

 Flow Control in the Optimization Program Inverse

(FOR VERSION 3.11)

Igor Grešovnik

Ljubljana, 2005

INVERSE Error! Reference source not found.

Table of contents3.1: Flow control /

Contents:

3. FLOW CONTROL ... 2

3.1 FILE INTERPRETER ... 3
3.1.1 File Interpreter Syntax.. 3
3.1.2 Argument Passing... 4
3.1.3 Functions for Input and Output .. 8
3.1.4 Expression Evaluator’s Functions Concerning Output .. 11

3.2 BRANCHES, LOOPS, ETC. .. 11
3.2.1 Branching, Looping and Other Flow Control Functions ... 12
3.2.2 update { code }.. 14

3.3 DEFINITION OF NEW FILE INTERPRETER FUNCTIONS.. 16
3.3.1 function { funcname (arglist) [defblock] } .. 16

3.4 EXECUTION OF OTHER PROGRAMMES, PRINTING NOTES, PAUSING EXECUTION........................ 21
3.4.1 system { command }, execute .. 21
3.4.2 systempar { command }, executepar... 21
3.4.3 sleep { numsec }.. 21
3.4.4 waituser { } .. 22
3.4.5 waitusernote { arg1 arg2 … }... 22
3.4.6 usernote { arg1 arg2 … }.. 22

3.5 PRINTING ERROR REPORTS .. 22
3.5.1 reporterror { errorstring }, error.. 22
3.5.2 reporterrorcode { errorcode errorstring }, errorcode.. 23
3.5.3 reporterrornote { notearg1 notearg2 … }, errornote ... 23
3.5.4 reporterrorcodenote { errorcode notearg1 notearg2 … }, errorcodenote............................ 23

3. FLOW CONTROL

When the optimisation shell INVERSE is run, the command file interpretation is
triggered immediately after the initialisation. Everything what happens in the shell from
that point on is a consequence of the file interpreter’s functions (commands) called in the
command file.

2

INVERSE 3.11

File Interpreter3.1: Flow control /

Beside the functions, which perform shell’s built-in algorithms and utilities, there

are also flow control functions which make possible programming the command file in a
similar way as programming with a high level programming language. This feature of the
shell is additionally supported by concepts of user-defined variables and the expression
evaluator. By the flow control, user can write portions of code which are executed several
times dependent on specified conditions. The conditions can depend on anything what
determines the current state in the shell, which includes the results of algorithms and
operations which have already been performed.
 The branching and looping functions execute specific portions (blocks) of code if
certain conditions are true. The blocks of code and conditions must be given in the
argument blocks of these functions. Such functions can be nested to an arbitrary depth.
 New interpreter’s functions can be defined by the file interpreter commands.
Their definition block of code is executed simply by calling the newly defined function.

3.1 File Interpreter

3.1.1 File Interpreter Syntax

The syntax of the file interpreter is as simple as possible. The interpreted file
consists of function calls (commands), which follow each other. Function calls consist of
the function name and function argument block in curly brackets. Basically, the syntax of
the shell’s interpreter is the following:

funcname1 {argblock1} funcname2 {argblock2} funcname3{argblock3} ...

When the interpreter encounters a function call, it executes the corresponding

shell internal function associated with that interpreter function. The interpreter does not
pass the arguments from the argument block of the function call to this internal function.
It only passes the information about where the argument block of the function can be
found (i.e. the file and the position). The associated internal function of the shell extracts
arguments from the argument block interpreting their meaning at the same time, and does
what it is supposed to do.

Some functions associated with file interpreter functions are able to call the file
interpreter to interpret specific blocks of code, usually parts of argument blocks of the
corresponding file interpreter functions. Flow control is implemented by such functions.
 The interpreter syntax allows that set of commands are enclosed in curly brackets.
Such curly brackets, which do not follow a funcction call, are simply ignored.

3

INVERSE 3.11

File Interpreter3.1: Flow control /

3.1.2 Argument Passing

Most of the file interpreter’s functions require arguments. On these arguments it
depends what these functions do and how they do it.

Function arguments appear in curly brackets which follow the function name in
the interpreted file. Every function call must have these curly brackets, but the brackets
may be empty.

The space inside the curly brackets that follow the function name is called
argument block of the function. Function arguments can be specified in this block. The
file interpreter does not pass arguments to the shell’s functions that are associated with
the interpreter’s functions. Instead, it passes the information about where the function’s
argument block is placed. The associated function itself must extract its arguments from
the argument block. Therefore the complete freedom of interpreting arguments is left to
the associated functions. The file interpreter does not impose any rules about how
arguments should be interpreted.

Such freedom allows setting rules for argument formats which best suit the
meaning and aim of arguments. On the other hand, this freedom allows for every function
to require its own format of arguments. Therefore, some rules are imposed about the
formats of arguments that are required by the file interpreter’s functions. An overview of
these rules is given below.

3.1.2.1 General Rules

Multiple function arguments are usually separated by spaces. Because some
arguments (respectively strings that represent them) can themselves contain spaces, it
must be unambiguous for each type of argument from where to where it extends. This is
the basic requirements for formatting conventions. Let us show some examples how this
requirement is took into account.

Strings must be in double quotes and may not explicitly contain the double quote
characters. All double quotes within string arguments must be replaced by the appropriate
sequences (\d).

Mathematical expressions are usually contained in brackets. Because all brackets in
expression must be closed, the brackets which contain an expression can not be mixed up
with brackets which eventually appear within the expression.

Specifications of variable’s elements consist of variable name and an optional index
list in square brackets. Variable name extends either until the first space or until the first
square bracket. If a square bracket is encountered after the variable name, it is clear that
an index list is specified and the argument extends till the closed square bracket.
Otherwise there is no index list and the argument extends till the last character of the
name.

4

INVERSE 3.11

File Interpreter3.1: Flow control /

3.1.2.2 Numerical Arguments

Numerical arguments can be given in different ways. The most elementary way is
to specify them as numbers, e.g. 124, -3.64567, 6.02e23. Numbers can be written in a
standard format used in most programming languages.

We can specify mathematical expressions or expression evaluator’s variables in
place of numbers. Numerical arguments can be specified by mathematical expressions in
the form

${expr}
where expr is the expression which can be evaluated by the expression evaluator. The
expression does not need to be in double quotes. Spaces are allowed between the $ sign
and the bracket.
 The specification of numerical arguments by the expression evaluator's variables
has the form
 $varname
where varname is the name of the calculator’s variable.
 Where numerical arguments are replaced by mathematical expressions or
calculator’s variables, these are first evaluated in the expression evaluator and the
obtained values are used as arguments. The functions associated with the file interpreter’s
commands take care of that.
 Some examples of numerical arguments specified by mathematical expressions or
calculator’s variables:
 ${3*a+b^3} $a1 $ { getmatrix[“Mat2”,2,3] }

3.1.2.3 Mathematical Expressions as Arguments

Some arguments are supposed to be mathematical expressions. Branching and
looping conditions in flow control commands are an example of that. In this case, the
expressions are not contained in curly brackets that follow the $ sign. Numbers can be
specified in place of these arguments, but are treated as mathematical expressions and are
evaluated in the expression evaluator (although there is no need to do that).

When expressions are not the only arguments of a function, they must be somehow
separated from other arguments. Usually they are contained in brackets (e.g. conditions in
flow control commands). This is because expressions can contain spaces and commas,
which are also used to separate arguments.

There is a simple intuitive rule about when numerical arguments and when
expression arguments are used. Expression arguments are used if the appropriate
arguments can be just numbers only in exceptional cases. This is for example in flow
control conditions or in functions like setmatrixcomponents.

3.1.2.4 String Arguments

String arguments are seldomly used in the file interpreter's functions. An example
of their use is in functions like write and in the execute (system) function.

5

INVERSE 3.11

File Interpreter3.1: Flow control /

Because string arguments can contain spaces and commas, they must be in double

quotes. An exception is (currently) the execute (system) command, which takes only one
argument and simply takes the whole argument block as string arguments.

String arguments can contain special characters which can not be written in
interpreted ASCII files. This problem is overcome with two character sequences which
represent these characters. The sequences are replaced by the appropriate special
characters if they appear in string arguments. The first character of all such sequences is
'\'. Sequences are the folowing:

Table 1: special character sequences.

sequence meaning sequence meaning
\q single quote (') \1 (

\Q or \d double quote (“) \2)
\\ backslash (\) \3 [
\0 null character \4]
\n newline character \5 {
\r carriage return \6 }
\t tab \< {
\s space \> }
\# hash (#)

3.1.2.5 Specifications of User-defined Variables, Variable Elements and
Sub-tables of Variable Elements

Some functions take arguments that are specifications of user-defined variables
(e.g. movematrixvar), variable elements or sub-tables of variable elements (e.g.
copymatrix). We must make difference between arguments that are specifications of
variable elements of a specific type and arguments that are objects of a specific type (later
are described in the following chapter).

Variables are specified simply by a variable name. For example, we refer to a

matrix variable m1 like this:
m1

 Variables can hold whole tables of objects of a specific type. When we refer to an
individual element of such variable, we must specify indices of that element. Indices must
be listed in square brackets which follow the variable name and be separated by spaces or
commas. There can be spaces between the name and square brackets. Indices in the index
list can be replaced by mathematical expressions or variables of the expression evaluator
according to standard rules. The following specifications of variable element are valid
and refer to the same element if the value of the expression evaluator’s variable i1 is 2:
 v [2,3, 2]

6

INVERSE 3.11

File Interpreter3.1: Flow control /

 v[${4-2} 3 2}]
 v[$i1 ${i1+1}, ${2*i1-2}]
 There must be as many indices in the index list as is the number of dimensions
(i.e. rank) of the appropriate variable. If we refer to an element of a variable that has rank
zero, the indices are not specified. We can simply specify variable name or eventually put
empty square brackets after the name:
 a1
 a1[]

 We refer to sub-tables of variable elements in a similar way than to individual
elements. The only difference is that the number of indices specified in the index list does
not necessarily equal the number of dimensions of the appropriate variable. The specified
indices refer by turns to the first few indices of the variable’s element table while the rest
indices remain free. All elements with the remaining indices running from 1 to the
appropriate dimension specify the element sub-table. If no indices are specified, the
appropriate sub-table refers to the whole element table of a given variable. When as many
indices are specified as the number of variable dimensions, the appropriate sub-table
contains only one element. Examples:
 v [4 2]
 v[3]
 m []
 m
 m[2, 4]
 m [$a ${2*a}]

3.1.2.5.1 Specification Through String Objects
Variable name is a part of variable, variable sub-table or element specification. It is

treated as any other string argument, therefore the same rules as for string arguments
apply for variable names in these specifications. Instead of stating variable name directly,
we can reference an element of an existent string variable. Such reference consists of the
hash sign (#) followed by specification of a string element in a usual form. Additional
rule is that such specification must always include square brackets (index specification),
even if they are empty since a zero-rank string variable is referenced.

Example:
Let us say that we have a rank 2 string variable str that holds a 2 by 3-dimensional

table of string elements, and let its 2-1 element be initialised to “vec1”. Let us then define
a rank 1 vector variable that holds 4 vector elements, and name it as string str[2 1]. The
fourth vector element of this variable can then be referred to as

#str [2 1] [4]
The part #str [2 1] now stands for string “vec1”, the 2-1 element of string variable str,
and specifies vector variable name, while the part [4] is index specification of the
appropriate element of vector variable with such name. The above line is therefore
identical to
 vec1 [4]

7

INVERSE 3.11

File Interpreter3.1: Flow control /

as long as string object str [2 1] has value “vec1”.

3.1.2.6 Objects of Various Types

When arguments are data objects of different types, there are basically two ways
how to specify them in function’s argument blocks. Either we specify values of the data
object directly or refer to existing data elements of the user-defined variables of the
appropriate type.

When we refer to an existent data element of a user-defined variable, this is done by
the # sign followed by the element specification (see the previous chapter!). Example:

#m2[2 4]
m0
In this case a copy of the specified variable element is made and this copy is used

by the function to which such specification was passed in the argument block. Spaces are
allowed between the # sign and the element specification. The specification must be
given as described in the previous chapter.

If we directly specify values of an object, the values must be specified according to
the rules that apply for a specific data type. For the rules for various data types, refer to
the descriptions of the functions for setting variable elements of that specific types.

For example, we can specify the value of a matrix object in the following way:
 2 2 {{1 1:1.1}{1 2:1.2}{2 1:2.1}{2 2:2.2}}

Matrix components must always be enclosed in curly brackets. If no components

are specified, there must be empty brackets instead.
The same rules as for matrices apply for data objects of other types.

There are some exceptions at specifying data objects. Some functions don’t accept

objects given by specifications of variable elements. Further, some functions do not
require that the value specification is in curly brackets. Both apply for the functions
which set elements of user defined variables, such as setmatrix and setvector.

3.1.3 Functions for Input and Output

3.1.3.1 write { arg1 arg2 ... }

Prints the values of its arguments arg1, arg2, etc., to the standard output of the
programme. Arguments can be strings, expression evaluator variables, mathematical
expressions, or special character sequences. Arguments must be separated by blank
characters (i.e. spaces, newlines, or tabulators).

8

INVERSE 3.11

File Interpreter3.1: Flow control /

Usual rules apply for string arguments. They must be in double quotes if they

contain spaces. They can contain special character sequences, i.e. two character
sequences that begin with the backslash character (\). These sequences are replaced by
the appropriate special characters before the string is printed. String arguments can also
be specified by referring to an existing string element. Such specification must begin by
the hash character (#) followed by string variable name and optional element index
specification. An example of string argument is

“This is a\nstring.”
Expression evaluator's variables must be given by the $ character followed by the

variable name. Blank characters (spaces, newlines and tabs) are alllowed between the $
character and the variable name. The current value of the expression evaluator's variable
is printed. An example of an expression evaluator's variable as an argument of write is

$ v1
Mathematical expressions must be in curly bracked that follow the $ character.

Blank characters are allowed between the $ character and the curly bracket. Blank
characters are also allowed in the brackets since these characters are ignored in the
mathematical expressions. The current value of the expression is printed.

$ { a+3+b }
Special character sequences consist of the backslash character and of the

specification character that follows immediately the backslash. The appropriate special
character is printed (see Table 1 for the meaning of sequences). An example of a special
character sequence as an argument of write is

\t

Example:
Let us say that we have defined the expression evaluator's variables a=5 and b=2.5.

Then the command
write { “The value of a is “ $a “\nand the value of”
\n\t “2*a+b\n is “ ${2*a+b} “.” \n }

will generate output like this:
The value of a is 5
and the value of

 2*a+b
is 10.

The first argument is a string and is printed literally. The second argument is an
expression evaluator's variable, therefore its current value is printed. The third argument
is again a string. It is printed literally except that the sequence \n is replaced by the
appropriate special character, i.e. the newline. Then we have two special character
sequences, \n and \t. The appropriate special characters, i.e. the newline and the tabulator
are printed because of them. The sixth argument is a string again and is printed literally
except that the special character sequences are replaced by the appropriate characters.
The seventh argument is a mathematical expression and its current value is printed, i.e.
10. Then we have a string with one character that is printed literally, and a special
character sequence, which causes the newline character to be printed.
 Let us have execute the following code:

9

INVERSE 3.11

File Interpreter3.1: Flow control /

 setstring {username “John Walker”}

 write { “My name is ” #{username} “.\n”}

This would generate output

 My name is John Walker.

3.1.3.2 fwrite { arg1 arg2 ... }

Does the same as the write function, except that it prints to the programme’s output
file. This file is represented by the pre/defined file variable outfile.

3.1.3.3 dwrite { arg1 arg2 ... }

Does the same as the write function, except that it prints both to the standard output
and to the programme’s output file. What is printed to the standard output is identical to
what is printed to the programme-s output file.

3.1.3.4 read { varname }

Reads a numerical value from the standard input and assigns it to the expression
evaluator’s variable named varname. If the expression evaluator’s variable does not yet
exist, it is created.

3.1.3.5 setoutputdigits { numdigits }

Sets the number of digits used for output of decimal numbers to numdigits. This
number is used e.g. at output of numbers with the write, fwrite and dwrite functions, but
also with functions for printing vectors, matrices and other variables, e.g. printvector or
printvectorvar.

Interfacing functions like setparam are affected by another function, namely
setintfcdigits.

3.1.3.6 setoutputcharacters { numcharacters }

Sets the minimal number of characters used for output of decimal numbers to
numcharacters. This number is used e.g. at output of numbers with the write, fwrite and
dwrite functions, but also with functions for printing vectors, matrices and other
variables, e.g. printvector or printvectorvar. There is seldomly a need to use this
function. One example is when we want to output numbers in a table format so that all
numbers in a column occupy the same amount of space. In this case the number of
characters for output must be set appropriately greater than the number of digits which

10

INVERSE 3.11

Branches, Loops, etc.3.2: Flow control /

are written, so that the width of output numbers does not exceed numcharacters and all
number outputs take the same amount of space. By default the minimal number of
characters is less than the number of digits, so that each number that is written takes just
as much space as necessary.

3.1.4 Expression Evaluator’s Functions Concerning Output

3.1.4.1 getoutputdigits []

Returns the number of digits currently used for output of decimal numbers. This
function is seldomly used since we can usually set the number of output digits
independent on its previous values.

3.1.4.2 getoutputcharacters []

Returns the minimal number of characters currently used for output of decimal
numbers. This function is seldomly used since we can usually set the number of output
characters independent on its previous values.

3.2 Branches, Loops, etc.

Branching and looping commands execute portions of code if certain conditions
are fulfilled. The expression evaluator evaluates conditions; therefore they must be given
by strings which represent mathematical expressions that can be evaluated by the
expression evaluator. Both conditions and portions of code must be given in the argument
block of the appropriate commands.

Since the expression evaluator evaluates branching and looping conditions, they
can include calls to expression’s functions for accessing shell’s variables. Through them
these conditions can include virtually every information, which at a given moment exists
in the shell, inoculating results of algorithms and operation which have been performed
before the condition evaluation.

11

INVERSE 3.11

Branches, Loops, etc.3.2: Flow control /

3.2.1 Branching, Looping and Other Flow Control Functions

3.2.1.1 if { (condition) [block1] < < else > [block2] > }

The if command executes the portion of code block1 if the condition evaluates to a
non-zero value, otherwise it executes block2 if it is specified.

condition is an expression which can be evaluated by the expression evaluator. It
must be given in round brackets. block1 and block2 are portions of code which can be
executed (interpreted) by the file interpreter. They must be given in square brackets. If
block2 is specified, the user can optionally insert the word else for clearness.

3.2.1.2 while { (condition) [block] }

The while function repeats execution (interpretation) of the portion of code block as
long as the condition evaluates to a non-zero value. If the condition is not fulfilled when
the function is called, block is not executed at all.

3.2.1.3 do { [block] < while > (condition) }

The do commands executes the portion of code block until the condition evaluates
to zero. block is interpreted at least once because the condition is examined after its
execution. When the condition evaluates to zero, block stops being executed and the
while function exits.

Word while can be added optionally for clearness.

3.2.1.4 interpret { filename }

Interprets the file named filename. The whole file is interpreted. After the file is
interpreted, the interpretation continues after the end of the function's argument block.

3.2.1.5 exit { < numlev > }

The exit command causes exiting numlev interpretation levels. Interpretation is then
continued. If the number of levels to exit numlev is not specified, the interpretation is
interrupted completely.
 At the beginning of interpretation of the command file the level of interpretation
is 1. The level increases by one every time a new block of commands is interpreted. This
happens for example when a portion of code in a loop or branch is executed, when a
definition block of a user-defined function of interpreter or calculator is executed, when
the analysis function’s argument block is executed or when a new file is interpreted. At
the end of interpretation of such block the interpretation level is again decreased.

12

INVERSE 3.11

Branches, Loops, etc.3.2: Flow control /

3.2.1.6 block { blockcode }

The block function simply interprets its argument block blockcode. The
interpretation level is increased by one when the interpretation begins and is decreased to
previous value when it stops. Sometimes it is useful to use the block command because
anywhere within the basic level of blockcode the rest of it can be skipped simply by the
command exit{1}. We must be careful if we use the exit command with the if command,
for example. Then we must increase the number of levels to exit because the
interpretation level of the body of the if command is one more than the level of the
surrounding code. We must call exit{2} instead of exit{1} in such cases.

3.2.1.7 goto { labelname }

The goto function causes a jump in the interpretation. The interpretation continues
from the position of the label named labelname. The label position must be given in the
code by the label command and is considered to be the first character after the closing
bracket of the label command.

The label must exist in the same code block as the referring goto command, i.e. the
goto command can be used only for jumps within the same interpretation level.

The goto function origins from the time when loops were not available in the shell
and is considered a bit obsolete.

3.2.1.8 label { labelname }

Specifies the position of the label named labelname. The command goto
{labelname} causes continuation of the interpretation from the first character after the
closing bracket of the label command-s argument block.

3.2.1.9 comment { comments }, * { comments }

Does nothing. This function is used for putting comments in the code. The
comments are put to the argument block of the function.

3.2.1.10 trace { }

Causes the interpreter to keep track of the calling sequence of functions that are
currently being executed. This information is used in error reports, which make the
location of errors easier by providing this additional information. When the spell checker
or debugger is run, this capability is automatically used.

13

INVERSE 3.11

Branches, Loops, etc.3.2: Flow control /

3.2.2 update { code }

Makes replacements in code as it is indicated by replacement marks that appear in it
and then interprets code. Replacement marks have the following syntax (note that there
are two hash characters):

{ arg1 arg2 arg3 … }
What is pasted in the place of such replacement mark is exactly the same as would

be written by function write with the same arguments arg1 arg2 arg3, etc.

The update command is usually used in definition blocks of user-defined

interpreter functions to perform replacements of function arguments referenced by their
sequential numbers (see description of command function!).

The function has also its alternative purpose. It can be used in cases when
interpreter code is not completely known in advance, but is to some extent dependent on
the current situation, e.g. on a vlaue of some variable. Since it is not known in advance
what that code should look like, it must be generated at the time when this is known, i.e.
between the execution of the optimization shell. Such situation can be handled in such a
way that the code which should be executed is generated by shell functions and written
into a file, which is then interpreted. This is not always necessary because sometimes
only very small portions of code are not determined in advance.

Warning:
Since replacements are made before the code is executed, the user must be careful

that code does not include loops in which variables on which replacement is dependent
can change. The update command must be inside the loop in such cases. For the same
reason it does not make sense if we have nested update (one update command within the
argument block of another), except in a very special case when replacement marks within
the inner update command are generated as a result of replacements in the outer update
command.

Example:
Let us have two string variables sname and sdef, where the first one holds a name

of a calculator function of two variables and the second one holds the definition of that
function. We want to create an expression evaluator function with such name and
definition. The following code would do that:

update {
$ { ##{#sname}[x,y] : ##{#sdef} }

}
In the write function arguments starting by the hash (#) sign are replaced by

contents of string elements whose specifications follow the hash sign, therefore if the
value of string sname is “ff” and the value of the string sdef is “x*y”, the code within the
update argument block will look like this after replacement (i.e. before execution):

$ { ff[x,y] : x*y }

14

INVERSE 3.11

Branches, Loops, etc.3.2: Flow control /

A more illustrative example is assignment of vector components to expression

evaluator variables. Let us have a vector variable vec and want to assign its components
to expression evaluator variables v1, v2, v3, …. (as many variables as there are
components). The problem is that we don’t know in advance how many components will
vec have, therefore we can not write the code in the following way:

= { v1 : getvector[“vec”,1] }
= { v2 : getvector[“vec”,2] }
 ……….
The following code would solve the problem:
= { j: 1}
={ dim : getvector[vec,0] } *{ vector dimension }
while { (j<=dim)
[
 update
 {
 = { ##{ “v” $j } : getvector[vec,i] }
 }
 = {j:j+1 }
]}

The replacement mark “= { ##{ “v” $j }” will be replaced at the call to the enclosing
update by what function write would write when called with the same arguments as
those in curly brackets following the double hash sign. For example, when j is 2, the
replacement mark would be replaced by “v2”, and the whole line of code would look like
this:
 = { v2 : getvector[vec,i] }
Note that all replacements are performed at the call of the update command. This means
that we would get wrong results if the whole while loop in the above code would be
included in the argument block of the update command, because replacement of the
mark (only one) would be made when j would not have the right value. When the update
command is within the while loop, a replacement is made at each pass of the loop and j
has the expected value at that time.

The code in the above example is actually not optimal. It doesn’t make sense that
string “v” is included in the replacement mark because it is known in advance. The code
could therefore look like this:

= { v1 : getvector[“vec”,1] }
= { v2 : getvector[“vec”,2] }
 ……….
The following code would solve the problem:
= { j: 1}
={ dim : getvector[vec,0] } *{ vector dimension }
while { (j<=dim)
[
 update
 {
 = { v##{ $j } : getvector[vec,i] }
 }

15

INVERSE 3.11

Definition of New File Interpreter Functions3.3: Flow control /

 = {j:j+1 }
]}

in this case we must be careful that there are no spaces between “v” and the replacement
mark, because “v” and what is pasted in place of the replacement mark together form a
variable name, which must not contain spaces.

3.3 Definition of New File Interpreter Functions

3.3.1 function { funcname (arglist) [defblock] }

The function command defines a new file interpreter's function. The first argument
funcname is the name of the newly defined function. A list of formal argument names
arglist follows in round brackets. Finally, the function's definition block defblock is given
in square bracket. This block is interpreted every time a newly defined function is called.
 The formal argument names must be separated by spaces or commas. They must
be strings consisting of letters and numbers starting with a letter (the same applies to
funcname). These names are used in the function’s definition block. Formal arguments
are referenced in the defblock by the # sign immediately followed by argument’s name.
References to arguments are replaced by actual arguments when the function is called.
 A function defined by the function command can be used as any other function.
Its call consists of function name (funcname) followed by an argument block in curly
brackets. When the file interpreter hits a call to such function, all references to function’s
arguments in the function’s definition block defblock are replaces with actual arguments
on the string basis, and then defblock is interpreted. In the function call arguments must
be separated with spaces or commas. If the string which represent an argument contains
spaces, it must be enclosed in curly brackets, otherwise it is not considered as one
argument.

It is important to know that strings which represent actual arguments at a function
call are pasted in the place of references to formal arguments in the defblock as strings.
This means that there is no general way to check the appropriateness of arguments passed
to the function. It is completely on the function’s definition how to treat function’s
arguments, including possible checking of appropriateness. The good thing of such
approach is that practically everything can be an argument of a user-defined function,
including variables, mathematical expressions, strings, portions of interpretable code, etc.

Referencing arguments by their sequential numbers:

16

INVERSE 3.11

Definition of New File Interpreter Functions3.3: Flow control /

There exists another mechanisms of argument passing for user-defined function,

which looks a bit exotic at first sight and can be avoided in most cases, but on the other
hand introduces a lot of additional freedom and functionality into the shell’s
programming.

Besides referencing arguments in the defblock by their names specified in the
arglist preceded by the # sign, the user can also reference function’s arguments by their
sequential numbers at the function call. The sequential numbers of actual arguments
passed to a function must appear in curly brackets which follow the # sign, and can be
given by mathematical expressions which can be evaluated in the expression evaluator.
Portions of code, which include such references to function arguments, must be included
in the argument block of the update command. The update command evaluates the
expressions, which represent the arguments’ sequential numbers within its argument
block, replaces the references to arguments by actual arguments, and interprets its
argument block. Argument references are simply replaced with strings which represent
the appropriate arguments at the function call, the same as is the case with arguments
specified in the arglist.

The expression evaluator’s function numfuncargs can be used while referencing
function’s arguments in the defblock by their sequential numbers. When called within a
definition block of a user-defined function, the numfuncargs function returns the number
of arguments, which are actually passed, to the function at its call.

An important feature of referencing arguments by sequential numbers is that the
replacements of arguments referenced by sequential numbers is not performed at function
call as is the case by arguments referenced by names in the arglist, but at the call to the
appropriate update command which includes the corresponding argument references in
its argument block. If we have loops in the defblock, it can therefore make a difference if
we include a whole loop or just a body of the loop in the update command’s argument
block, since the values of expressions which determine the argument’s sequential number
can vary at consequent passes of the loop’s body. The effect of replacing argument
references by actual arguments at the call to the update function is clearly shown in one
of the examples below.

Nested calls to the update function do not make sense since argument
replacement is performed at the outer-most update command. All calls to the update
functions, which appear in the argument block of another update command, are therefore
redundant.

It is important to remember that every reference to function’s argument by its
sequential number must be included in an argument block of the update command,
otherwise it is not replaced by the corresponding argument of the appropriate user defined
function’s call.

The two mechanisms of argument referencing can be mixed. Argument names
listed in the arglist always refer to the first N arguments in the appropriate order, where N
is the number of arguments specified in the arglist. If an argument is listed in the arglist,
this does not prevent referencing it by its sequential number rather by its formal name.

Examples:

17

INVERSE 3.11

Definition of New File Interpreter Functions3.3: Flow control /

The first example shows how to define a function increment which increments an

expression evaluator’s variable by 1:
function { increment (var) [= {#var:#var+1}] }

The function takes one argument, which is the name of the calculator’s, variable. When it
is called, it increments the calculator's variable with such name. Code where the functions
is used can look like this:
 = {x:1}
 increment {x}
 write { “x = “ $ x “\n.” }
This portion of code defines a new calculator's variable named x and assigns it the value
1, increments this variable by 1 using the user-defined function increment, and prints its
value to the standard output.

The next example shows how the user can define the for loop which is not defined

in the shell:
function { for (begin condition end body)
[

#begin
while { (#condition)
[
 #body
 #end
] }

] }
This function takes four arguments: the begin block which is interpreted at the beginning
and is typically an initialisation of the loop counter, the condition for the while loop, the
end block which is interpreted at the end of the while block and typically includes
incrementation of the counter, and the body block which represents the body of the for
loop and is interpreted at the beginning of the while loop.
 For example, here is a portion of code, which uses the newly defined for loop and
writes numbers from 1 to 100 to the standard output:
 for { ={i:1} i<=100 ={i:i+1} { write { $i } write { “\n” } } }
When the for function is called in the above code, its arguments in the argument block
replace formal arguments in the definition block of the function, which gives the
following code:

 ={i:1}
 while { (i<=100)

[
 write { $i } write { “\n” }
 ={i:i+1}
] }

This code is then executed which writes numbers from 1 to 100 to the standard output.
The last argument was a block of two function calls and contained spaces, therefore it
was enclosed in curly brackets.

18

INVERSE 3.11

Definition of New File Interpreter Functions3.3: Flow control /

 The next example illustrates referencing the user-defined function’s arguments by
sequential numbers, which is mixed with standard approach, i.e. referencing by names
listed in the arglist. The example shows how to define a new expression evaluator’s
function evaluatefunctions which evaluates an arbitrary number of expression evaluator’s
functions of one variable at a specific value of the independent variable and outputs the
results to the standard output and programme’s output file:
 function {evaluatefunctions (x)
 [

 ={icount:2}
while { (icount<=numfuncargs[])

 [
 update
 {
 write { “#{icount}[” ${#x} “] = “ ${ #{icount}[#x] } \n }
 fwrite { “#{icount}[” ${#x} “] = “ ${ #{icount}[#x] } \n }
 }
 ={icount:icount+1}

] }
write {\n}
fwrite {\n}

] }

The code
 evalfunctions {0.0 sin cos exp}
will generate the following output:
 sin[0] = 0
 cos[0] = 1
 exp[0] = 1
When the function is called, all references to arguments by name are immediately
replaced by the strings representing function's actual arguments in the function's
definition block. In the above case all strings “#x” are replaced by the string “0.0”, which
gives the following code of the function's definition block:

={icount:2}
while { (icount<=numfuncargs[])

 [
 update
 {
 write { “#{icount}[” ${0.0} “] = “ ${ #{icount}[0.0] } \n }
 fwrite { “#{icount}[” ${0.0} “] = “ ${ #{icount}[0.0] } \n }
 }
 ={icount:icount+1}

] }
write {\n}
fwrite {\n}

The replacement of the argument references by sequential numbers is accomplished each
time the update command which contains the appropriate references is executed. This

19

INVERSE 3.11

Definition of New File Interpreter Functions3.3: Flow control /

happens in each execution of the while loop’s body. This is executed for icount=2,
icount=3 and icount=4, since the number of arguments passed at the function call is 4 and
this is returned by the numfuncargs function of the expression evaluator. At the first
execution of the while loop’s body the value of icount is 2, therefore strings #{icount} in
the argument block of the update command are replaced by the string “sin” and the code
which is actually executed looks like this:

 write { “sin[” ${0.0} “] = “ ${ sin[0.0] } \n }
 fwrite { “sin[” ${0.0} “] = “ ${ sin[0.0] } \n }
 ={icount:icount+1}

In the next pass of the while loop the value of icount is 3, therefore strings #{icount} are
replaced by the string “cos” which represents the third argument passed at the function
call. The appropriate code that is executed at the second pass of the while loop therefore
looks like this:

 write { “cos[” ${0.0} “] = “ ${ cos[0.0] } \n }
 fwrite { “cos[” ${0.0} “] = “ ${ cos[0.0] } \n }
 ={icount:icount+1}

Warning:
At the definition of new functions one must be careful with the use of variables.

The interpreter does not automatically assume local variables, therefore all variable
names are global unless specially defined otherwise by using the function pair deflocvar
and undeflocvar (see the manual on user defined variables). If not using this, then
auxiliary variables in the function definitions (counters, variables for storing intermediate
results, etc.) must have different names as variables used for other purposes outside the
function definition. Interference can usually be avoided by using long, strange or
meaningless names for auxiliary variables used in the function’s definition block.
However, the use of deflocvar and undeflocvar is recommended in functions.

3.3.1.1 update { code }

The file interpreter function update is usually used within a definition block of a
user-defined interpreter function. This function first replaces all references to user-
defined function arguments by sequential numbers with the strings representing the
appropriate actual arguments, and then interprets its argument block (see the reference for
the function command).

Warning:
Do not do nested calls to update! Nested calls don’t make sense because all

replacements are made in the outer-most update.

3.3.1.2 numfuncargs []

The expression evaluator's function numfuncargs returns the number of arguments
passed to a user-defined function in the definition block of which the numfuncargs
function is evaluated. See the reference for the function command for more details!

20

INVERSE 3.11

Execution of Other Programmes, Printing Notes, Pausing Execution3.4: Flow control /

3.4 Execution of Other Programmes, Printing Notes, Pausing
Execution

3.4.1 system { command }, execute

Executes the system’s command command. This can be any programme or
command that can be executed by the operating system on which the optimisation shell
runs. command is a string that can include the command-line arguments. It does not need
to be in double quotes. Special character sequences are not allowed in command.

Programme waits until the execution of command is finished and then the
interpretation of the command file goes on.

3.4.2 systempar { command }, executepar

Executes in parallel the system’s command command. This can be any
programme or command that can be executed by the operating system on which the
optimisation shell runs. command is a string that can include the command-line
arguments. It does not need to be in double quotes. Special character sequences are not
allowed in command.

The command file interpretation goes on while command is being executed.
The function is currently available only on UNIX systems.

3.4.3 sleep { numsec }

Delays execution of the programme for numsec seconds. The execution can be
delayed only for integer number of seconds.

21

INVERSE 3.11

Printing Error Reports3.5: Flow control /

3.4.4 waituser { }

Stops execution of the programme until the user presses the <Return> key. The
user is promped to press <Return>.

3.4.5 waitusernote { arg1 arg2 … }

Prints the values of arg1, arg2, etc., to the standard output and waits until the user
presses the <Return> key. The syntax of arguments arg1, arg2, etc. is the same as at
function write. The user is not promped to press <Return>, therefore the message printed
should normally include such suggestion.

3.4.6 usernote { arg1 arg2 … }

Does the same as the waitusernote function, except that the user is promped to
press the <Return> key after the arguments arg1, arg2, etc. are printed.

3.5 Printing Error Reports

There are some special functions for printing error reports. The user can use
standard output functions for this purpose, but these special functions automatically add
some information that is normally not accessible to the user, for example, in which file
and in which part of it the error has occurred.

3.5.1 reporterror { errorstring }, error

Prints an error report to the standard output and programme output file.
errorstring is a string that describes the error. It is not supposed to end by a newline
character.

The error report contains basic information about where the error occurred (file,
line number and function name).

This function is typically used at the definition of new functions via file
interpreter.

22

INVERSE 3.11

Printing Error Reports3.5: Flow control /

3.5.2 reporterrorcode { errorcode errorstring }, errorcode

The same as reporterror, except that user must provide a number that identifies
the error errorcode, which is also printed in the error report.

3.5.3 reporterrornote { notearg1 notearg2 … }, errornote

This function is similar to reporterror, except that the string that describes the
error is specified by arguments notearg1 notearg2 etc., which have the same syntax as
arguments of the function write.

3.5.4 reporterrorcodenote { errorcode notearg1 notearg2 … },
errorcodenote

This function is similar to reporterrorcode, except that the string that describes
the error is specified by arguments notearg1 notearg2 etc., which have the same syntax
as arguments of the function write.

23

