centered table in the second direction. - counter value 
argument. 

• factor2 – Factor of interval length growth in the second direction. - scalar 
value argument. 
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• scaling2 – Additional scaling factor by which intervals are multiplied in the 
second direction. - scalar value argument. 

• printtab – if non-zero then data is also printed in table form. - counter value 
argument. 

• printparam – if non-zero then a table of parameters in sampled points is 
printed together with the corresponding table indices and factors defining 
relative position with respect to point0 and point1. - counter value argument. 

• printlist – if non-zero then data is also printed in list form. - counter value 
argument. 

 

6.4.3.3 tab1d { kindspec point0 point1 numpt factor printparam  printmeas 
} 

Obsolete. Use taban1d instead. 
Runs a set of direct analyses along a line in the parameter space and prints the 

requested results to the programme's standard output and output file. kindspec is a string 
that specifies what kind of table of direct analyses should be made and can be either 
noncent or cent. noncent means that numpt direct analyses with sampling points on a line 
between point0 and point1 will be performed, while cent means that sampling points will 
lie on the line whose centre is point0 and one of its two endpoints is point1. point0 is the 
base point and point1 the final point in the parameter space. Both points must be 
specified as vectors of parameters. numpt specifies the number of sampling points. factor 
is the factor by which the distances between successive sampling points are extended. If 
factor is 1 then points will be equidistantly distributed, if it is different than 1 then the 
distances between successive points will decrease or increase from point0 towards point1. 
printparam and printmeas specify whether parameters and measurements should be 
printed, respectively; values different than zero indicate that the appropriate quantities 
should be printed. 

 
example: tab1d { cent 4 {0 2 3 4}  4 {2 0 4 3} 8 1  0 0 } 
 
- tab1d by Domen Cukjati. 
 

6.4.3.4 tab2d { kindspec point0 point1 numpt1 factor1 point2 numpt2 
factor2 printparam  printmeas } 

Obsolete. Use taban2d instead. 
Runs numpt1 x numpt2 direct analyses with sampling points being nodes of a 

planar grid of points, lying on a parallelogram in the parameter space, and prints the 
requested results to the programme's standard output and output file. kindspec is a string 
that specifies what kind of table of direct analyses should be made and can be either 
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noncent or cent. noncent means that sampling points will lie in the parallelogram defined 
by two vectors which are defined by basic point point0 and final points point1 and point2. 
cent on the other hand means that parallelogram is also defined by the same points, but 
basic point point0 lies in the middle of the parallelogram. Parallelogram is four times 
bigger in this case. All three points should be specified as vectors of parameters. numpt1 
specifies the number of sampling points in the first direction and numpt2 in the second 
one. factor1 is the factor by which the distance between successive sampling points in the 
first direction is extended and factor2 is for the second direction. If any factor is equal to 
1, points will be equidistantly distributed. printparam and printmeas specify whether 
parameters and measurements should be printed, respectively; values different than zero 
indicate that the appropriate quantities should be printed. 

 
example: tab2d { noncent 4 {0 0 3 4} 4 {1 0 3 4} 5 2  4 {0 1 3 4} 5 1 1 1} 
 
- tab2d by Domen Cukjati. 
 

6.4.3.5 linetab { kindspec args } 

Obsolete. Use taban1d instead. 
Runs a set of direct analyses along a line in the parameter space and prints the 

requested results to the programme's standard output and output file. kindspec is a string 
that specifies what kind of table of direct analyses should be made. The remaining 
arguments args specify the line along which the table is made, number of points, etc. 
kindspec can be either lin or exp. The meaning of the remaining arguments for different 
types of table is explained below. 

6.4.3.5.1 linetab { lin numpt ppar pmeas point1 point21 } 
Runs numpt direct analyses with sampling points equidistantly distributed along 

the straight line between point1 and point2. ppar and pmeas specify whether the 
parameters and measurements should be printed in table lines, respectively (values 
different than zero indicate that the appropriate quantities should be printed). In any case, 
before the print-out of the table values, parameters are printed that correspond to the 
sampling points along the line. Points are indexed by proportional factors from 0 (for 
point1) to 1 (for point2). 

6.4.3.5.2 linetab { exp numpt pppar pmeas factor point1 point2 } 
Runs numpt direct analyses with sampling points non-equidistantly distributed 

along the straight line between point1 and point2. factor is the factor for which the 
distance between the length of the successive sampling interval is extended. 

ppar and pmeas specify whether the parameters and measurements should be 
printed in table lines, respectively (values different than zero indicate that the appropriate 
quantities should be printed). In any case, before the print-out of the table values, 
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parameters are printed that correspond to the sampling points along the line. Points are 
indexed by proportional factors from 0 (for point1) to 1 (for point2). 

 
 
 
 
 
 
 
Older tabulating functions: 
 

6.4.3.6 tab1d0 { which val1 val2 numpt pobjective pmeas } 

Obsolete. Use taban1d instead. 
Runs a set of numpt direct analyses so that parameter which is varied between val1 

and val2 with a constant step. pobjective and pmeas specify if the objective function and 
measurements should be printed, respectively (values different than zero indicate that the 
appropriate quantities should be printed). 

At the sampling points, parameters other than which are taken from the pre-defined 
vector parammom. 

6.4.3.7 tab2d0 { whichx x1 x2 numptx whichy y1 y2 numpty pobjective 
pmeas } 

Obsolete. Use taban2d instead. 
Runs a set of numptx*numpty direct analyses organised in a two-dimensional table 

so that parameters whichx and whichy are changed. Parameter whichx is varied between 
x1 and x2 with numptx equidistant sampling values, and parameter whichy is varied 
between y1 and y2 with numpty equidistant sampling values. pobjective and pmeas 
specify if the objective function and measurements should be printed, respectively 
(values different than zero indicate that the appropriate quantities should be printed). 

At the sampling points, parameters other than which are taken from the pre-defined 
vector parammom. 

6.4.3.8 tabline0 { kindspec args } 

Obsolete. Use taban1d instead. 
Runs a set of direct analyses along a line in the parameter space and prints the 

requested results to the programme's standard output and output file. kindspec is a string 
that specifies what kind of table of direct analyses should be made. The remaining 
arguments args specify the line along which the table is made, number of points, etc. 
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kindspec can be either lin or exp. The meaning of the remaining arguments for both 
possibilities is explained below. 

6.4.3.8.1 tabline0 { lin numpt pobjective pmeas point1 point21 } 
Runs numpt direct analyses with sampling points equidistantly distributed along 

the straight line between point1 and point2. pobjective and pmeas specify if the objective 
function and measurements should be printed, respectively (values different than zero 
indicate that the appropriate quantities should be printed). 

6.4.3.8.2 tabline0 { exp numpt factor pobjective pmeas  point1 point2 } 
Runs numpt direct analyses with sampling points non-equidistantly distributed 

along the straight line between point1 and point2. pobjective and pmeas specify if the 
objective function and measurements should be printed, respectively (values different 
than zero indicate that the appropriate quantities should be printed). factor is the factor 
for which the distance between the length of the following sampling interval is extended. 

 

6.4.4 Test optimization problems 

 

6.4.4.1 installtestanalysis, insttestan { idspec testname }IOptLib  

Installs a test optimization problem from IOptLib. testname is the name that 
identifies the test problem to be installed, and idspec is a scalar variable element 
specification that specifies the address where problem ID is stored.  

The test problem that is installed by this function can be run by the testanalysis 
function.  

 
• idspec – specification of a scalar element in which problem ID is stored, scalar 

variable element specification.  
• testname – name of the test problem, string value argument  
• ... The remaining parameter depend on the particular test problem installed and 

provide eventual parameters that are necessary for that particular problem. A list 
of available test problems with necessary parameters is below. 
 
 

6.4.4.2 testanalysis, testan { <probed> }IOptLib  

Performs a direct analysis according to the particular test problem that has been 
installed by the installtestanalysis command. The function retrieves analysis parameters 
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and stores the results to pre-defined global variables. This function is typically called 
within the analysis block. In this way the test problem run by the function can be used in 
optimization procedures. 

• probid – ID of the test problem to be run, string value argument  
 
If probid is not specified then the last problem that has been installed is run. This 

will work even if the installtestanalysis has not been called at all, because the IOptLib 
library automatically installs some test problems a tinitialization. 

 

6.5 Approximation tools 

6.5.1 Smooth approximation 

 

6.5.1.1 smoothapproxsimpbas { type samples rweight point which valspec 
<gradspec> <hgrad> }IOptLib   

 
Calculates an approximation of a sampled function. The moving least squares 

method is applied, which approximates the function locally by low order (square in this 
case) polynomial. Coefficients of approximation are not constant, but depend on the 
position of the point. This is so because weights assigned to sampling points for 
calculating the least squares approximation depend on the relative position of the point of 
approximation with respect to these sampling points. 

Arguments: 
type: Counter argument – specification of type of weighting function used for 

approximation. 
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samples: Matrix argument – sampled data. Each matrix row corresponds to a 
sampling point, and columns of a row contain the co-ordinates of the sampling points 
followed by sampled values (more than one functions may be sampled). 
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rweight: Vector argument that contains effective radii of the weights in individual 
co-ordinate directions. Weight corresponding to a sampling point fall from 1 (size of the 
weight exactly in the sampling point) to 1/e at the distance  from a sampling point in the 
co-ordinate direction i, where  is the component i of rweight. 

ir

ir
point: Vector argument – point of approximation. 
which: counter argument, specifies which sampled function should be 

approximated (usually it is 1, meaning the first function). 
valspec: Scalar element specification, specifies an element of a scalar variable to 

which the approximated value is stored.  
gradspec: Vector element specification. If gradspec is specified then gradient of 

the approximation is also calculated and stored to gradspec. 
hgrad – step size for numerical differentiation (if 0 or not specified then 

(approximate) analytical differentiation is performed) 
 
Example: 
 

Setmatrix {samp 100 3 {} } 
setvector {point 3 {10, 1.3, 55 }} 
setvector {rweight 3 {0.5, 0.5, 0.5}} 
. . .  *{ sampling functions } 
setcounter {which 1} 
setcounter {val 0} 
smoothapproxsimpbas{ 4, #samp #rweight #point #which val[] } 

 

6.5.1.2 smoothapproxsimp { samples rweight point which valspec 
<gradspec> }  

Similar to smoothapproxsimpbas, except that only the Gaussian type of the 
exponential function can be used. 

 

6.5.1.3 smoothmeas { meas rweightrel resdiv numit smoothspec }IOptLib   

Calculates a smooth approximation of a table of measurements in time (or 
related to any other one dimensional parameter).  

The measurements must be specified by matrix argument meas. The matrix meas 
must have two columns, and each row of the matrix represents contains a {time, 
measurement} pair representing one measured sample. 

rweightrel is a scalar argument that represents a relative size of effective radius of 
sample influence with respect to interval length of the independent variable. resdiv 
(counter argument) specifies the number of interval divisions (i.e. number of sampling 
points) for resulting smoothed approximation. 
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numit (counter argument) is the number of iterations for  reducing effects of 
outliers (currently this is not implemented). Currently dealing with outliers is not yet 
implemented. 

The smoothed approximation is stored in matrix element specified by element 
specification smoothspec.  

 

7. UNIFORM FILE INTERFACE BETWEEN OPTIMIZATION 
AND ANALYSIS PROGRAMS 

There are currently two distinct fie formats envisaged for use in the uniform file 
interface. The native format is similar to the output format used in Mathematica3 where 
data can be combined in arbitrarily nested lists, except for the representation of numbers 
which is the standard form used in programming languages (e.g. 6.02e26) rather than the 
Mathematica form (e.g. 6.02*10^26). 

The second format is XML document. XML is a versatile format used for storing 
in text files any kind of data that can be represented by an arbitrary tree structure. It is 
widely used, especially for exchange of data over the internet, its format is simple (which 
facilitates implementation of parsers), but in some cases also kind of verbose and less 
efficient for exchange of numerical data. However, due to a small extent of data that is 
typically exchanged via the uniform interface, and due to relatively large computational 
times for the direct analysis, using XML does not represent any narrow throat. Possibility 
of using XML is offered simply because some numerical systems already utilize XML for 
data storage and exchange. 

 
This section specifies the uniform file interface between Inverse and external 

analysis program. This consists of file formats and procedures for exchange of data and 
analysis run. The uniform file interface is designed to minimize and standardize the data 
exchanged between optimization and analysis program. Its purpose is also being platform 
independent. Cost for this is that analysis must be packed in a program that performs all 
extraction of the relevant results from simulation (if simulation is involved) and 
combination of these results to calculate the final values of response functions. 

 

                                                 
3 Mathematica, the symbolic algebra system. 
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7.1 Interpreter functions 

 

7.1.1.1 fileanalysis { ancommand aninfile anoutfile < cd >  }IOptLib  

This file interpreter function is called in the analysis block in order to run the 
direct analysis implemented as stand-alone program. The command writes optimization 
parameters and request flags (that define which response functions must be evaluated) in 
the analysis input file (argument aninfile), runs the analysis program by passing to the 
operating system the command for running the program (argument anommand) and after 
the program exits, it reads the results from the analysis output file (anoutfile) and writes 
them to the appropriate pre-defined interpreter variables. 

This function is usually called form the analysis block of the Inverse command 
file. If the analysis program performs complete calculation of the response functions (and 
no additional processing is requred) then this function can be all that is called in the 
analysis block. 

 
Arguments: 

• ancommand – command passed to the system that executes the analysis 
program; string argument. 

• aninfile – name of the input file for the analysis program. This file is 
generated by the function prior to passing ancommand to the system for 
execution. The format is described in Section 7.2.1 and it is assumed that 
the analysis command will read data from this file and will correctly 
interpret its data; string argument. 

• anoutfile – name of the output file of the analysis program. It is assumed 
that the analysis program will write the analysis results to this file after 
calculation of the response, following the format described in 7.2.2 
(otherwise the function can not correctly interpret the resuts); string 
argument. 

• cd – Optional argument that may be used to choose between several 
different kinds of analyses which the analysis program is able to perform 
(i.e. analysis definition data). If it is not specified then “0” is assumed. 
This data can be used for passing any kind of additional instructions to the 
analysis program if it is designed in such a way that it can interpret the 
definition data; string argument. 

 
The format of the analysis input file that is generated by this command is 

described in Section 7.2.1. The format in which the analysis output file must be generated 
by the external analysis program is described in Section 7.2.2.  
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It must be ensured that the analysis program will be able to read input data form 

aninfile and write the response in anoutfile in the correct file. For example, the analysis 
program can be designed in such a way that its input and output file must be stated as 
command line arguments. Then the command would look something like 

 
myanalysis in.dat out.dat 

 
and the analysis function would be called from the command file in the following way: 

 
... 
analysis { 
  fileanalysis { “myanalysis in.dat out.dat”,  
      “in.dat”, “out.dat” } 
} 
... 

 
In the above case it is assumed that myanalysis is the name of the analysis program 
program, file named in.dat is used as analysis input file and file out.dat is uses as analysis 
output file.  

 
If the analysis program writes its results in a different format or expect input in a 

different format, then converters must be provided. If a converter is implemented as a 
stand-alone program, it should be executed right after the analysis program. Since the 
fileanalysis function anticipates execution of only a single system command, this can be 
solved in two ways. First, if the system permits successive execution of several programs 
by passing a single command (e.g. by using a semicolon or a newline for separation of 
commands), then the command can be composed in the appropriate way: 

 
“convertaninfile in.dat  \n  myanalysis in.dat out.dat  \n 
convertanoutfile out.dat” 

 
where convertaninfile is the name of the program that reads the analysis input file in the 
format described in Section 7.2.1 and writes it back in the format readable by the 
myanalysis program, and convertanoutfile is the name of the program that reads the 
analysis output file in the format used by the myanalysis program and writes the data 
back to the file in the format specified in Section 7.2.2. 

 
Below there is an example of running an external analysis program by using 

converters: 
 

... 
setstring { ancom “convertaninfile in.dat  \n  myanalysis in.dat 
out.dat  \n convertanoutfile out.dat” } 
setstring { aninfile “in.dat” } 
setstring { anoutfile “out.dat” } 
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... 
analysis { 
  fileanalysis { #ancom, #aninfile, #anoutfile } 
} 
... 

 

7.1.1.2 fileanalysis_oneline { ancommand aninfile anoutfile < cd >  
}IOptLib  

The same as fileanalysis, except that input data for direct analysis is written in a 
single line in the analysis input file. By specification, this should not matter for parsers of 
the analysis input file. 

 

7.1.1.3 filewriteaninput { filename < cd > }IOptLib  

Writes direct analysis input data to the file named filename (string argument). The 
data are obtained from the pre-defined interpreter variables: optimization parameters 
from vector variable parammom and request calculation flags from counter variables 
calcobj, calcconstr, calcgradobj, and calcgradconstr. 

 
Optional string argument cd can specify additional definition data that is passed to 

the direct analysis. 
 
This function is usually used within the analysis block. The following interpreter 

code illustrates the typical use that replaces the fileanalysis function: 
 

analysis{ 
  filewriteaninput {“anin.dat”, “0”} 
  system { “analyse anin.dat anout.dat” } 
  filereadanres{ “anout.dat” } 
} 

 
In this example, it is assumed that the direct analysis program is called analyse, 

and it takes the input and output file as command-line arguments. 
 
Analysis input is written to the file in the format described in Section 7.2.1.  
 

7.1.1.4 filewriteaninput_oneline { filename < cd > }IOptLib  

The same as filewriteaninput, except that the analysis input data is printed in a 
single line (which is usually less readable). 
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7.1.1.5 filereadanres { filename }IOptLib  

Reads analysis results from the analysis output file (in the standard format) named 
filename (string argument). The data that are defined are stored to the corresponding 
standard interpreter variables (i.e. objective function to objectivemom, constraint 
functions to constraintmom, gradient of the objective function to gradobjectivemom and 
constraint gradients to gradconstraintmom). Calculation flags are also stored to counter 
variables calcobj, calcconstr, calcgradobj, and calcgradconstr. 

 
The file must contain analysis results in the standard form described in Section 

7.2.2. 
 

7.1.1.6 filewriteanres { filename }IOptLib  

Writes current analysis results extracted form the standard interpreter variables to 
the file named filename in the format described in Section 7.2.2. filename is a string 
argument. 

This function is used for writing analysis results e.g. in the example described in 
Section 7.4 where Inverse itself acts as analysis program. In this example, reading 
analysis input is performed by the parsefilevar function (Section 7.1.1.13). 

 

7.1.1.7 filereadaninput { filename }IOptLib  

Reads analysis input (i.e. parameter values and request calculation flags) from the 
file named filename. Analysis input must be written to the file in the format described in 
Section 7.2.1. filename is a string argument. 

This function can be used for reading input data for direct analysis when Inverse 
itself acts as the direct analysis program. It can be used instead of using the function 
parsefilevar (Section 7.1.1.13), such as in the example described in Section 7.4. 

 
 
 

7.1.1.8 fileanalysis_xml { ancommand aninfile anoutfile < cd >  }IOptLib  

The same as fileanalysis, except that XML format is used for transferring data 
(see Section 7.2.3 and description of fileanalysis). 
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7.1.1.9 filewriteaninput_xml { filename < cd > }IOptLib  

The same as filewriteaninput, except that XML file format is used for transferring 
data (see Section 7.2.3 and description of filewriteaninput). 

 

7.1.1.10 filereadanres_xml { filename }IOptLib  

The same as filereadanres, except that XML file format is used for transferring 
data (see Section 7.2.3 and description of filereadanres). 

 

7.1.1.11 filewriteanres_xml { filename }IOptLib  

The same as filewriteanres, except that XML file format is used for transferring 
data (see Section 7.2.3 and description of filewriteanres). 

 

7.1.1.12 filereadaninput_xml { filename }IOptLib  

The same as filereadaninput, except that XML file format is used for transferring 
data (see Section 7.2.3 and description of filereadaninput). 

 
 
 

7.1.1.13 parsefilevar { filename  < type1 varspec1 > < type2 varspec2 > … 
< command1 > <command2 > …  } 

Parses the file named filename – extracts different data from the file and stores the 
data into file interpreter variables if this is specified. 

The first argument filename must be the name of the file to be parsed (string 
argument). 

Other arguments are arranged in an arbitrary sequence of commands (string 
arguments) and pairs type, varspec where type is a string argument specifying the type of 
the next argument and varspec is the variable element specification that defines the 
element of the file interpreter variable into which the object read from the file is stored. 

 
Possible type specifications are: 

• “scal”, “scalar” – real number, e.g. 6.02e26 or 1.55 
• “count”, “scalar” – integer number, e.g. 324 
• “vector”, “vec” – vector in a list format, e.g. {1.1, 1.2, 1.3} 



 

INVERSE 3.18 
 

7.1: Uniform File Interface Between Optimization and Analysis Programs / Interpreter 
functions 
 

 

 

 
35 

 

• “marix”, “mat” – matrix in a list format, e.g. {{1.1, 1.2}, {2.1, 2.2}} 
• “string”, “str” – string, which can be embedded in double quotes, e.g. 

“string element”or in curly brackets, e.g. {string element}, or can be a 
single word specified without the quotes or brackets, e.g. string_element  

• “analysispoint”, “anpt” – analysis results in the format specified in Section 
7.2.2. Analysis results can not be stored in a variable because there is no 
corresponding type defined, so the only variable elemet specification 
stated with this type is NULL[]. 

 
Variable element specifications stated after types are usual specifications, e.g. 

v[1, 2] or str[]. The corresponding  elements they refer to must exist and variables must 
be of the correct type. If we don’t intend to store a given object into a variable then the 
variable specification should be NULL[ ]. 

 
Available commands are the following: 

• stop – instructs to stop parsing the file. 
• in – current position in the parsed file is moved inside the first curly 

brackets 
• out – current position in the parsed file is moved out of the current curly 

brackets 
 
Example: 
 

  *{ Allocation of variables for storage of the data read form the 
file: } 
  newvector { vecvar[5] } 
  newmatrix { mat[] } 
 
  parsefilevarprint{ "parsed.dat", 
    "count", NULL[], 
    "scal", NULL[], 
    "vec", vecvar[1], 
    "mat", mat[], 
    "str", NULL[], 
    "str", NULL[], 
    "in", 
    "scal", NULL[], 
    "vec", vecvar[2], 
    "out", 
    "scal", NULL[], 
    "scal", NULL[], 
 
    "anpt", NULL[], 
    "scal", NULL[], 
 
    "stop" 
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  } 
  printvector{ vecvar[1] } 
  printvector{ vecvar[2] } 
 
  printmatrix{mat} 
 
  exit{} 
 

 

7.2 File Formats 

In order to use the uniform file interface, the analysis program must be able to 
read analysis input files that provide calculation flags and parameter values, and must be 
able to generate the output file in a proper way, such that analysis results can be correctly 
read by the optimization program Inverse. The file formats used in the uniform file 
interface are provided by the free optimization library IOptLib and are therefore free 
formats. They can be freely used by any other software (either commercial or free 
software), without requesting prior permission or paying royalty fees. 

 
Warning: 
Because numerical quantities are transferred through text files, special care must 

be taken that all significant digits are written for each numerical value. On the 
contrary, accuracy is lost, which may cause numerical problems or lead to inaccurate 
results. 

Practically all programming languages enable writing floating point numbers to 
text files with arbitrary precision. The number of digits must usually be explicitly stated, 
otherwise a default number of digits is assumed, which can lead to insufficient accuracy. 
In C, for example, numbers are usually written to text files by using the printf function 
where format specification is given. The following format specification can be used to 
preserve the floating point precision: 

 
… 
double x; 
FILE *fp; 
… 
fprintf(fp,“%.30lg”,x); 

 
Text that begins with the % sign represents the format specification. “.30” 

specifies that 30 significant digits should be output when printing a floating point 
number. A large number of digits was specified in order to make sure that no precision is 
lost. Part “lg” of the specification determines that a floating point is being printed in 
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compact format (‘g’), and that a type “long double” is expected (‘l’). In compact format, 
eventual redundant digits (i.e. digits that exceed the actual precision of the floating point 
number type “long double”) are not printed. 

 

7.2.1 File format for analysis request (analysis input file) 

 
{ { p1, p2, … }, { reqcalcobj, reqcalcconstr, reqcalcgradobj, 
reqcalcgradconstr }, cd } 

 
Meaning of symbols used above is as follows 
p1, p1, p3 – optimization parameters at which analysis was performed 
Flags that tell whether something has actually been calculated (0 – yes, 1- no):  

• reqcalcobj – flag for the objective function 
• reqcalcconstr – flag for constraint functions 
• reqcalcgradobj – gradient of the objective function 
• reqcalcgradconstr – gradients of constraint functions 

cd – a free parameter that can be used to transfer additional information to the 
direct analysis. In principle cd can be anything embedded in curly brackets ({..}) If only 
the eventual embedded curly brackets are properly closed. Most commonly it will not be 
used at all and therefore empty brackets (“{}”) will be put in place of cd. Otherwise, 
interpretation of what stands in curly bracket is entirely in the domain of the analysis 
program, therefore the documentation of the analysis program should provide information 
on how to compose cd. 

 

7.2.2 File format for analysis results (analysis output file) 

 
{  
  { p1, p2 ... },  
  {  
    calcobj, obj,  
    calcconstr, { constr1, constr2, ... },  
    calcgradobj, { dobjdp1, dobjdp2, ... },  
    calcgradconstr, 
    {  
      { dconstr1dp1, dconstr1dp2, ... }, 
      { dconstr2dp1, dconstr2dp2, ... }, 
      ... 
    }, 
    errorcode  
  }, 
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  { reqcalcobj, reqcalcconstr, reqcalcgradobj, reqcalcgradconstr } 
  < , { ind1, ind2, ... }, { coef1, coef2, ... }, defdata > 
} 

 
Meaning of symbols used above is as follows 
p1, p1, p3 – optimization parameters at which analysis was performed. These are 

input data for a direct analysis, but it is requested that they are included in the output file; 
in this way the optimization program can verify that the analysis results refer to the 
expected set of parameters, or verify what errors were  perpetrate by transfer via text 
files. 

Flags that tell whether something has actually been calculated (0 – yes, 1- no):  
• calcobj – flag for the objective function 
• calcconstr – flag for constraint functions 
• calcgradobj – gradient of the objective function 
• calcgradconstr – gradients of constraint functions 

obj – value of the objective functions 
constr1, constr2, … - values of the constraint functions 
dobjdp1, dobjdp2, ... – derivatives of the objective function with respect to 

individual parameters (components of the objective function gradient) 
dconstr1dp1, …, dconstr2dp1, dconstr2dp2 – derivatives of individual constraint 

functions with respect to individual optimization parameters – components of gradients of 
the constraint functions (e.g. dconstr2dp3 is the derivative of the second constraint 
function with respect to the third parameter) 

errorcode – integer error code of analysis – 0 for no error, usually a negative 
number for errors, values are function specific 

reqcalcob , reqcalcconstr, reqcalcgradobj and reqcalcgradconstr are request 
flags for calculation of the various values, as have been passed to the analysis function. 
The same as with parameter values, these flags are requested only for verification. In vast 
majority of cases these flags will not be used by the optimization program, and they can 
simply be set to 1. 

Angle brackets < ... > contains portion of data that is optional and can be omitted 
(in the file, there are no angle brackets). 

ind1, ind2, … is a set of integer numbers that can be used to pass some 
supplemental data about a particular calculation (e.g. the sequential number of the 
particular analysis that the analysis server performed). In most cases the set will be 
empty, i.e. {} 

coef1, coef2, … is a set of real numbers that can be used to pass some data about a 
particular calculation. In most cases the set will be empty, i.e. {} 

cd is the definition data for the analysis. It can have different forms, usually it is 
an integer and does not have any meaning. 

 
Spaces, tab characters and newlines are not important. Empty brackets should be 

used for any vector or set of vectors that are not calculated.  
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Examples: 
{ {1.11, 2.22}, { 1, 6.1605, 1, {-0.165, -2.44} , 1, {2.22, 4.44}, 
1, { {-1.5, 0.}, {0., -2.} }, 0 }, { 1, 1, 1, 1}, {}, {}, "3" } } 
 
{ {1.11, 2.22}, { 1, 6.1605, 1, {-0.165, -2.44} , 0, { }, 0, {  }, 
-1 }, { 1, 1, 1, 1}, {33, 45}, {2.5, 3.33 38.1}, "3" } } 
 

 
The examples represent analysis results at parameters {1.11, 2.22}, with value of 

the objective function 6.1605, values of constraint functions -0.165 and -2.44, gradients 
of the objective function {2.22, 4.44}, gradient of the first constraint function {-1.5, 0.}, 
and gradient of the second constraint function {0., -2.}.  

In the second example, gradients of the objective and constraint functions could 
not be calculated although they were requested (all request calculation flags in curly 
brackets are 1). Therefore, the error code is -1 rather than 0. 

 

7.2.3 XML formats 

 

7.2.3.1 XML format for analysis results (analysis output file): 

 
Example 1 shows an example of the analysis output file in XML format. The 

structure of the file can be easily established form this example, and precise rules are 
stated below. 

 

7.2.3.1.1 Format rules (general) 
Comments are ignored when processing the analysis output file, and all of them 

can be omitted. Comments can only be put before XML elements (they may not be put 
within opening or closing tags). 

Name of the outer-most element is arbitrary, but “data” is recommended. All 
other names must be precisely as in the example. 

Names of attributes of individual XML elements with specific meaning must 
exactly match names from the example, and XML elements with specific meaning must 
have all the attributes defined as in the example. Order of attributes is not important, but 
attribute names must be unique for a given element. Values of attributes must also match 
exactly, except for those attributes that specify dimensions or indices. Such attributes are 
only dim (which specifies the dimension – or number of elements – of given data) and ind 
(which specify the index of component – sub-element – of given data). Values of such 
attributes must be strings that represent integer numbers in base 10 notation. 
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Each data element has the attribute type defined, which specifies the type of the 
data represented by the XML element. Types used in the analysis output file are counter 
(representing an integer number), scalar (representing a real number), vector 
(representing a real vector), string (representing a string of characters), table 
(representing a table of elements of any kind, all elements of the same kind) and 
analysispoint (representing a structure that carries analysis input and/or output data). 

 
Elements of type counter (i.e. those whose attribute type has value counter) must 

have contents that can be interpreted as an integer, e.g. “1”, “425”, “-10”, etc. 
Elements of type scalar must have contents that can be interpreted as a real 

number, e.g. “06”, “1.45”, “-10.4e-5”, etc. 
Elements of type vector must have an attribute named dim, whose value must be a 

string representation of vector dimension (e.g. “12” if the vector is of dimension 12). All 
components of the vector must be listed as sub-elements of type scalar, with element 
names “vector_el”. Beside the attribute “type” (whose value must be “scalar”), these 
elements must have the attribute “ind”, which must be a string representation of an 
integer that is equal to the index of specific vector component. 

Elements of type table must have an attribute named dim, whose value must be a 
string representation of the number of elements of the table (e.g. “5” if the table has 5 
elements). Element of type table must have the attribute named eltype, whise value must 
be equal to the type of the table elements. All components of the table must be listed as 
sub-elements of a given type (arbitrary but the same for all elements of the table, and the 
type must match the value of the eltype attribute of the table element), with element 
names “table_el”. Beside the attribute “type”, these elements must have the attribute 
“ind”, which must be a string representation of an integer that is equal to the index of 
specific table element. 

 
Sub-elements of the element whose type is analysispoint can be omitted if they 

are not relevant. For example, if the gradient of the objective function has not been 
calculated then the element named gradobjective can be omitted. 

The order in which sub-elements are listed is not important. 
 

7.2.3.1.2 Analysis output-specific rules 
The above stated rules are general, while the following additional rules apply for 

the analysis output file: 
The outer-most XML element must be of type “analysispoint” and its attribute 

named mode must have value “analysis_output”. 
Element ret of type counter must be defined. It must have the integer value 0 if no 

errors were detected in the analysis, or a negative integer value if errors occurred. 
Elements reqcalcobj, reqcalcconstr, reqcalcgradobj and reqcalcgradconstr of 

type counter may be omitted. If included then their values must be 1 if calculation of the 
corresponding portions of analysis results were requested (actually, any non-zero value is 
allowed), and 0 if not. They correspond to the following portions of analysis results, 
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respectively: objective function, constraint functions, gradient of the objective function 
and gradients of constraint functions.  

Elements calcobj, calcconstr, calcgradobj and calcgradconstr of type counter are 
obligatory. Their values must be 1 if calculation of the corresponding portions of analysis 
results were requested (actually, any non-zero value is allowed), and 0 if not. They 
correspond to the following portions of analysis results, respectively: objective function, 
constraint functions, gradient of the objective function and gradients of constraint 
functions. 

Element param of type vector must contain values of optimization parameters for 
which analysis results were calculated. In Example 1, vector of parameters has dimension 
2 and therefore 2 sub-elements of type scalar that carry its components. 

Element obj of type scalar contains (if defined) the value of the objective 
function. 

Element constr of type table contains (if defined) the values of the constraint 
functions. It must have as many sub-elements as there are constraints. Its elements must 
be of type scalar and must carry values of individual constraints. 

Element gradobj of type vector contains (if defined) the gradient of the objective 
function. It must have as many sub-elements as the number of parameters. 

Element gradconstr of type table contains (if defined) gradients of the constraint 
functions. It must have as many sub-elements as there are constraints. Sub-elements must 
be of type vector and their dimension must he equal to the number of parameters. 

Element cd is an optional element of type string. It can contain additional data 
(such as analysis definition data) that might be exchanged between the optimization and 
analysis routines. In many cases, this field is not used. 

 

Example 1: Analysis output file in XML format (2 parameters, 2 conatraints, all 
values and gradients calculated). 

 
<!-- Analysis output file, created by analysis wrapper. -->  
<data type="analysispoint" mode="analysis_output" ind="1"> 
  <ret type="counter">0</ret>  
  <reqcalcobj type="counter">1</reqcalcobj>  
  <reqcalcconstr type="counter">1</reqcalcconstr>  
  <reqcalcgradobj type="counter">1</reqcalcgradobj>  
  <reqcalcgradconstr type="counter">1</reqcalcgradconstr>  
  <calcobj type="counter">1</calcobj>  
  <calcconstr type="counter">1</calcconstr>  
  <calcgradobj type="counter">1</calcgradobj>  
  <calcgradconstr type="counter">1</calcgradconstr>  
  <param type="vector" dim="2"> 
    <vector_el type="scalar" ind="1">1.6</vector_el>  
    <vector_el type="scalar" ind="2">1</vector_el>  
  </param> 
  <obj type="scalar">0.20088905308774715</obj>  
  <constr type="table" eltype="scalar" dim="2"> 
    <table_el type="scalar" ind="1">0.0</table_el>  
    <table_el type="scalar" ind="2">0.0</table_el>  
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  </constr> 
  <gradobj type="vector" dim="2"> 
    <vector_el type="scalar" ind="1">0.24138</vector_el>  
    <vector_el type="scalar" ind="2">0.0172418</vector_el>  
  </gradobj> 
  <gradconstr type="table" eltype="vector" dim="2"> 
    <table_el type="vector" dim="2" ind="1"> 
      <vector_el type="scalar" ind="1">-1.1</vector_el>  
      <vector_el type="scalar" ind="2">2.1</vector_el>  
    </table_el> 
    <table_el type="vector" dim="2" ind="2"> 
      <vector_el type="scalar" ind="1">0</vector_el>  
      <vector_el type="scalar" ind="2">-1</vector_el>  
    </table_el> 
  </gradconstr> 
  <!-— Optional definition data: -->  
  <cd type="string">Definition data</cd>  
</data> 
 

 
Another example below shows another possible analysis output file, in which the 

values of calculation requests flags are skipped, gradients are not calculated (obviously 
they were also not requested since the return value is 0, indicating no errors), and no 
additional data is passed between the analysis and optimization module. 

 

Example 2: Another analysis output file with only partial output provided (3 
parameters, 2 constraint, no gradients requested or calculated, request flags not 
specified). 

 
<!-- Analysis output file, created by analysis wrapper. -->  
<data type="analysispoint" mode="analysis_output" ind="1"> 
  <ret type="counter">0</ret>  
  <calcobj type="counter">1</calcobj>  
  <calcconstr type="counter">1</calcconstr>  
  <calcgradobj type="counter">0</calcgradobj>  
  <calcgradconstr type="counter">0</calcgradconstr>  
  <param type="vector" dim="3"> 
    <vector_el type="scalar" ind="1">4.287974793</vector_el>  
    <vector_el type="scalar" ind="2">105.38479</vector_el>  
    <vector_el type="scalar" ind="3">2.4558e-4</vector_el>  
  </param> 
  <obj type="scalar">72.424979429783</obj>  
  <constr type="table" eltype="scalar" dim="2"> 
    <table_el type="scalar" ind="1">-1.48479e-3</table_el>  
    <table_el type="scalar" ind="2">2.8793872</table_el>  
  </constr> 
</data> 
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7.2.3.2 XML format for analysis input file 

 
Example 3 shows an example of the analysis input file in XML format. The 

complete structure of the file can be easily established form this example. The general 
rules are similar to the general rules for the analysis output file stated in Section 7.2.3.1.1. 
Specific rules are stated below. 

 

7.2.3.2.1 Analysis input-specific rules 
The outer-most XML element must be of type “analysispoint” and its attribute 

named mode must have value “analysis_input”. Its name can be arbitrary, but “data” is 
recommended. 

Elements reqcalcobj, reqcalcconstr, reqcalcgradobj and reqcalcgradconstr of 
type counter are obligatory.Their values must be 1 if calculation of the corresponding 
portions of analysis results are requested (actually, any non-zero value is allowed), and 0 
if not. They correspond to the following portions of analysis results, respectively: 
objective function, constraint functions, gradient of the objective function and gradients 
of constraint functions.  

Element param of type vector must contain values of optimization parameters for 
which analysis results are to be calculated. In Example 3, vector of parameters has 
dimension 2 and therefore 2 sub-elements of type scalar that carry its components. 

Element cd is an optional element of type string. It can contain additional data 
(such as analysis definition data) that might be exchanged between the optimization and 
analysis routines. In most cases, this field is not used. 

 

Example 3: Analysis input file in XML format. 
 
<!— Analysis input file, created by IOptLib. -->  
<data type="analysispoint" mode="analysis_input" ind="1"> 
  <reqcalcobj type="counter">1</reqcalcobj>  
  <reqcalcconstr type="counter">1</reqcalcconstr>  
  <reqcalcgradobj type="counter">1</reqcalcgradobj>  
  <reqcalcgradconstr type="counter">1</reqcalcgradconstr>  
  <param type="vector" dim="2"> 
    <vector_el type="scalar" ind="1">1.6000000000000001</vector_el>  
    <vector_el type="scalar" ind="2">1</vector_el>  
  </param> 
  <!-— Optional definition data: -->  
  <cd type="string">Definition data</cd>  
</data> 
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7.2.3.3 XML format for storage of analysis results (“analysis point”): 

 
 
 
 
 

7.3 Solution Scheme 

 
 

 

Analysis program: 
 
read {α, d} from a file 
prepare FEM input 
run FEM prog. 
read results 
calculate f(p), ci(p) 
write  f, ci to a file 

 

Analysis input 
file 
  {{p}, …} 

 

FEM analysis: 
 
read input 
perform analysis 
output results 
 

 

Inverse (optimization program): 
 
Run optimization 
 
Inside optimization loop (iteratively): 

• write {α, d} to a file 
• run Analysis program 
• read  f({α, d}) from a file 

 
Output results 
  

Analysis output 
file 
  f, ci , ...  

 

FEM input 
file 

 

FEM output 
file 

 

Additional data file(s): 
These data define precisely 
how to perform analysis 

 

Integrated environment: 
Prepare FEM analysis 
Run analysis 
Define optimization parameters 
Run optimization 
 

 

Inverse input 
fiele(s) 
   

anin.dat 

anout.dat 

opt.cm 

invanan.cm 

 
 

Figure 1: Typical software organization when using uniform file interface 
between optimization and analysis module (which are implemented as stand-alone 
programs). Analysis module is a program that reads parameters and calculation flags 
from analysis input file, performs direct analysis (i.e. calculates the objective and 
constraint functions and eventually their gradients) and outputs these results to the 
analysis output file (response file). In the scheme, {α, d} denote optimization 
parameters, f is objective function and ci constraint functions. Solid arrows denote 
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data flow and dotted arrows denote calling directions. Horizontal arrows denote 
calling directions that are commonly present. Other calls are performed when the 
optimization and simulation modules are integrated in a broader framework. 

 

7.4 Demonstrative example 

 
An example has been set up in order to demonstrate use of the uniform file 

interface. The example files are contained in the directory named filean in 
IGHOME/inverse/ex. 

An example contains a synthetic case for which analytical response functions are 
defined. There are two optimization parameters and two constraints. Both optimization 
and direct analysis are performed by Inverse with appropriate command files defined 
separately for optimization and analysis. Usually this will not be the case and there will 
be a separate program for the direct analysis, such as in Figure 1 where a special analysis 
program runs a finite element simulation and calculates the response function. 

 

7.4.1 List of files 

The main files are the following: 
opt.cm - command file for optimization (performed by Inverse) 
an.cm - command file for direct analysis (also performed by Inverse) 
anin.dat - analysis input file (written by optimization program and read by 

analysis program), contains current values optimization parameters, calculation request 
flags and possibly an additional analysis definition data (Section 7.2.1) 

anout.dat – analysis output file (written by analysis program and read by 
optimization program), contains analysis results (response functions such as objective and 
constraint functions and their gradients, and calculation flags – see Section 7.2.2). 

 
Auxiliary files: 
def.cm – command file that contains some basic definitions and initialization 

steps. Its interpreted both from an.cm and opt.cm since these definitions are used 
commonly by the optimization and analysis program. 

defuser.cm – additional definitions. This file is included in def.cm via the 
interpret{} command. Location of inclusion is such that important definitions from def.c 
are overridden, but dependent portion of the definitions (such as allocation of the 
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meaningful variables) are performed after interpretation of this file such that correct 
effects are ensured. This file is convenient for automatic generation by the environment 
that manipulates the analysis and optimization programs. 

analysis.cm - additional command file for analysis program, contains definitions 
of functions for calculating the response and definition of analysis block. It is interpreted 
form an.cm. 

 
Control files: 
opt.ct – control file for optimization program, here the optimization program 

writes its results if this is ordered in its command file. The file can be used for checking 
the course of execution. 

an.ct – control file for analysis program. 
Control files should be deleted from time to time because output is appended to existent 
contents, so that output from several successive runs can be checked. 

 
Sample analysis program: 
analysis.c – a C language source for a sample analysis program. A function for 

reading the analysis input data in standard format (Section 7.2.1) and for writing analysis 
results in the standard format (Section 7.2.2). The program uses only standard C libraries 
and ANSI C syntax, therefore it can be easily compiled on any platform provided that a C  

 

7.4.2 Running the example and using custom analysis program 

 
In order to run the example, optimization program Inverse must be installed on 

your computer. Let’s assume that invan is the command for executing Inverse. Then the 
example is run by typing the following command in the operating system’s command 
shell: 

invan opt.cm 
 
Main definitions that one may want to change in order to modify the example (i.e. 

to modfy the optimization method used or the definition of the problem / response 
functions) are in the file def.cm. By setting e.g. the calculator variable unconstrained to 1, 
the unconstrained simplex method is used instead of the constraint method, and penalty 
terms are added to the constraint functions in order to prevent constraint violations. 
Definitions in the file are commented (comments are inside *{…}), such that their 
meaning is obvious to the user. 

 
The file defuser.cm is included in def.cm. Definitions that should override the 

definitions in  
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7.4.3 Using a different analysis program 

 
Example can be easily re-arranged in order to use a different analysis program. 

In the file def.cm, the string variable ancommand must be modified such that it contains 
the command that runs that analysis program, e.g. 

 
setstring{ ancommand "my_analysis inputfile outputfie" } 

 
if the analysis program is run by command my_analysis with arguments inputfile and 
outputfile that define its input and output file. In this case, inputfile and outputfile must be 
names of the files that are specified in def.cm as analysis input and analysis output file, 
and these are contained in the string variables aninfile and anoutfile defined in def.cm.  
 

Another possibility is that the analysis program uses input and output files with 
pre-defined names that are always the same, or that names of these files are defined in 
some kind of resources file. It is only important that the files are synchronized between 
the optimization and the analysis program, therefore names of the analysis input and 
output files must be updated accordingly for the optimization program, which is done 
simply by appropriately setting the string variables aninfile and anoutfile in the definition 
file def.cm.  

 
Beside re-defining the command for running the analysis program and taking care 

that the optimization program and analysis program use the same analysis input and 
analysis output file, some variables related to the optimization problem definition must be 
updated accordingly. In def.cm, calculator variable numparam must be set to actual 
number of optimization parameters in the problem that is actually defined by the analysis 
program, and numconstr must be set to the actual number of constraints for the new 
problem. Dimensions of some other relevant variables that depend on these numbers are 
set automatically in def.cm.  

 
Then, commands in opt.cm that perform the optimization must be modified such 

that their arguments are consistent with the specific optimization problem that is solved 
and defined by the external analysis program. Such commands are inverse and optfsqp. In 
particular, the dimensions of the starting guess must be corrected and arguments that are 
dependent or define the number of optimization parameters or the number of constraints. 
 
 
Legend: 
IOptLib : 
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This functionality is from IOptLib (Investigative 
Optimization Library)[2]. 
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