

 A General File Interface for the
Optimization Program Inverse

(FOR VERSION 3.11)

Igor Grešovnik

Ljubljana, 27 September, 2005

INVERSE 3.11

Table of contents7.1: A General File Interface for Programme INVERSE /

Contents:

7. A General File Interface for Programme INVERSE_____________________3
7.1 Introduction__ 3
7.2 Structure and Philosophy of the General File Interface __________________ 4
7.3 Some General File Interpreter Functions of the Interface ________________ 7

7.3.1 Controlling the Interface System ___ 7
7.4 File Interpreter Functions of the Interface which Operate on the Pre-defined File
“infile” 10

7.4.1 Controlling the State of the File___ 10
7.4.2 Searching for the Data __ 12
7.4.3 Reading the Data __ 18

7.5 File Interpreter Functions of the Interface which Operate on Arbitrary Files20
7.5.1 Controlling the State of the Files __ 21
7.5.2 Searching for the Data __ 23
7.5.3 Reading the Data __ 29
7.5.4 Writing to Files and Copying File Parts ____________________________________ 31

7.6 Expression Evaluator’s Functions of the Interface _____________________ 33
7.7 Interfacing the Analysis Input File __________________________________ 35

7.7.1 File Interpreter Functions for Interfacing the Analysis Input File _________________ 37
7.7.2 Expression Evaluator’s Functions for Interfacing the Analysis Input File __________ 38
7.7.3 Setting Number of Digits at Number Output_________________________________ 38

7.8 Interaction with the File System ____________________________________ 38
7.8.1 File Interpreter Functions for Interaction with the File System___________________ 39

2

INVERSE 3.11

Introduction7.1: A General File Interface for Programme INVERSE /

7. A GENERAL FILE INTERFACE FOR PROGRAMME
INVERSE

7.1 Introduction

 The file interface enables the programme to exchange data with other programmes
through text files. Functions of the interface are designed for searching for various items
in files, reading various types of data from files and writing data to files in various
formats.

Exploiting the functionality of the interface, the programme can work with any
simulation programme which uses text files for defining the input data and writing the
results. Any piece of data in the text files which are arranged according to some rules can
be located, read or replaced by other data using the interface functions. Only some
primitive programming skills and some knowledge about the format of the files are
necessary to programme any data exchange between the shell and the simulation
programme which can possibly be needed during the optimization procedure.
 Thanks to the general file interface, a simulation programme and the shell does
not have to be integrated to use them together for solving optimization and inverse
problems. This is due to the fact that the only contact points between the programmes in
the optimization scheme are updating the input data for the simulation according to the
current values of the design parameters and reading the results of the simulation which
are involved in the value of the objective function and its derivatives.

Nevertheless, the integration is still necessary in the cases where operations which
are typically done by the shell can be performed efficiently only using the tools which are
possessed by the simulation programme. If this is the case, the shell should have a direct
access to specific functions of the simulation programme. In some cases this is possible
only when the shell and the programme are properly integrated. The transformation of the
input data according to the current values of parameters and the manipulation of the
results to evaluate the values of the objective function and its derivatives are operations
for which it is often beneficial to use the functionality of the simulation programme.
 There is another concerning aspect of using the file interface: the speed. Typically
the simulation programmes output large amounts of results. Writing large amounts of
results to files and searching for the needed data in such files is time consuming and can
be a bottleneck in the optimization procedure. A direct interface makes possible to avoid
these operations since the data can be directly transferred between the memory locations

3

INVERSE 3.11

Structure and Philosophy of the 7.2: A General File Interface for Programme INVERSE /
General File Interface

at the optimization and simulation part where it normally resides during the programme
runtime. Besides, only the needed portions of the data can be transferred.
 More sophisticated simulation programmes make possible to precisely specify
which results are to be output to a file. In this case the additional time needed for data
exchange through files is negligible as compared with the time needed for the simulation.
With such programmes the general file interface can be used almost as efficiently as
would be a direct interface.

7.2 Structure and Philosophy of the General File Interface

 The file interpreter functions of the interface enable searching for specific data in
the interface files, reading data from these files, writing data to these files, controlling and
influencing the state of these files, and controlling the interface system. The expression
evaluator’s functions of the interface enable getting information about the interface
system and the interface files.
 The interpreter functions which perform searching, reading and controlling the
state of the interface files are divided into two groups. The first group of functions
perform these operations on the pre-defined file infile, and the other group of analogous
functions perform analogous operations on arbitrary files defined during the programme
runtime. Such division is introduced because of greater simplicity. The user should not
have problems by remembering the names and syntax of both groups of functions
because each function from one set has an analogous function with similar name and
syntax in the other. Functions from the second group have a sub-string “file” instead of
“f” in their names (e.g. filefindstring instead of ffindstring) and have an additional
argument - the specification of the file on which they operate. This additional argument is
always the first one in the function’s argument block and the other arguments are
identical.

 Functions which read the data, search for different items or write data to files
always operate from the current position of the file, so the starting point of the operation
does not have to be specified. After the operation is completed, the current position of the
file is set to the most logical point according to the kind of operation. For the functions
which read or write data such point is after the last read or written byte. There are in
general two kinds of functions which search for data items. Functions of the first kind set
the current position after a successfully performed operation to the position of the first
byte of the found item while the functions of the second kind set the position to the first
byte after the found item. There are exceptions to this rule. Functions ffindbrac and
filefindbrac which search for closed pairs of brackets set the current position to the first
byte after the opening bracket if there are any characters between the opening and the

4

INVERSE 3.11

Structure and Philosophy of the 7.2: A General File Interface for Programme INVERSE /
General File Interface

closing bracket, and to the first character after the closing bracket if it follows
immediately the opening bracket. Such behaviour is logical because it is expected that the
operations on the file which will follow a search for a closed pair of bracket will start
inside the bracket pair anything is contained in the brackets, otherwise these operations
will start after the brackets. An error code is also recorded if the found brackets contain
nothing since this is often an unexpected situation.
 The described arrangement simplifies working with the interface and enables the
user to use as few intermediate variables as possible. However, in many cases it does not
suffice for exchanging data through files. Sometimes we need to jump to arbitrary
positions which are somehow connected to operations which were previously performed
on a file. A special set of functions was created to enable this by remembering and setting
the current position in a specific file. The expression evaluator’s functions getfpos and
getfilepos return the current position of a file. The file interpreter functions fmarkpos
and filemarkpos assign the current position of a file to the expression evaluator’s
variable the name of which is specified in the argument block of the corresponding
function. The file interpreter functions fsetpos and filesetpos set the current position of a
file to the value specified in the argument block of the corresponding function.
Sometimes the functions fincreasepos and fileincreasepos which increase or decrease
the file position are more appropriate.
 Another mechanism of remembering characteristic positions during the
interfacing operations is available. Most of the functions for reading and writing allow
the user to call them with additional arguments which specify the names of variables of
the expression evaluator to which the characteristic positions of the corresponding
operations. For example, in the argument blocks of the functions ffindbrac, fskipbrac,
filefindbrac and fieskipbrac the user can optionally specify names of the expression
evaluator’s variables to which the position of the found opening and closing bracket are
assigned, respectively. If only one name is specified, the position of opening bracket is
assigned to the appropriate variable.
 In general, in functions which search for different items, the user can additionally
specify at most two names of expression evaluator’s variables for marking characteristic
positions. At functions which set the current position in the file to the beginning of the
found item, the position of the found item is assigned to the first variable and the position
of the first byte after the found item is set to the second variable. It is other way around at
the functions which set the position after the found item. Only one instead of two variable
names can also be specified. Functions for finding closed pairs of brackets have more
specific behaviour (see above). At functions which search for characters only one
additional variable name can be specified in their argument blocks (two would not make
sense because a character has a constant length 1). The current position after a
successfully performed operation is assigned to the corresponding variable.
 If the appropriate operations are not performed successfully, unusual values are
assigned to variables determined by additional arguments for marking characteristic
positions of the operations. Values lesser than 1 which can not represent file positions are
usually used for this purpose. Therefore, the user can also test if operations were

5

INVERSE 3.11

Structure and Philosophy of the 7.2: A General File Interface for Programme INVERSE /
General File Interface

performed successfully through the values of these auxiliary variables. The same is not
valid for functions which perform reading and writing.
 At the functions which read data, two additional arguments for marking
characteristic file positions of the appropriate operations are allowed in their argument
blocks. The current position in the file before the beginning of the operation is assigned
to the expression evaluator’s variable corresponding to the first additional argument, and
the position of the first byte of the last piece of data which was read is assigned to the
variable corresponding to the second additional argument.

 The functions for searching and reading have the corresponding analogous
functions which perform the same operations in a limited range in files. Such analogous
functions have similar names with a suffix “to”. They also require one additional
argument which specifies the end of their range of action (the beginning is determined by
the current position in the file, as usual). This is the first argument at functions which
operate on the pre-defined file infile and the second at functions which operate on
arbitrary files (the file specification is the first argument at such functions).

 The general file system has a special way of handling errors. Normally all file
interpreter and expression evaluator’s functions of the optimization notify the user about
errors by writing error reports to the standard output and to the shell’s output file. At the
interface we have a specific situation that a failure of an operation may or may not mean
an error, dependent on the situation. This is especially expressive at searching operations.
Typically, when we search for specific data in a file which contains various data written
according to some rules, a lot of failed search operations are performed. This does not
indicate that some data is missing, but only gives us additional information which we
need in order to locate the data.
 Because only true erroneous situations should be reported as errors, there should
be a possibility of distinguishing between expected and unexpected failures of operations.
A mechanism which enable this is built into the interface system. Failures which do not
necessarily mean errors are not reported automatically, but are registered so that they can
be examined after the operation is completed. A decision can then be brought whether the
failure means an error or not. An error report can then be written only in the case that the
failure of the operation means an error, otherwise further actions are undertaken
normally. Unexpected situations which are definitely errors are not treated in an usual
manner so that error reports are immediately written to the standard output and the output
file of the shell.
 There are two mechanisms of recording failures which are not automatically
reported as errors. File interpreter functions save their status of success which is a zero
integer if the function was performed successfully or a non-zero integer if the function
failed in any sense. The programme keeps only one code of success so that it is
overwritten by the next executed interface function. The user can obtain the value of this
code by the expression evaluator’s function fileoperror called without arguments, and so
check if the last operation was performed successfully. The file interpreter functions

6

INVERSE 3.11

Some General File Interpreter 7.3: A General File Interface for Programme INVERSE /
Functions of the Interface

printfileoperror and fprintfileoperror can be used to print a report about the success
status of the last operation of the general file interface. These functions must also be
called without arguments to write such report.
 Beside keeping in memory the success code of the last performed operation of the
general file interface, at all instances of failures the appropriate codes are pushed to a
special stack. These codes are the same as the above mentioned success codes, the only
difference is that code zero which identifies successful operation is not pushed on the
stack. The user can retrieve information about these codes by the same functions as for
getting information about the success codes of the last performed operation, only that in
this case the error must be specified by the position on the stack of errors.
 If the function fileoperror is called by argument 0, the number of errors on the
stack is returned. If it is called by a positive number, the appropriate error is returned
where the argument identifies the successive number of the error code on the stack. If the
argument is negative, its absolute value identifies the successive number of the error on
the stack counted backwards. If the value of the argument exceeds the number of errors
on the stack, zero is returned.
 The meaning of the argument at the functions printfileoperror and
fprintfileoperror is similar, except that when the argument is zero, a report about all
errors is printed, which is also the case if the argument is greater by absolute value than
the number of errors.
 The number of errors that can be stored on the error stack is limited. When the
limit is exceeded, the first few errors are cleared. The user can make the programme
report every occurance of this situation by the reportfileoperrorexcess function called
by a non-zero argument.

7.3 Some General File Interpreter Functions of the Interface

7.3.1 Controlling the Interface System

7.3.1.1 reportfileoperrorexcess { <switch> }
Specifies wether or not writing reports when a few file operation errors are cleared

due to the excess of maximum allowed number of errors on the error stack. If switch is
non-zero, the programme will report when cuch situations will occur, otherwise it will
not.

7

INVERSE 3.11

Some General File Interpreter 7.3: A General File Interface for Programme INVERSE /
Functions of the Interface

7.3.1.2 fprintfileoperror { <num> }
 Prints a report about a specific error or errors which have occurred during the file
operations, to the optimization shell's output file.
 If the function is called without arguments, it prints the report about error status of
the last file operation. Each file operation records its error status. This is a code of the last
error which occurred during the operation and is not automatically printed to standard
output or the shell's output file. These are normally used to indicate situations which don't
necessarily mean unexpected behaviour, for example if a string which is searched for in a
file is not found. In some situations this can be absolutely normal, therefore the
appropriate function of the shell will not automatically report an error, but the user can
still check if such situation has occurred, because in some occasions this can mean that
something had gone wrong.

Code zero indicates that no error has occurred during this operation. An error
status of the next file operation overwrites the error status, but the information about an
error is not lost since non-zero error codes are pushed to a stack from which they can be
retrieved and appropriate error messages can be printed. This is done by functions
printfileoperror and fprintfileoperror when they are called with an argument (num)
which specifies a number of error on the stack.

num can be specified in any standard way in which numbers are specified in
argument blocks of commands (as a number, as an expression or as a variable in the
system of the expression evaluator). If the value of num is zero, error message for all
recorded error codes are printed to the output file. If it is a positive number not greater
than the number of recorded error codes, a message for the num-th error is printed to the
output file (if it is greater than the number of recorded errors, then error messages for all
errors are printed). If the value of num is negative and its absolute value is not greater
than the number of recorded error codes, then an error message for the num-th error code,
counted from the end of the stack, is printed (again a report about all recorded error codes
is printed if -num is greater than the number of recorded errors).

All error codes of the file operations can be cleared from the stack by the
clearfileoperrors function. The user can so keep trace only about errors which occur
from a specific point on.

It is good to know that the number of error codes which are remembered is
limited. When the number of recorded error codes execs a specific pre-defined value, the
first few errors are cleared from the stack.

7.3.1.3 printfileoperror { <num> }
 Prints a report about a specific error or errors which have occurred during the file
operations, to the standard output. Otherwise this function is identical to
fprintfileoperror.

8

INVERSE 3.11

Some General File Interpreter 7.3: A General File Interface for Programme INVERSE /
Functions of the Interface

7.3.1.4 dprintfileoperror { <num> }
 Prints a report about a specific error or errors which have occurred during the file
operations, to the standard output and the programme’s output file. Otherwise this
function is identical to fprintfileoperror.

7.3.1.5 fwritefileoperror { <num> }
 Prints an error string which corresponds to a specific error or errors which have
occurred during the file operations, to the programme’s output file. The meaning of
optional argument num is the same as at function fprintfileoperror.

7.3.1.6 writefileoperror { <num> }
 Prints an error string which corresponds to a specific error or errors which have
occurred during the file operations, to the standard output. Otherwise this function is
identical to fwritefileoperror.

7.3.1.7 dwritefileoperror { <num> }
 Prints an error string which corresponds to a specific error or errors which have
occurred during the file operations, to the standard output and the programme’s output
file.. Otherwise this function is identical to fwritefileoperror.

7.3.1.8 clearfileoperrors { }
 This function clear all error codes from the stack of file operation error codes and
also sets the error code of the last file operation to zero. It is used to record all file
operation errors anew from a specific point.

7.3.1.9 setfileopbuflength { length }
 Sets the size of the buffer which is used ad searching operations to length. The
default buffer length is 200 bytes and can be changed at any time. It is ideal if the buffer
length is of the same magnitude of order than the expected search length since in this case
only one or a few reading operations will be performed to find what is searched for. This
is good because accessing input-output devices is usually time consumable. On the other
hand, it is not good if the buffer is much larger than the expected search length because in
this case a lot of necessary data will be read from the file which is also time consuming.
If the expected search length is extremely large, i.e. takes a significant portion of memory
available on the system, the buffer length must be smaller than recommended above
because in the opposite case we can have problems with insufficient memory resources.

9

INVERSE 3.11

File Interpreter Functions of the 7.4: A General File Interface for Programme INVERSE /
Interface which Operate on the Pre-defined File “infile”

7.4 File Interpreter Functions of the Interface which Operate on
the Pre-defined File “infile”

7.4.1 Controlling the State of the File

7.4.1.1 fprintfpos { }
 Prints a report about the current position in the file infile to the shell's output file.

7.4.1.2 printfpos { }
 Prints a report about the current position in the file infile to the standard output.

7.4.1.3 dprintfpos { }
 Prints a report about the current position in the file infile to the standard output
and the programme’s output fie.

7.4.1.4 fprintfpart { pos1 <pos2> }
 Prints a part of the file infile to the shell's output file. If pos2 is specified, the part
of the file from position pos1 to (including) pos2 is printed. If only pos1 is specified,
pos1 bytes from the current position on (including the current position) of the file is
printed. It prints the file part in the form of a report where it also prints which part of the
file is printed.
 If both pos1 and pos2 are specified, they can be zero, and pos2 can be greater than
the length of the file. In this case, if pos1 is zero, it is changed to 1, if pos2 is zero, it is
changed to the length of the file, and if pos2 is greater than the length of the file, it is also
changed to the length of the file before the operation is performed. If only pos1 is
specified, it must be greater than zero. If in this case pos1 bytes from the current position
would exceed the length of the file, pos1 is reduced before the operation so that the length
of the file is matched.
 An error is recorded if pos1 or pos2 are invalid. If the file variable is not defined,
an error report is written to the standard output and to the programme’s output file. If it is
not connected to a physical file, an appropriate error code is recorded.

7.4.1.5 printfpart { pos1 <pos2> }
 Does the same as fprintfpart, except that it prints to standard output.

10

INVERSE 3.11

File Interpreter Functions of the 7.4: A General File Interface for Programme INVERSE /
Interface which Operate on the Pre-defined File “infile”

7.4.1.6 dprintfpart { pos1 <pos2> }
 Does the same as fprintfpart, except that it prints to the standard output and to
the programme’s output file.

7.4.1.7 fwritefpart { pos1 <pos2> }
 Prints a part of the file infile to the shell's output file. If pos2 is specified, the part
of the file from position pos1 to (including) pos2 is printed. If only pos1 is specified,
pos1 bytes from the current position on (including the current position) of the file is
printed. Only the file part is printed without any explanation or newlines, so this function
is useful if the user wants to use the contents of a file as a part of the output which he
generates on his own way.
 If both pos1 and pos2 are specified, they can be zero, and pos2 can be greater than
the length of the file. In this case, if pos1 is zero, it is changed to 1, if pos2 is zero, it is
changed to the length of the file, and if pos2 is greater than the length of the file, it is also
changed to the length of the file before the operation is performed. If only pos1 is
specified, it must be greater than zero. If in this case pos1 bytes from the current position
would exceed the length of the file, pos1 is reduced before the operation so that the length
of the file is matched.
 An error is recorded if pos1 or pos2 are invalid. If the file is not defined, an error
report is written to the standard output and to the programme’s output file. If it is not
connected to a physical file, an appropriate error code is recorded.

7.4.1.8 writefpart { pos1 <pos2> }
 Does the same as fwritefpart, except that it prints to standard output.

7.4.1.9 dwritefpart { pos1 <pos2> }
 Does the same as fwritefpart, except that it prints to standard output and the
programme’s output file.

7.4.1.10 fsetpos { pos }
 Sets the current position in the file infile to the value of pos. pos should be a non-
negative number not greater than the file size. If it is not an integer, it is rounded to the
nearest integer. If it is zero, it is changed to the length of the file plus 1 before the
operation is performed.

If it pos is greater than the length of the file, an error is recorded and the position
is set to the end of the file (file length plus 1). If rounded pos is less than zero, an error is
recorded and nothing else happens. If the file is not defined, an error report is written to
the standard output and to the programme’s output file. If it is not connected to a physical
file, an appropriate error code is recorded.

11

INVERSE 3.11

File Interpreter Functions of the 7.4: A General File Interface for Programme INVERSE /
Interface which Operate on the Pre-defined File “infile”

7.4.1.11 fincreasepos { inc }
 Increases the current position in the file infile by inc. inc is rounded to the nearest
integer. It can be negative (in this case the current position is decreased) or zero.

If the new position would be less than 1, an error code is recorded and the current
position is set to 1. If the new position would be greater than the file length, an error code
is recorded and the current position is set to the end of the file (the length of the file plus
1).

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file, an appropriate error code
is recorded.

7.4.1.12 fmarkpos { pos }
 Marks the current position in the file infile. The position is assigned to the
expression evaluator’s variable named pos. If the position can not be determined, an
integer value less than 1 is assigned to the variable.
 If the file is not defined, an error report is written to the standard output and to the
programme’s output file. An error is not reported or recorded if the file is not connected
to a physical file. In this case the marked position is less than one.

7.4.1.13 fflush { }
Empties the file buffer of the pre-defined file infile and writes the unsaved data on

the disk.
This function is used only in special ocasions, for example when we debug the

command file and would like to check the effect of file operations directly by editing a
file. by executing the fflush command we make sure that all performed file operations
take effect, since files are buffered and many operations only take immediate effect on
the buffer, not on the file.

7.4.2 Searching for the Data

7.4.2.1 ffindstring { string <pos after> }
 Searches for the string string in the file infile from the current position on. If the
string is found, it sets the current position of this file to the first byte of the found string.
pos and after are optional arguments which specify the names of expression evaluator's
variables into which additional information is stored. The function assigns the position of
the string to the variable named pos and the position of the first byte after the string to the
variable named after.

12

INVERSE 3.11

File Interpreter Functions of the 7.4: A General File Interface for Programme INVERSE /
Interface which Operate on the Pre-defined File “infile”

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the string is not
found, an appropriate error code is recorded.

7.4.2.2 ffindstringto {to string <pos after> }
 Like ffindstring, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.4.2.3 fskipstring { string <after pos> }
 Searches for the string string in the file infile from the current position on. If the
string is found, it sets the current position of this file to the first byte after the found
string. Optional argument after specifies the name of the expression evaluator's variable
to which the function assigns this position, and pos specifies the variable to which this
function assigns the position of the found string (i.e. the first byte if this string if the file).

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the string is not
found, an appropriate error code is recorded.

7.4.2.4 fskipstringto { to string <after pos> }
 Like fskipstring, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.4.2.5 fmultfindstring { {string1 string2 string3 string4 ...} <which pos
after> }
 Searches for the first occurrence of any of the strings string1, string2, string3, etc.
in the file infile from the current position on. If it finds any of these strings, it sets the
current position to the position of the found string. Strings must be in curly brackets.
 If argument which is given, the function assigns the ordinary number of the found
string to the expression evaluator variable named which. If argument pos is given, the
function assigns the position of the found string to the appropriate expression evaluator
variable, and if after is also given, the function assign the position of the first byte after
the found string to the variable with such name.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the string is not
found, an appropriate error code is recorded.

7.4.2.6 fmultfindstringto { to {string1 string2 string3 string4 ...} <which
pos after> }
 Like fmultfindstring, only that the operation is performed on a limited region of
the file. Argument to specifies the upper limit of the action range.

13

INVERSE 3.11

File Interpreter Functions of the 7.4: A General File Interface for Programme INVERSE /
Interface which Operate on the Pre-defined File “infile”

7.4.2.7 fmultskipstring { {string1 string2 string3 string4 ...} <which after
pos> }
 Searches for the first occurrence of any of the strings string1, string2, string3, etc.
in the file infile from the current position on. If it finds any of these strings, it sets the
current position to the position of the first byte after the found string. Strings must be in
curly brackets.
 If argument which is given, the function assigns the ordinary number of the found
string to the expression evaluator variable named which. If argument after is given, the
function assign the position of the first byte after the found string to the expression
evaluator's variable named after, and if pos is also specified, the function assign the
position of the found string to the variable with such name.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the string is not
found, an appropriate error code is recorded.

7.4.2.8 fmultskipstringto { to {string1 string2 string3 string4 ...} <which
after pos> }
 Like fmultskipstring, only that the operation is performed on a limited region of
the file. Argument to specifies the upper limit of the action range.

7.4.2.9 ffindcharacter { charstring <pos> }
 Searches in the file infile from the current position for the first occurrence of a
character included in the string charstring. If the search is successful then it sets the
current position in the file to the position of the found character.

Optional argument pos specifies a name of the expression evaluator’s variable to
which the position of the found character is assigned. If the search is not successful then a
number less than 1 is assigned to that variable.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the character is not
found, an appropriate error code is recorded.

7.4.2.10 ffindcharacterto { to charstring <pos> }
 Like ffindcharacter, only that the operation is performed on a limited region of
the file. Argument to specifies the upper limit of the action range.

7.4.2.11 fskipcharacters { charstring <pos> }
 Searches in the file infile from the current position for the first occurrence of a
character not included in the string charstring. If the search is successful then it sets the
current position in the file to the position of the found character.

Optional argument pos specifies a name of the expression evaluator’s variable to
which the position of the found character is assigned. If the search is not successful then a
number less than 1 is assigned to that variable.

14

INVERSE 3.11

File Interpreter Functions of the 7.4: A General File Interface for Programme INVERSE /
Interface which Operate on the Pre-defined File “infile”

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the character is not
found, an appropriate error code is recorded.

7.4.2.12 fskipcharactersto { to charstring <pos> }
 Like fskipcharacters, only that the operation is performed on a limited region of
the file. Argument to specifies the upper limit of the action range.

7.4.2.13 ffindblank { <pos> }
 Searches in the file infile from the current position for the first occurrence of a
blank character, i.e. space, tab, newline, carriage return or null character. If the search is
successful then it sets the current position in the file to the position of the found character.

Optional argument pos specifies a name of the expression evaluator’s variable to
which the position of the found character is assigned. If the search is not successful then a
number less than 1 is assigned to that variable.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the character is not
found, an appropriate error code is recorded.

7.4.2.14 ffindblankto { to <pos> }
 Like ffindblank, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.4.2.15 fskipblanks { <pos> }
 Searches in the file infile from the current position for the first occurrence of a
non-blank character (blank characters are the space, tab, newline, carriage return and null
character). If the search is successful then it sets the current position in the file to the
position of the found character.

Optional argument pos specifies a name of the expression evaluator’s variable to
which the position of the found character is assigned. If the search is not successful then a
number less than 1 is assigned to that variable.

 If the file is not defined, an error report is written to the standard output
and to the programme’s output file. If it is not connected to a physical file or if the
character is not found, an appropriate error code is recorded.

7.4.2.16 fskipblanksto { to <pos> }
 Like fskipblanks, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

15

INVERSE 3.11

File Interpreter Functions of the 7.4: A General File Interface for Programme INVERSE /
Interface which Operate on the Pre-defined File “infile”

7.4.2.17 fnextline { <pos> }
 Sets the current position in the file infile to the beginning of the next line from the
current position in this file. If such position is found, it sets the current position in this file
to it.
 Optional argument pos specifies a name of the expression evaluator’s variable to
which the position of the found position is assigned. If the search is not successful then a
number less than 1 is assigned to that variable.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the next line can not
be located (e.g. when the current position is in the last line of the file), an appropriate
error code is recorded.

7.4.2.18 ffindbrac { bracstr <pos1 pos2> }
 Searches in the file infile from the current position for the first occurrence of a
closed bracket specified by bracstr. The first character of bracstr must be the character
used for the opening bracket and the second character of the string must be the character
used for the closing bracket. These characters may not be the same. Sequences which
represent special characters can be used in this string. If the search is successful then the
function sets the current position in the file to the position of the first character inside the
bracket if the bracket contain any characters, otherwise it sets the current position to the
position of the first character after the bracket.

Optional arguments pos1 and pos2 specify names of the expression evaluator’s
variables to which the position of the found opening and closing bracket is assigned. If
the search is not successful then a number less than 1 is assigned to those variables.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if a bracket is not
found, an appropriate error code is recorded. An error code is also recorded if a bracket is
found but does not contain any characters, i.e. the closing bracket immediately follow the
opening bracket.

7.4.2.19 ffindbracto { to bracstr <pos1 pos2> }
 Like ffindbrac, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.4.2.20 fskipbrac { bracstr <pos1 pos2> }
 Searches in the file infile from the current position for the first occurrence of a
closed bracket specified by bracstr. The first character of bracstr must be the character
used for the opening bracket and the second character of the string must be the character
used for the closing bracket. These characters may not be the same. Sequences which
represent special characters can be used in this string. If the search is successful then the

16

INVERSE 3.11

File Interpreter Functions of the 7.4: A General File Interface for Programme INVERSE /
Interface which Operate on the Pre-defined File “infile”

function sets the current position in the to the position of the first character after the
bracket.

Optional arguments pos1 and pos2 specify names of the expression evaluator’s
variables to which the position of the found opening and closing bracket is assigned. If
the search is not successful then a number less than 1 is assigned to those variables.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if a bracket is not
found, an appropriate error code is recorded.

7.4.2.21 fskipbracto { to bracstr <pos1 pos2> }
 Like fskipbrac, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.4.2.22 ffindnumber { < start next val > }
 Searches in the file infile from the current position for the first occurrence of a
string which can represent a number. The number can be written in any standard format
in which numbers are written in text files. If a number is found, the current position in the
file is set to the position of the first character of the string which represent the number.
 Optional arguments start, next and val specify names of the expression
evaluator’s variables to which the position of the found number, the position of the first
character after the number, and the value of the number are assigned, respectively. If the
search is not successful then integer numbers less than 1 are assigned to start and next.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if a number is not
found, an appropriate error code is recorded.

7.4.2.23 ffindnumberto { to < start next val > }
 Like ffindnumber, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.4.2.24 fskipnumber { < next start val > }
 Searches in the file infile from the current position for the first occurrence of a
string which can represent a number. The number can be written in any standard format
in which numbers are written in text files. If a number is found, the current position in the
file is set to the position of the first character after the string which represent the number.
 Optional arguments next, start and val specify names of the expression
evaluator’s variables to which the position of the first character after the number, the
position of the found number, and the value of the number are assigned, respectively. If
the search is not successful then integer numbers less than 1 are assigned to next and
start.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if a number is not
found, an appropriate error code is recorded.

17

INVERSE 3.11

File Interpreter Functions of the 7.4: A General File Interface for Programme INVERSE /
Interface which Operate on the Pre-defined File “infile”

7.4.2.25 fskipnumberto { to < next start val > }
 Like fskipnumber, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.4.3 Reading the Data

7.4.3.1 freadnumber { varname <start next> }
 Reads a number from the file infile and assigns its value to the expression
evaluator’s variable named varname. Reading starts at the current position in the file. A
number must reside at that position, otherwise the operation fails (blank characters are
allowed between the current position and a number). If the operation is successful, the
current position in the file is set to the position of the first character after the read data.
 An optional argument start specifies a name of the expression evaluator’s variable
to which the current position in the file before the operation is assigned, and an optional
argument next specifies a name of the expression evaluator’s variable to which the
position of the first character after the read data is assigned. In the case that no data is
read, the position before the operation is also assigned to the variable named next. These
values are assigned to the expression evaluator’s variables named start and next
regardless of the success of the operation, therefore the success can not be examined
through the values of these variables, but only through registered errors.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the number can not
be read, an appropriate error code is recorded.

7.4.3.2 freadnumberto { to varname <start next> }
 Like freadnumber, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.4.3.3 freadscalar { scalspec <start next> }
 Reads a number from the file infile and assigns it to a programme’s scalar
variable. scalspec is a specification of the variable to which the number is assigned. It
must be given in a standard form consisting of the variable name and optionally the index
table in square brackets. Reading starts at the current position in the file. A number must
reside at that position, otherwise the operation fails (blank characters are allowed between
the current position and a number). If the operation is successful, the current position in
the file is set to the position of the first character after the read data.
 An optional argument start specifies a name of the expression evaluator’s variable
to which the current position in the file before the operation is assigned, and an optional
argument next specifies a name of the expression evaluator’s variable to which the
position of the first character after the read data is assigned. In the case that no data is

18

INVERSE 3.11

File Interpreter Functions of the 7.4: A General File Interface for Programme INVERSE /
Interface which Operate on the Pre-defined File “infile”

read, the position before the operation is also assigned to the variable named next. These
values are assigned to the expression evaluator’s variables named start and next
regardless of the success of the operation, therefore the success can not be examined
through the values of these variables, but only through registered errors.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the scalar can not be
read, an appropriate error code is recorded.

7.4.3.4 freadscalarto { to scalspec <start next> }
 Like freadscalar, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.4.3.5 freadvector { vecspec <start next> }
 Reads a vector from the file infile and assigns it to a programme’s vector variable.
vecspec is a specification of the variable to which the read vector is assigned. It must be
given in a standard form consisting of the variable name and optionally the index table in
square brackets. Reading starts at the current position in the file. A vector must reside at
that position, otherwise the operation fails (blank characters are allowed between the
current position and numbers of which the vector consists). The vector must be given as a
sequence of numbers the first of which is vector’s dimension and the others are its
components. All the components must be given and must follow in a successive order. If
the operation is successful, the current position in the file is set to the position of the first
character after the read data. If it is partially successful, the current position is set to the
position of the first character after the last read number.
 An optional argument start specifies a name of the expression evaluator’s variable
to which the current position in the file before the operation is assigned, and an optional
argument next specifies a name of the expression evaluator’s variable to which the
position of the first character after the read data is assigned. In the case that no data is
read, the position before the operation is also assigned to the variable named next. These
values are assigned to the expression evaluator’s variables named start and next
regardless of the success of the operation, therefore the success can not be examined
through the values of these variables, but only through registered errors.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the vector can not be
read, an appropriate error code is recorded. An error code is also recorded if only a part of
the vector can be read.

7.4.3.6 freadvectorto { to vecspec <start next> }
Like freadvector, only that the operation is performed on a limited region of the

file. Argument to specifies the upper limit of the action range.

19

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

7.4.3.7 freadmatrix { matspec <start next> }
 Reads a matrix from the file infile and assigns it to a programme’s matrix
variable. matspec is a specification of the variable to which the read matrix is assigned. It
must be given in a standard form consisting of the variable name and optionally the index
table in square brackets. Reading starts at the current position in the file. A matrix must
reside at that position, otherwise the operation fails (blank characters are allowed between
the current position and numbers of which the matrix consists). The matrix must be given
as a sequence of numbers the first two of which are matrix’ dimensions and the others are
its components. All the components must be given and must follow in a successive order
(column indices changing quicker than row indices). If the operation is successful, the
current position in the file is set to the position of the first character after the read data. If
it is partially successful, the current position is set to the position of the first character
after the last read number.
 An optional argument start specifies a name of the expression evaluator’s variable
to which the current position in the file before the operation is assigned, and an optional
argument next specifies a name of the expression evaluator’s variable to which the
position of the first character after the read data is assigned. In the case that no data is
read, the position before the operation is also assigned to the variable named next. These
values are assigned to the expression evaluator’s variables named start and next
regardless of the success of the operation, therefore the success can not be examined
through the values of these variables, but only through registered errors.

If the file is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file or if the matrix can not be
read, an appropriate error code is recorded. An error code is also recorded if only a part of
the matrix can be read.

7.4.3.8 freadmatrixto { to matspec <start next> }
Like freadmatrix, only that the operation is performed on a limited region of the

file. Argument to specifies the upper limit of the action range.

7.5 File Interpreter Functions of the Interface which Operate on
Arbitrary Files

20

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

7.5.1 Controlling the State of the Files

7.5.1.1 fprintfilepos { filespec }
 Prints a report about the current position in the file specified by filespec to the
shell's output file.

7.5.1.2 printfilepos { filespec }
 Prints a report about the current position in the file specified by filespec to the
standard output.

7.5.1.3 dprintfilepos { filespec }
 Prints a report about the current position in the file specified by filespec to the
standard output and the programme’s output file.

7.5.1.4 fprintfilepart { filespec pos1 <pos2> }
 Prints a part of the file specified by filespec to the shell's output file. If pos2 is
specified, the part of the file from position pos1 to (including) pos2 is printed. If only
pos1 is specified, pos1 bytes from the current position on (including the current position)
of the file is printed. It prints the file part in the form of a report where it also prints
which part of the file is printed.
 If both pos1 and pos2 are specified, they can be zero, and pos2 can be greater than
the length of the file. In this case, if pos1 is zero, it is changed to 1, if pos2 is zero, it is
changed to the length of the file, and if pos2 is greater than the length of the file, it is also
changed to the length of the file before the operation is performed. If only pos1 is
specified, it must be greater than zero. If in this case pos1 bytes from the current position
would exceed the length of the file, pos1 is reduced before the operation so that the length
of the file is matched.
 An error is recorded if pos1 or pos2 are invalid. If filespec is not specified or the
appropriate file variable is not defined, an error report is written to the standard output
and to the programme’s output file. If it is not connected to a physical file, an appropriate
error code is recorded.

7.5.1.5 printfilepart { filespec pos1 <pos2> }
 Does the same as fprintfilepart, except that it prints to standard output.

7.5.1.6 dprintfilepart { filespec pos1 <pos2> }
 Does the same as fprintfilepart, except that it prints to the standard output and
the programme’s output file.

21

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

7.5.1.7 fwritefilepart { filespec pos1 <pos2> }
 Prints a part of the file specified by filespec to the shell's output file. If pos2 is
specified, the part of the file from position pos1 to (including) pos2 is printed. If only
pos1 is specified, pos1 bytes from the current position on (including the current position)
of the file is printed. Only the file part is printed without any explanation or newlines, so
this function is useful if the user wants to use the contents of a file as a part of the output
which he generates on his own way.
 If both pos1 and pos2 are specified, they can be zero, and pos2 can be greater than
the length of the file. In this case, if pos1 is zero, it is changed to 1, if pos2 is zero, it is
changed to the length of the file, and if pos2 is greater than the length of the file, it is also
changed to the length of the file before the operation is performed. If only pos1 is
specified, it must be greater than zero. If in this case pos1 bytes from the current position
would exceed the length of the file, pos1 is reduced before the operation so that the length
of the file is matched.
 An error is recorded if pos1 or pos2 are invalid. If filespec is not specified or the
file variable is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file, an appropriate error code
is recorded.

7.5.1.8 writefilepart { filespec pos1 <pos2> }
 Does the same as fwritefilepart, except that it prints to standard output.

7.5.1.9 dwritefilepart { filespec pos1 <pos2> }
 Does the same as fwritefilepart, except that it prints to the standard output and
the programme’s output file.

7.5.1.10 filesetpos { filespec pos }
 Sets the current position in the file specified by filespec to the value of pos. pos
should be a non-negative number not greater than the file size. If it is not an integer, it is
rounded to the nearest integer. If it is zero, it is changed to the length of the file plus 1
before the operation is performed.

If it pos is greater than the length of the file, an error is recorded and the position
is set to the end of the file (file length plus 1). If rounded pos is less than zero, an error is
recorded and nothing else happens. If fiespec is not specified or the appropriate file
variable is not defined, an error report is written to the standard output and to the
programme’s output file. If it is not connected to a physical file, an appropriate error code
is recorded.

7.5.1.11 fileincreasepos { filespec inc }
 Increases the current position in the file specified by filespec by inc. inc is
rounded to the nearest integer. It can be negative (in this case the current position is
decreased) or zero.

22

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

If the new position would be less than 1, an error code is recorded and the current
position is set to 1. If the new position would be greater than the file length, an error code
is recorded and the current position is set to the end of the file (the length of the file plus
1).

If filespec is not specified or the file variable is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file, an appropriate error code is recorded.

7.5.1.12 filemarkpos { filespec pos }
 Marks the current position in the file specified by filespec. The position is
assigned to the expression evaluator’s variable named pos. If the position can not be
determined, an integer value less than 1 is assigned to the variable.
 If filespec is not specified or the appropriate file variable is not defined, an error
report is written to the standard output and to the programme’s output file. An error is not
reported or recorded if the file is not connected to a physical file. In this case the marked
position is less than one.

7.5.1.13 fileflush { filespec }
Empties the file buffer of the pre-defined file specified by filespec and writes the

unsaved data on the disk.
This function is used only in special ocasions, for example when we debug the

command file and would like to check the effect of file operations directly by editing a
file. by executing the fflush command we make sure that all performed file operations
take effect, since files are buffered and many operations only take immediate effect on
the buffer, not on the file.

7.5.2 Searching for the Data

7.5.2.1 filefindstring { filespec string <pos after> }
 Searches for the string string in the file specified by filespec from the current
position on. If the string is found, it sets the current position of this file to the first byte of
the found string. pos and after are optional arguments which specify the names of
expression evaluator's variables into which additional information is stored. The function
assigns the position of the string to the variable named pos and the position of the first
byte after the string to the variable named after.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the string is not found, an appropriate error code is recorded.

23

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

7.5.2.2 filefindstringto { filespec to string <pos after> }
 Like filefindstring, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.5.2.3 fileskipstring { filespec string <after pos> }
 Searches for the string string in the file specified by filespec from the current
position on. If the string is found, it sets the current position of this file to the first byte
after the found string. Optional argument after specifies the name of the expression
evaluator's variable to which the function assigns this position, and pos specifies the
variable to which this function assigns the position of the found string (i.e. the first byte if
this string if the file).

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the string is not found, an appropriate error code is recorded.

7.5.2.4 fileskipstringto { filespec to string <after pos> }
 Like fileskipstring, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.5.2.5 filemultfindstring { filespec {string1 string2 string3 string4 ...}
<which pos after> }
 Searches for the first occurrence of any of the strings string1, string2, string3, etc.
in the file specified by filespec from the current position on. If it finds any of these
strings, it sets the current position to the position of the found string. Strings must be in
curly brackets.
 If argument which is given, the function assigns the ordinary number of the found
string to the expression evaluator variable named which. If argument pos is given, the
function assign the position of the found string to the expression evaluator's variable
named pos. If after is also given, the function assign the position of the first byte after the
found string to the variable with such name.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the string is not found, an appropriate error code is recorded.

7.5.2.6 filemultfindstringto { filespec to {string1 string2 string3 string4 ...}
<which pos after> }
 Like filemultfindstring, only that the operation is performed on a limited region
of the file. Argument to specifies the upper limit of the action range.

24

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

7.5.2.7 filemultskipstring { filespec {string1 string2 string3 string4 ...}
<which after pos> }
 Searches for the first occurrence of any of the strings string1, string2, string3, etc.
in the file specified by filespec from the current position on. If it finds any of these
strings, it sets the current position to the position of the first byte after the found string.
Strings must be in curly brackets.
 If argument which is given, the function assigns the ordinary number of the found
string to the expression evaluator variable named which. If argument after is given, the
function assign the position of the first byte of the found string to the expression
evaluator's variable named after, and if pos is also specified, the function assign the
position of the found string to the variable with such name.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the string is not found, an appropriate error code is recorded.

7.5.2.8 filemultskipstringto { filespec to {string1 string2 string3 string4 ...}
<which after pos> }
 Like filemultskipstring, only that the operation is performed on a limited region
of the file. Argument to specifies the upper limit of the action range.

7.5.2.9 filefindcharacter {filespec charstring <pos> }
 Searches in the file specified by filespec from the current position for the first
occurrence of a character included in the string charstring. If the search is successful then
it sets the current position in the file to the position of the found character.

Optional argument pos specifies a name of the expression evaluator’s variable to
which the position of the found character is assigned. If the search is not successful then a
number less than 1 is assigned to that variable.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the character is not found, an appropriate error code is recorded.

7.5.2.10 filefindcharacterto { filespec to charstring <pos> }
 Like filefindcharacter, only that the operation is performed on a limited region of
the file. Argument to specifies the upper limit of the action range.

7.5.2.11 fileskipcharacters { filespec charstring <pos> }
 Searches in the file specified by filespec from the current position for the first
occurrence of a character not included in the string charstring. If the search is successful
then it sets the current position in the file to the position of the found character.

25

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

Optional argument pos specifies a name of the expression evaluator’s variable to
which the position of the found character is assigned. If the search is not successful then a
number less than 1 is assigned to that variable.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the character is not found, an appropriate error code is recorded.

7.5.2.12 fileskipcharactersto { filespec to charstring <pos> }
 Like fileskipcharacters, only that the operation is performed on a limited region
of the file. Argument to specifies the upper limit of the action range.

7.5.2.13 filefindblank { filespec <pos> }
 Searches in the file specified by filespec from the current position for the first
occurrence of a blank character, i.e. space, tab, newline, carriage return or null character.
If the search is successful then it sets the current position in the file to the position of the
found character.

Optional argument pos specifies a name of the expression evaluator’s variable to
which the position of the found character is assigned. If the search is not successful then a
number less than 1 is assigned to that variable.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the character is not found, an appropriate error code is recorded.

7.5.2.14 filefindblankto { filespec to <pos> }
 Like filefindblank, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.5.2.15 fileskipblanks { filespec file <pos> }
 Searches in the file specified by filespec from the current position for the first
occurrence of a non-blank character (blank characters are the space, tab, newline, carriage
return and null character). If the search is successful then it sets the current position in the
file to the position of the found character.

Optional argument pos specifies a name of the expression evaluator’s variable to
which the position of the found character is assigned. If the search is not successful then a
number less than 1 is assigned to that variable.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the character is not found, an appropriate error code is recorded.

7.5.2.16 fileskipblanksto { filespec to <pos> }
 Like fileskipblanks, only that the operation is performed on a limited region of
the file. Argument to specifies the upper limit of the action range.

26

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

7.5.2.17 filenextline { filespec <pos> }
 Sets the current position in the file specified by filespec to the beginning of the
next line from the current position in this file. If such position is found, it sets the current
position in this file to it.
 Optional argument pos specifies a name of the expression evaluator’s variable to
which the position of the found position is assigned. If the search is not successful then a
number less than 1 is assigned to that variable.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the next line can not be located (e.g. when the current position is in
the last line of the file), an appropriate error code is recorded.

7.5.2.18 filefindbrac { filespec bracstr <pos1 pos2> }
 Searches in the file specified by filespec from the current position for the first
occurrence of a closed bracket specified by bracstr. The first character of bracstr must be
the character used for the opening bracket and the second character of the string must be
the character used for the closing bracket. These characters may not be the same.
Sequences which represent special characters can be used in this string. If the search is
successful then the function sets the current position in the file to the position of the first
character inside the bracket if the bracket contain any characters, otherwise it sets the
current position to the position of the first character after the bracket.

Optional arguments pos1 and pos2 specify names of the expression evaluator’s
variables to which the position of the found opening and closing bracket is assigned. If
the search is not successful then a number less than 1 is assigned to those variables.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if a bracket is not found, an appropriate error code is recorded. An error
code is also recorded if a bracket is found but does not contain any characters, i.e. the
closing bracket immediately follow the opening bracket.

7.5.2.19 filefindbracto { filespec to bracstr <pos1 pos2> }
 Like filefindbrac, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.5.2.20 fileskipbrac { filespec bracstr <pos1 pos2> }
 Searches in the file specified by filespec from the current position for the first
occurrence of a closed bracket specified by bracstr. The first character of bracstr must be
the character used for the opening bracket and the second character of the string must be
the character used for the closing bracket. These characters may not be the same.
Sequences which represent special characters can be used in this string. If the search is
successful then the function sets the current position in the to the position of the first
character after the bracket.

27

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

Optional arguments pos1 and pos2 specify names of the expression evaluator’s
variables to which the position of the found opening and closing bracket is assigned. If
the search is not successful then a number less than 1 is assigned to those variables.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if a bracket is not found, an appropriate error code is recorded.

7.5.2.21 fileskipbracto { filespec to bracstr <pos1 pos2> }
 Like fileskipbrac, only that the operation is performed on a limited region of the
file. Argument to specifies the upper limit of the action range.

7.5.2.22 filefindnumber { filespec < start next val > }
 Searches in the file specified by filespec from the current position for the first
occurrence of a string which can represent a number. The number can be written in any
standard format in which numbers are written in text files. If a number is found, the
current position in the file is set to the position of the first character of the string which
represent the number.
 Optional arguments start, next and val specify names of the expression
evaluator’s variables to which the position of the found number, the position of the first
character after the number, and the value of the number are assigned, respectively. If the
search is not successful then integer numbers less than 1 are assigned to start and next.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if a number is not found, an appropriate error code is recorded.

7.5.2.23 filefindnumberto { filespec to < start next val > }
 Like filefindnumber, only that the operation is performed on a limited region of
the file. Argument to specifies the upper limit of the action range.

7.5.2.24 fileskipnumber { filespec < next start val > }
 Searches in the file specified by filespec from the current position for the first
occurrence of a string which can represent a number. The number can be written in any
standard format in which numbers are written in text files. If a number is found, the
current position in the file is set to the position of the first character after the string which
represent the number.
 Optional arguments next, start and val specify names of the expression
evaluator’s variables to which the position of the first character after the number, the
position of the found number, and the value of the number are assigned, respectively. If
the search is not successful then integer numbers less than 1 are assigned to next and
start.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if a number is not found, an appropriate error code is recorded.

28

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

7.5.2.25 fileskipnumberto { filespec to < next start val > }
 Like fileskipnumber, only that the operation is performed on a limited region of
the file. Argument to specifies the upper limit of the action range.

7.5.3 Reading the Data

7.5.3.1 filereadnumber { filespec varname <start next> }
 Reads a number from the file specified by filespec and assigns its value to the
expression evaluator’s variable named varname. Reading starts at the current position in
the file. A number must reside at that position, otherwise the operation fails (blank
characters are allowed between the current position and a number). If the operation is
successful, the current position in the file is set to the position of the first character after
the read data.
 An optional argument start specifies a name of the expression evaluator’s variable
to which the current position in the file before the operation is assigned, and an optional
argument next specifies a name of the expression evaluator’s variable to which the
position of the first character after the read data is assigned. In the case that no data is
read, the position before the operation is also assigned to the variable named next. These
values are assigned to the expression evaluator’s variables named start and next
regardless of the success of the operation, therefore the success can not be examined
through the values of these variables, but only through registered errors.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the number can not be read, an appropriate error code is recorded.

7.5.3.2 filereadnumberto { filespec to varname <start next> }
 Like filereadnumber, only that the operation is performed on a limited region of
the file. Argument to specifies the upper limit of the action range.

7.5.3.3 filereadscalar { filespec scalspec <start next> }
 Reads a number from the file specified by filespec and assigns it to a
programme’s scalar variable. scalspec is a specification of the variable to which the
number is assigned. It must be given in a standard form consisting of the variable name
and optionally the index table in square brackets. Reading starts at the current position in
the file. A number must reside at that position, otherwise the operation fails (blank
characters are allowed between the current position and a number). If the operation is
successful, the current position in the file is set to the position of the first character after
the read data.
 An optional argument start specifies a name of the expression evaluator’s variable
to which the current position in the file before the operation is assigned, and an optional

29

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

argument next specifies a name of the expression evaluator’s variable to which the
position of the first character after the read data is assigned. In the case that no data is
read, the position before the operation is also assigned to the variable named next. These
values are assigned to the expression evaluator’s variables named start and next
regardless of the success of the operation, therefore the success can not be examined
through the values of these variables, but only through registered errors.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the scalar can not be read, an appropriate error code is recorded.

7.5.3.4 filereadscalarto { filespec to scalspec <start next> }
 Like filereadscalar, only that the operation is performed on a limited region of
the file. Argument to specifies the upper limit of the action range.

7.5.3.5 filereadvector { filespec vecspec <start next> }
 Reads a vector from the file specified by filespec and assigns it to a programme’s
vector variable. vecspec is a specification of the variable to which the read vector is
assigned. It must be given in a standard form consisting of the variable name and
optionally the index table in square brackets. Reading starts at the current position in the
file. A vector must reside at that position, otherwise the operation fails (blank characters
are allowed between the current position and numbers of which the vector consists). The
vector must be given as a sequence of numbers the first of which is vector’s dimension
and the others are its components. All the components must be given and must follow in a
successive order. If the operation is successful, the current position in the file is set to the
position of the first character after the read data. If it is partially successful, the current
position is set to the position of the first character after the last read number.
 An optional argument start specifies a name of the expression evaluator’s variable
to which the current position in the file before the operation is assigned, and an optional
argument next specifies a name of the expression evaluator’s variable to which the
position of the first character after the read data is assigned. In the case that no data is
read, the position before the operation is also assigned to the variable named next. These
values are assigned to the expression evaluator’s variables named start and next
regardless of the success of the operation, therefore the success can not be examined
through the values of these variables, but only through registered errors.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the vector can not be read, an appropriate error code is recorded. An
error code is also recorded if only a part of the vector can be read.

7.5.3.6 filereadvectorto { filespec to vecspec <start next> }
Like filereadvector, only that the operation is performed on a limited region of

the file. Argument to specifies the upper limit of the action range.

30

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

7.5.3.7 filereadmatrix { filespec matspec <start next> }
 Reads a matrix from the file specified by filespec and assigns it to a programme’s
matrix variable. matspec is a specification of the variable to which the read matrix is
assigned. It must be given in a standard form consisting of the variable name and
optionally the index table in square brackets. Reading starts at the current position in the
file. A matrix must reside at that position, otherwise the operation fails (blank characters
are allowed between the current position and numbers of which the matrix consists). The
matrix must be given as a sequence of numbers the first two of which are matrix’
dimensions and the others are its components. All the components must be given and
must follow in a successive order (column indexes changing quicker than row indexes). If
the operation is successful, the current position in the file is set to the position of the first
character after the read data. If it is partially successful, the current position is set to the
position of the first character after the last read number.
 An optional argument start specifies a name of the expression evaluator’s variable
to which the current position in the file before the operation is assigned, and an optional
argument next specifies a name of the expression evaluator’s variable to which the
position of the first character after the read data is assigned. In the case that no data is
read, the position before the operation is also assigned to the variable named next. These
values are assigned to the expression evaluator’s variables named start and next
regardless of the success of the operation, therefore the success can not be examined
through the values of these variables, but only through registered errors.

If filespec is not given or the appropriate file is not defined, an error report is
written to the standard output and to the programme’s output file. If it is not connected to
a physical file or if the matrix can not be read, an appropriate error code is recorded. An
error code is also recorded if only a part of the matrix can be read.

7.5.3.8 filereadmatrixto { filespec to matspec <start next> }
Like filereadmatrix, only that the operation is performed on a limited region of

the file. Argument to specifies the upper limit of the action range.

7.5.4 Writing to Files and Copying File Parts

7.5.4.1 filewrite { filespec writespec }
Writes specified data in a specified format to the file specified by filespec. filespec

is the specification of a file which consists of the file variable name and indexes of the
file in the element table of this variable. writespec specifies what to write and in which
form. The syntax of writespec is the same as at the functions fwrite and write. Writing
begins at the current position of the file given by filespec. After the operation the current
position is set to the first character after the written text.

31

INVERSE 3.11

File Interpreter Functions of the 7.5: A General File Interface for Programme INVERSE /
Interface which Operate on Arbitrary Files

An error report is written to the standard output and the programme’s output file if
filespec is not specified and if the specified file variable does not exist or if the
corresponding file is not open.

7.5.4.2 copyfpart { targetspec pos1 <pos2> }
 Copies a part of the file infile to the file specified by targetspec. targetspec is the
specification of a file which consists of the file variable name and indexes of the file in
the element table of this variable. If pos2 is specified, the part of the file from position
pos1 to (including) pos2 is copied. If only pos1 is specified, pos1 bytes from the current
position on (including the current position) of the file is copied.
 The current position of the file infile remains unchanged while the current
position of the file specified by targetspec is set to the first byte after the last copied byte.
 If both pos1 and pos2 are specified, they can be zero, and pos2 can be greater than
the length of the file. In this case, if pos1 is zero, it is changed to 1, if pos2 is zero, it is
changed to the length of the file, and if pos2 is greater than the length of the file, it is also
changed to the length of the file before the operation is performed. If only pos1 is
specified, it must be greater than zero. If in this case pos1 bytes from the current position
would exceed the length of the file, pos1 is reduced before the operation so that the length
of the file is matched.
 An error is recorded if pos1 or pos2 are invalid. If the file infile is not defined, an
error report is written to the standard output and to the programme’s output file. If it is
not connected to a physical file, an appropriate error code is recorded.

7.5.4.3 copyfilepart { sourcespec targetspec pos1 <pos2> }
 Copies a part of the file specified by sourcespec to the file specified by
targetspec. sourcespec and targetspec are the specifications of files and consist of a file
variable name and indexes of the file in the element table of the variable. If pos2 is
specified, the part of the file from position pos1 to (including) pos2 is copied. If only
pos1 is specified, pos1 bytes from the current position on (including the current position)
of the file is copied.
 The current position of the file specified by sourcespec remains unchanged while
the current position of the file specified by targetspec is set to the first byte after the last
copied byte.
 If both pos1 and pos2 are specified, they can be zero, and pos2 can be greater than
the length of the file. In this case, if pos1 is zero, it is changed to 1, if pos2 is zero, it is
changed to the length of the file, and if pos2 is greater than the length of the file, it is also
changed to the length of the file before the operation is performed. If only pos1 is
specified, it must be greater than zero. If in this case pos1 bytes from the current position
would exceed the length of the file, pos1 is reduced before the operation so that the length
of the file is matched.
 An error is recorded if pos1 or pos2 are invalid. If any of the files specified by
sourcespec or targerspec is not defined, an error report is written to the standard output

32

INVERSE 3.11

Expression Evaluator’s Functions of 7.6: A General File Interface for Programme INVERSE /
the Interface

and to the programme’s output file. If any of these files is not connected to a physical file,
an appropriate error code is recorded.

7.6 Expression Evaluator’s Functions of the Interface

7.6.1.1 fileoperror [<which>]
 If the function is called without arguments, it evaluates to the error status of the
last file operation. Code 0 means that the last operation was performed successfully.
 If the value of argument which is zero, the function evaluates to the number of
recorded errors during file operations. Otherwise, the function evaluates to a specific
error code where which is a successive number of an error on the stack of errors recorded
during file operations. If the value of which is not integer, its value is rounded to the
nearest integer. If it is negative, its absolute value specifies the successive number
counted backwards (e.g. -1 refers to the last recorded error, -2 refers the pre-last recorded
error, etc.).

7.6.1.2 getfpos []
 Evaluates to the current position in the file infile. If the current position is not
defined (e.g. if the file is not existent) it evaluates to an integer number less than 1.
 An error report is written to the standard output and the programme’s output file if
the file does not exist.

7.6.1.3 getfilepos [filename, < index1, index2, ... >]
 Evaluates to the current position in the file specified by the name filename and
indeces index1, index2, etc. If the current position is not defined (e.g. if the file is not
existent) it evaluates to an integer number less than 1.
 An error report is written to the standard output and the programme’s output file if
the file does not exist.

7.6.1.4 getfeof []
 Evaluates to a non-zero value if the current position in the file infile is at the end
of the file, otherwise it evaluates to 0. It also evaluates to 0 if the current position can not
be determined (e.g. if the file does not exist).
 An error report is written to the standard output and the programme’s output file if
the file does not exist.

33

INVERSE 3.11

Expression Evaluator’s Functions of 7.6: A General File Interface for Programme INVERSE /
the Interface

7.6.1.5 getfileeof [filename, < index1, index2, ... >]
 Evaluates to a non-zero value if the current position in the file specified by the
name filename and indexes index1, index2, etc., is at the end of the file, otherwise it
evaluates to 0. It also evaluates to 0 if the current position can not be determined (e.g. if
the file does not exist).
 An error report is written to the standard output and the programme’s output file if
the file does not exist.

7.6.1.6 getflength []
 Evaluates to the length of the file infile. If the length can not be determined, it
evaluates to an integer number less than 1 (e.g. if the file does not exist or is not
connected to a physical file).
 An error report is written to the standard output and the programme’s output file if
the file does not exist.

7.6.1.7 getfilelength [filename, < index1, index2, ... >]
 Evaluates to the length of the file specified by the name filename and indexes
index1, index2, etc. If the length can not be determined, it evaluates to an integer number
less than 1 (e.g. if the file does not exist or is not connected to a physical file).
 An error report is written to the standard output and the programme’s output file if
the file does not exist.

7.6.1.8 fcheckcharacter [charstr]
 Evaluates to a non-zero number if the character on the current position in the file
infile is contained in the string charstr, otherwise it evaluates to 0. Zero characters may
not be contained in the charstr.
 An error report is written to the standard output and the programme’s output file if
the file does not exist.

7.6.1.9 filecheckcharacter [filename, charstr, < index1, index2, ... >]
 Evaluates to a non-zero number if the character on the current position in the file
specified by the name filename and indexes index1, index2, etc., is contained in the string
charstr, otherwise it evaluates to 0. Zero characters may not be contained in the charstr.
 An error report is written to the standard output and the programme’s output file if
the file does not exist.

7.6.1.10 fcheckstring [str]
 Evaluates to a non-zero number if the string str begins at the current position of
the file infile, otherwise it evaluates to 0. It is not necessary that the string is followed by
a blank character.
 An error report is written to the standard output and the programme’s output file if
the file does not exist.

34

INVERSE 3.11

Interfacing the Analysis Input File7.7: A General File Interface for Programme INVERSE /

7.6.1.11 filecheckstring [filename, str, < index1, index2, ... >]
 Evaluates to a non-zero number if the string str begins at the current position of
the file specified by the name filename and indexes index1, index2, etc., otherwise it
evaluates to 0. It is not necessary that the string is followed by a blank character.
 An error report is written to the standard output and the programme’s output file if
the file does not exist.

7.6.1.12 getfile [varname spec <index1 index2 ...>]
 Returns specific information about a file. varname is the name of the file variable
and index1, index2, etc., are indexes which specify the file in the element table of the file
variable in the case that the variable named varname contains more than one file. spec
specifies which data should be returned. If the value of spec is zero, 0 is returned if the
corresponding file is not open, otherwise a non-zero value is returned. If the value of spec
is 1, 0 is returned if the file is not open for reading, otherwise a non-zero value is
returned. If the value of spec is 2, 0 is returned if the file is not open for writing,
otherwise a non-zero value is returned. If the value of spec is 3, the current position in the
file is returned.

7.7 Interfacing the Analysis Input File

When the optimisation or inverse parameters are written explicitly somewhere in
the input file for the simulation programme, we have a possibility of updating these
parameters directly by a single command. First we must designate the numbers which
represent the optimisation parameters in the direct analysis input file. The condition is
that the analysis input file is a text file and that comment are allowed in the file, so that
we can insert the mark that specify which numbers in the file represent the optimisation
parameters.
 The format of the mark is the following:
 { $$INV { num1 : param1 } { num2 : param2 } ... END }
num1, num2, etc. specify which numbers from the closing curly bracket on represent the
specified parameters, and param1, param2, etc. specify which optimisation or inverse
parameters correspond to these numbers. If, for example, num1 is 3 and param1 is 2, this
means that the third number from the closed curly bracket on correspond to the second
optimisation parameter. There can be unlimited marks in a single file and more than one
number can correspond to the same parameter.
 The parameter values are updated by the file interpreter functions initinput and
setparam. The first function just finds the marks in the file and remembers which
numbers in the file correspond to individual parameters. The second command updates
the numbers in the file which correspond to parameters. These numbers are set to the

35

INVERSE 3.11

Interfacing the Analysis Input File7.7: A General File Interface for Programme INVERSE /

components of the pre-defined vector variable parammom. Both functions take no
arguments and act on the pre-defined file aninfile.

 Warnings:
 The user must take care that the marks which specify the parameters in the
analysis input file are inserted as comments, so that the meaning of the input file is not
affected.

The user must leave enough space characters after the numbers that represent
parameters because different numbers require different amount of characters for their
representation in text format. The setparam function writes numbers directly without
shifting the rest of the file in the case that the new value takes more or less space than the
old one. The total amount of space available for the number representing a specific
parameter must therefore exceed the maximum possible length of the numerical
representation of a number.

Preserving additional space should not cause problems to the simulation
programme when the input file is read. The functions which are used for reading the text
input in most cases ignore spaces.

When the number that represents a specific parameter is marked, the user must
take care at counting how many numbers are between the end of the mark and the target
number. We must be aware that also parts of names that can be read as numbers must be
taken into account. By the interface functions, all strings that can represent numbers are
considered as numbers, even if they are only sub-strings of names, for example. The
interface functions do not know the meaning of the input file contents. Therefore they
consider as a number everything that loks like a number. For example, in the line

command1 3.45 12
the number 12 is considered to be the fourth number in the line. The first number is 1 that
is a part of the string “command1”, the second number is 1 that is a part of the string
“param1”, and the third number is 3.45.

 Example:
 Let’s say that we have the following lines somewhere in the analysis input file
and the underlined numbers represent the first and the second parameter:

HARDENING 0 2 3
0.1 900
0.4 1050
0.7 1255

We can then mark the parameters in the following way:

 * { $$INV {5:1} {7:2} END }

HARDENING 0 2 3
0.1 900
0.4 1050
0.7 1255

36

INVERSE 3.11

Interfacing the Analysis Input File7.7: A General File Interface for Programme INVERSE /

Here we supposed that the * sign means comment in the input file. The mark tells the
interface functions that the fifth number after the mark represent the first optimisation
parameter and the seventh number after the mark represents the second optimisation
parameter. The mark could also be divided into two marks in the following way:

HARDENING 0 2 3
* { $$INV {2:1} END }
0.1 900
* { $$INV {2:2} END }
0.4 1050
0.7 1255

7.7.1 File Interpreter Functions for Interfacing the Analysis Input
File

7.7.1.1 initinput { }
The initinput function checks the file aninfile for marks which indicate the places

where the optimisation parameters exist. It stores information about these places. This
function must be executed before the setparam is called. The setparam function uses the
information obtained by the initinput function to update the parameter values.

7.7.1.2 setparam { }
The setparam function updates the values of optimisation parameters in the

analysis input file aninfile. The values are taken from the vector variable parammom. The
initinput function must be called before the setparam function to find the places in the
file where the parameters reside. These places must be designated by special marks of the
form
 { $$INV { num1 : param1 } { num2 : param2 } ... END }
The initinput function can be called only once for all setparam commands that follow.

7.7.1.3 setintfcdigits { numdigits }
Sets the number of digits used while writing parameter values to the direct analysis

input file aninfile by the function setparam to numdigits.

7.7.1.4 setintfccharacters { numcharacters }
Sets the minimal length of output strings when writing parameter values to the

direct analysis input file aninfile by the function setparam to numcharacters.

37

INVERSE 3.11

Interaction with the File System7.8: A General File Interface for Programme INVERSE /

7.7.2 Expression Evaluator’s Functions for Interfacing the
Analysis Input File

7.7.2.1 getintfcdigits []
Returns the number of digits used while writing parameter values to the direct

analysis input file aninfile by the function setparam.

7.7.2.2 getintfccharacters []
Returns the minimal length of output strings when writing parameter values to the

direct analysis input file aninfile by the function setparam.

7.7.3 Setting Number of Digits at Number Output

Numbers are always output with certain precision. Number of significant digits
that are output can be set by two functions, setoutputdigits and setintfcdigits. The first
function affects general output functions like write, fwrite, dwrite, printvector,
fprintmatrix, etc., while the second one affect interfacing functions like setparam.

7.8 Interaction with the File System

It is sometimes necessary that the shell can get information about the file system
or interacts with it on some other way. In principle, this can always be done by using
operating system commands running them by the sustem function. A set of functions
described below enable this to be done in a more direct and system independent way.
This includes functions for listing directories, changing the current directory and
checking it, checking file properties, removing and deleting files, etc.

These functions must however be used with care. Not all of them are guaranteed
to work on all operating systems. The most certainly they will work on Unix (including
Linux) and MS Windows systems since they were developed for use on these systems in
the first place. The second thing is that all differences between operating systems are not
hidden by these functions. A typical example is using different characters for separating
directories in long file names, e.g. ‘/’ in Windows and ‘\’ in Unix. Functions for
interaction with the file system will generate file names compatible with the operating
system conventions, while additional operations on these names (e.g. appending a file
name to a directory name) can potentially be done using string manipulation functions. In

38

INVERSE 3.11

Interaction with the File System7.8: A General File Interface for Programme INVERSE /

such cases the shell command file is not be transferable between different operating
systems without slight changes.

7.8.1 File Interpreter Functions for Interaction with the File
System

7.8.1.1 checkfile { filename varname1 < varname2 > }
Checks status of the file named filename and assigns the result code to the

expression evaluator variable named varname1. If the file is not readable, 0 is assigned, if
the file is readable but not writable, 1 is assigned, and if the file is both readable and
writable, 3 is assigned to the calculator variable named varname1. If the optional second
variable name varname2 is also specified, length of the file is assigned to the calculator
variable named var2 (respectively 0 if the file does not exist).

filename, varname1 and varname2 are string arguments.

7.8.1.2 removefile { filename }
Removes the file named filename.

7.8.1.3 renamefile { filename1 filename2 }
Renames the file names filename1 to filename2.

7.8.1.4 appendtofile { filename writespec }
Writes specified data in a specified format to the end of the file on the disk named

filename. This function avoids access to the file through a file variable and instead writes
directly to the specified file. New content is appended to the old contents: if the file
already exists, the old contents are not overwritten.

writespec specifies what to write and in which form. The syntax of writespec is
the same as at the functions filewrite, fwrite and write.

7.8.1.5 stringdirnames { varname pathspec }
Creates a list of files included in the path specification pathspec and stores it into a

string variable named varname. Both varname and pathspec are string arguments.
File names are stored in a string variable of rank 1, whose dimension corresponds

to the number of file names in the list. Previous contents are owerwritten if the variable
has already existed. In either case the variable is created anew.

Remark:
This function is quite slow because it gets information through use of the system

“list” or “dir” command.

39

INVERSE 3.11

Interaction with the File System7.8: A General File Interface for Programme INVERSE /

7.8.1.6 stringdirdata { varname pathspec }
Similar to stringdirnames, except that not only names, but also other information

obtained by the appropriate system function is stored. A string variable of range two is
therefore created to hold the data. Its first dimension equals the number of files in the list,
and its second dimension equals the number of information pieces that are strored for
each file.

Remark:
This function is quite slow because it gets information through use of the system

“list” or “dir” command.

7.8.1.7 stringcurrentdir { elspec }
Stores the name of the current directory to the string specified by elspec. The string

is owerwritten it it has been initialised before function execution. If elspec contains any
indices, the string element specified by elspec must exist. Otherwise, a string variable of
rank zero is created and the name of the current directory assigned to its only element.

Remark:
This function is quite slow because it gets information through use of the system

“list” or “dir” command.

7.8.1.8 changedir { pathspec }
Changes the current directory to the directory specified by pathspec. pathspec is a

string argument.

7.8.1.9 changedirwrite { arg1 arg2 … }
Changes the current directory, where the directory name is specified by the

combination of prints specified by arg1 arg2, etc. Arguments follow the same rules as
arguments of write.

7.8.1.10 pwdinfo { }
Prints information about the current directory (and host on some systems) to the

standard output and programme output file. This function is usually used just to check if
the current directory is the same as is expected.

7.8.1.11 stringtempfile { elspec }
Generates a unique file name and assigns it to a string element specified by

elspec. This string is provided by the computer’s operating system and can be used as a
name of a temporary file. The operating system should provide that no other file has such
name and that the file with such name can be open for writing.

40

