

 Syntax Checker and Debugger
for Programme INVERSE

(FOR VERSION 3.11)

Igor Grešovnik

Ljubljana, 27 September, 2005

INVERSE 3.11

8.1: Syntax Checker and Debugger for Programme INVERSE / Table of contents

Contents:

8. Syntax Checker and Debugger for Programme INVERSE 3
8.1 Introduction - Motivation and History ...3
8.2 Syntax Checker ...4
8.3 Debugger ..4

8.3.1 Viewing Portions of Code ...5
8.3.2 Controlling Execution..5
8.3.3 Examination of the State..7
8.3.4 Some General Instructions...9

8.4 A List of Debugger’s Commands...10
8.4.1 ?, h ...10
8.4.2 q, quit...10
8.4.3 s, step ...10
8.4.4 S, stepover ...10
8.4.5 n, nstep num...10
8.4.6 N, nstepover num...10
8.4.7 X, exit num ..11
8.4.8 c, continue..11
8.4.9 ab, actbreak id..11
8.4.10 sb, suspbreak id...11
8.4.11 pb, prbreak ..11
8.4.12 tb, tellbreak id ...11
8.4.13 v, view shift...11
8.4.14 vr, viewrel shift ...11
8.4.15 va, viewabs linenum..12
8.4.16 nv, nview num1 num2...12
8.4.17 e, calc expr ..12
8.4.18 w, watch expr ..12
8.4.19 dw, delwatch num ...12
8.4.20 aw, autwatch switch ..12
8.4.21 pw, prwatch...12
8.4.22 r, run comblock ...12
8.4.23 rd, rundebug commands..13
8.4.24 rf, runfile filename ..13

2

INVERSE 3.11

8.1: Syntax Checker and Debugger for Programme INVERSE / Introduction - Motivation
and History

8. SYNTAX CHECKER AND DEBUGGER FOR
PROGRAMME INVERSE

8.1 Introduction - Motivation and History

 Syntax checker and debugger arose to support quick and efficient command
file writing. Both tools support an user of the system at discovering and eliminating
errors which lead to the behaviour of the system other than expected.
 Syntax checker mainly serves for identification of errors which are not a
consequence of the user's insufficient understanding of programme's functioning or
the problem being solved or logical deficiencies in solution procedure planning, but
are rather a result of typing errors or forgetting the exact command names or syntax.
Such errors usually don't cause termination of the programme, but often corrupt the
results without user's awareness. Although they are almost always reported in the
shell's output file, the user can easily overlook these reports. Besides, it is a waste of
time if such errors are detected after the program has used several hours of the CPU
time. It is therefore recommendable to run a syntax checker over every newly created
command file before you run it with a purpose of solving a problem. A normally long
command file is checked by the syntax checker in a matter of moments if there are no
errors.
 It is important to know that identification of errors is limited, especially
function arguments are not checked for all functions. This is partially a consequence
of the interpreter concept itself since the meaning of arguments is many times known
only during the runtime. Checking arguments for all commands would also require a
tremendous overhead in the code, which would be hard to justify by the gained
benefit. However, the syntax checker can discover some frequent and problematic
errors like parenthesis mismatches and misspelling of function names.

 When you suspect that you don't get right results or something is going wrong
in the solution procedure, but you can't detect any errors in your work, you can run
the command file in the debugger. This tool enables you to examine the state of the
shell before and after the execution of any function in the command file, so you can
locate the points where the discrepancy between the expected and actual state (or
behaviour) of the programme arises. The debugger gives you the power of controlling
or changing the values of any variable of the shell at any point of execution, and

3

INVERSE 3.11

8.2: Syntax Checker and Debugger for Programme INVERSE / Syntax Checker

enables you to execute additional commands on-line, during the interpretation of the
existing command file. You can therefore check the behaviour of any functional part
of the shell in all situation that can appears during the interpretation of the command
file.

8.2 Syntax Checker

 The syntax checker is invoked by adding the "-c" option in the command-line.
If you want, for example, to check the command file named "0.cm" and the shell is
installed with the name "invan" on your system, this command will do it:
 invan 0.cm -c
The syntax checker will scan the command file and for every syntax error it finds it
will inform you by printing an error message and wait until you press the <Return>
key. It will also print a portion of code around the place where the error is located and
denote the line which contains the error, and print some additional information, e.g.
the name of the file and the number of the line in which error is located.
 If you correct the reported errors simultaneously, you must run the checker
from the beginning each time you make a correction, otherwise the checker can
become confused because of the shift of absolute positions in the file. You can also
correct errors after the checker checks the whole command file. In this case it is
recommendable that you check the command file again after you make all corrections.
You can also make errors when you are making corrections, and new errors can
become visible to the checker when the old ones are eliminated.
 If you intend to correct all errors after the checking is complete, it can be
helpful to make the checker to write error reports also to a file, not only to standard
output. You can do it by specifying a file name immediately after the "-c" option in
the command line (the name must be separated from option by a space). For example,
the command
 invan 0.cm -c report.dat
will run the syntax checker over the command file named "0.cm" and write all error
reports in the file named "report.dat".

8.3 Debugger

 The debugger is invoked by adding the "-d" option in the command-line. If
you want, for example, to check the command file named "0.cm" and the shell is
installed with the name "invan" on your system, this command will do it:
 invan 0.cm -d
 The command files for the shell INVERSE are interpreted, not compiled and
run. This fact imposes some particularities to the shell's debugger which make its
functioning different from the functioning of debuggers from programming
languages.

None the less, the complete functionality offered to the user is similar than
with debuggers for programming languages, only the principles are slightly different.
The user can execute the command file step by step, where he has the possibility of

4

INVERSE 3.11

8.3: Syntax Checker and Debugger for Programme INVERSE / Debugger

stepping over or going into the block of commands or to execute arbitrarily long
portions of the command file without stopping. During the breaks in execution, the
user gains control through a simple interpreter in which he can input his instructions
and requests. Here the user can view portions of code, print the values of variables,
executes additional commands understandable to the file interpreter, launch further
execution (interpretation) of the command file and specify the position of the next
break.

8.3.1 Viewing Portions of Code

 Debugger automatically prints portions of code near the current position when
the control is transferred to the user. The line of the code in which the current position
is contained is marked by the "==>" sign. When the user views a part of code in
which the centerline does not contain the current position, the centerline is marked by
the ">>" sign. Centerline is a line which is said to be a center of the printed code,
although the number of printed lines before and after the centerline may not be equal.
This line is marked and its number in the file is printed when a code segment is
viewed.

 The user can set the number of code lines which are printed each time by the
command nv or nview. This command takes one or two arguments which must be
integers. Negative or zero arguments set the number of printed lines before the current
position to their absolute value. Positive arguments set the number of printed lines
from the current position of the interpretation. If the command is input with no
arguments, the user is requested to input both values.
 When the control is transferred to the user, he can view any part of the
interpreted file. The v or view command, when input without arguments, shows a
portion of code around the current position (as have been told, the number of lines
printed before and after the current position can be set by the nv command). When v
is called with a numerical argument, another segment of the code is printed. Its
centerline is shifted for the number of lines specified by the command's argument
which must be an integer. It is shifted according to the centerline of the last viewed
segment of code.
 With the vr or viewrel the user prints a segment of code, in which the
centerline is shifted for a certain number of lines with respect to the line of current
position. The user must input the number of rows as an argument of the command.
 With the va or vabs command the user can print a portion of code around the
line specified by an argument of this command. The argument must be a positive
integer. It means the successive number of the centerline in the interpreted file.

8.3.2 Controlling Execution

 The user can execute single commands, commands with their sub-blocks of
commands, a certain number of commands or a portion of code till a specific place in
the command file at once.

5

INVERSE 3.11

8.3: Syntax Checker and Debugger for Programme INVERSE / Debugger

 At the beginning of debugging session, the debugger stops interpretation
immediately before the first command in the command file and waits user’s
instructions. Further execution depends on the commands which are input by the user.

 With s or step command the user executes the next function in the command
file. If this function executes one or more sub-blocks of functions, the interpretation is
stopped before the first function in the first sub-block and the control is transferred
back to the user. If the user wants to execute at once the function’s sub-blocks
together with the function, he must use the S or stepover command. In this case the
user gains the control when the next function with all its sub-blocks is executed.
 The user can execute a certain number of functions at once. This is done by
the n or nstep command. This command takes one argument which must be a positive
integer and specifies how many functions must be executed before the control is
transferred back to the user. If any of the executed functions executes one or more
sub-blocks, its execution together with sub-blocks is not regarded as an execution of a
single function, but the executions of the functions in its sub-blocks are also counted.
After as many functions as specified by command’s argument are executed, the
control is transferred back to the user who can input new commands.
 The N or nstepover command is similar to nstep, except that execution of
functions that execute one or more sub-blocks of code is regarded as execution of a
single function. Besides, the control is transferred back to user if the execution level
in which the nstep command was executed is exited.

 The x or exit command executes the code without stopping until a lower lever
of execution is reached. If it is called without arguments, the control is transferred to
the user when the first level is exited. Otherwise, the control is transferred back to the
user when as many levels as specified by command argument are exited.

 With the c or continue command the user triggers the execution of the
remaining code. The execution is interrupted only if an active break appears in the
interpreted code.
 The user can execute a portion of code from the current position till any
desired position within the command file or its included files. To do that, he must first
set a break in the interpreted file at the position when he would like to interrupt
execution and retrieve the control. The break is set within the interpreted file with the
break function. This interpreter’s function has the following syntax:
 break { id [block] }
id is an integer identification number and is optional. This number enables user to
activate or suspend individual breaks. It can be given as a number, as a variable
defined in the expression evaluator (a name following the ‘$’ sign) or as an
expression which can be evaluated in the expression evaluator (in curled brackets
following the ‘$’ sign). block is a block of commands which is also optional. This
block is executed right before the break interrupts the interpretation and transfers the
control to the user (if it does).
 Whenever the interpretation hits the break command, the identification
number id is read (evaluated if it is given as a variable or expression) and the break
status is checked. If the identification number is not given, it is regarded to be 0. More

6

INVERSE 3.11

8.3: Syntax Checker and Debugger for Programme INVERSE / Debugger

than one break can have the same identification number. If it is established that breaks
with the given identification number are suspended, the interpretation is carried on.
Otherwise the block block is executed, then the interpretation is interrupted and the
control is transferred to the user.
 When control is transferred to the user, he can activate or suspend (deactivate)
breaks with specific identification numbers. Breaks are activated by the ab or
actbreak and suspended by the sb or suspbreak command. Both command require an
integer argument which specifies the identification number of breaks which are
activated or suspended. The number can be replaced by the ‘*’ character which means
“all breaks”. More than one number can be input as parameters of both commands.
 The user can at any time check which breaks are active. The pb or printbreak
command prints the information about active and suspended breaks. The tb or
tellbreak command examines only breaks with a specific identification number and
tells the user if these breaks are active. The command requires an integer argument
which specifies which identification numbers to examine.

 The user can stop a debugging process by typing in the q or quit command.

8.3.3 Examination of the State

 The user can check or set the values of variables when he debugs the
command file, and he can also check the behaviour of arbitrary interpreter’s function
at arbitrary point of execution.

 The user can calculate the value of any expression which can be evaluated by
the expression evaluator at a specific point of execution. This is done by the e or calc
command. This command requires as an argument the expression which should be
evaluated. With the same command the user can also set values of expression
evaluator’s variables or define new expression evaluator’s variables and functions. An
expression evaluator’s variable is defined by an argument which consists of variable
name, a colon and an expression which defines the variable, for example:
 e a:(b+f[c])/2
 If the user wants to assign a numerical value to a variable, he must just replace
an expression by a number. The definition of a function looks similar except that a list
of formal arguments follows the function name:
 e g[x,y]:sin[x]*sin[y]
 If the e or calc command is input without arguments, a calculator which reads
expressions and evaluates them is run. For this calculator the same rules as for the e or
calc commands apply. The only difference is that the user can input as many
expressions as you want. To exit the calculator, he must input the string :\q”.
 The user can use the e or calc command not only for examination of the values
of expression evaluator’s variables, but also for examination of other user defined
variables of the shell. This is possible because all user defined variables are accessible
through the pre-defined functions of the expression evaluator. If the user wants to
know, for example, the current dimension of the user defined vector “vec”, he can
find out the value by the command
 e getvector[“vec”,0]

7

INVERSE 3.11

8.3: Syntax Checker and Debugger for Programme INVERSE / Debugger

The e or calc command can also serve as an auxiliary pocket calculator.

 The user can automatically observe values of a group of expressions whenever
he gains the control (a so called “watch” function). An expression is added to the
group of the observed expressions by the w or watch commands. The expressions
which he wants to observe among the others is an argument of this command. If the
command is input without arguments, values of all expressions in this group are
printed. The users can list only expressions in the group (without their values) by the
pw or prwatch command.
 The user can remove expressions from the group of observed expressions by
the dw or delwatch command. A serial number of the expression which will be
removed from the group must be an argument of the command. The user can
determine the expression’s serial number if he inputs the pw or prwatch command.
 Values of all expressions in the group of observed expressions can be
automatically printed each time the user gains control. This can be achieved by the aw
or autwatch command. This command requires an integer argument. If the argument
is 0, automatic printing of expression is switched off, otherwise it is switched on.

 The most powerful commands for examination of the state of the shell is the r
or run command. This command runs additional commands in the file interpreter.
Commands which should be run can be an argument of the r or run command. If the
commands with their argument blocks are too long, the user can input the r or run
command without arguments. Then he can input several lines of commands which he
wants to execute by the file interpreter. At the end he inserts an empty line and the
commands which he has input are interpreted.
 The user can use any function installed in the file interpreter by the r or run
command. This way he has a total control over the state in which the shell is in a
given moment. This command can replace examination of the shell’s user defined
variables using the e or calc command because the file interpreter’s write command
can be used for printing expression values and = or $ commands can be used to define
variables or functions of the expression evaluator or to assign values to its variables.
For example, the command
 r write {“a+b = “ ${a+b} \n}
does the same as the command
 e a+b
In many cases printing values of the user defined variables using the r or run
command is more comfortable than using the e or calc command because the user can
use the file interpreter’s functions which are specially designed for printing variables
of complex types. For example, the user can print a whole vector vec simply by
 r printvector{vec}
 Of course, the user can also set all types of user defined variables by using the
r or run command since he has access to all file interpreter’s functions and can do by
typing in commands during the debugging whatever he could do by writing
commands into the command file. This way the user can check how everything would
look like if the values of specific variables would be different than they are, which
can sometimes be very useful. The user can also examine how different file
interpreter’s functions would behave if they were called at a specific point of

8

INVERSE 3.11

8.3: Syntax Checker and Debugger for Programme INVERSE / Debugger

interpretation or even how the whole system would behave if whole segments of code
were different.
 Individual lines of file interpreter code can also be input directly, without
putting the r or run command in front. In this case, one line is always run at a time. In
fact, any time input sent to the debugger contains a curly bracket ({), this line is run in
the interpreter. Difference between this and the r or run command is that commands
input directly can not be repeated by inserting an empty line.
 Command rd or rundebug is similar to r or run, except that the code which is
input by the user is not only run, but also debugged.
 Commands which are input by user with the r and rd are written to a file. The
user can specify its name by the rf or runfile command, otherwise the default file
“0debug.cm” is used.

 During the debugging procedure, the user can not only examine the state
within the shell, but also the state in the system in which the shell is run. By the ! or
system command, the user can run any command known to the system in which the
shell is run. The system command which the user wants to run, together with its
arguments, should be input as an argument of the ! or system command. If the
command is input without arguments, a simple shell is invoked in which the user can
input system commands one by one until he exits the shell. He exits this shell by
inserting “x” or “q”.

8.3.4 Some General Instructions

 Debugging of a shell’s command file consists of two main types of events:
interpretation of code segments by the file interpreter and execution of user’s
commands. Between interpretation of the code segments the control is passed to the
user so that he can input his instructions for the debugger. At these points a simple
command interpreter is run which waits for user’s commands and executes them.
Some of these commands cause exiting the debugger’s command interpreter and
interpretation of another segment of code in the command file, the length of which
depends on user’s instructions.
 The user must only remember the main concepts of the debugging because he
can obtain a list of command by the ? or h command. The arguments required by
individual commands are briefly described along the command names.
 Most of the debugger’s (line interpreter) commands require some arguments.
If they are input without them, the user is usually prompted to insert these arguments
separately. In this case, at the commands which set the values of something, the user
is also informed about the current state of what should be set by the specific
command. The user therefore doesn’t need to remember for each commands what
kind of arguments it requires.

Some commands (e or calc, ! or system and r or run) invoke a simple
interpreter. In this case the user is informed what he is supposed to do.
 A useful feature is remembering the last command. If the user inserts an empty
line in the debugger’s line interpreter, the last command is repeated.

9

INVERSE 3.11

8.4: Syntax Checker and Debugger for Programme INVERSE / A List of Debugger’s
Commands

8.4 A List of Debugger’s Commands

 Debugger’s commands are listed in this chapter. Their descriptions follow in a
logical order according to their function. All the command names are listed in an
appropriate title, separated by commas. Argument lists of commands follow their
names. Short descriptions of what the commands do follow the titles.

8.4.1 ?, h

 Prints a short help.

8.4.2 q, quit

 Finishes the debugging process. The interpretation stops at the point where
this command is invoked.

8.4.3 s, step

 Executes the next file interpreter’s command. If this command contains sub-
blocks of commands, the interpretation is interrupted before the first command of the
first sub-block which will be executed.

8.4.4 S, stepover

 Executes the next file interpreter’s command. Interpretation is not interrupted
in a sub-block of the command unless it contains the break function. If this is the
case, the c or continue command will launch interpretation until the end of the
function containing this sub-block.

8.4.5 n, nstep num

 Executes the next num commands in the command file. Functions which
contain one or more executable blocks are not treated as single functions, therefore
the interpretation can also break within a block of such function.

8.4.6 N, nstepover num

Does the same as nstep, except that execution of functions that execute one or
more sub-blocks of code is regarded as execution of a single function. Besides, the
control is transferred back to user if the execution level in which the nstep command
is executed is exited.

10

INVERSE 3.11

8.4: Syntax Checker and Debugger for Programme INVERSE / A List of Debugger’s
Commands

8.4.7 X, exit num

 The x or exit command executes the code without stopping until a specified
lower lever of execution is reached. If it is called without arguments, the control is
transferred to the user when the first level is exited. Otherwise, the control is
transferred back to the user when as many levels as specified by command argument
are exited.

8.4.8 c, continue

 Executes the code till the next active break command in the command file or
till the end of interpretation.

8.4.9 ab, actbreak id

 Activates all breaks with the identification number id. If id is “*” instead of a
number, it activates all breaks.

8.4.10 sb, suspbreak id

 Suspends all breaks with the identification number id. If id is “*” instead of a
number, it suspends all breaks.

8.4.11 pb, prbreak

 Prints information about active breaks.

8.4.12 tb, tellbreak id

 Prints if breaks with identification number id are active or not.

8.4.13 v, view shift

 Views s segment of code around the current position of interpretation. If the
command is input by an argument (shift), it first shifts the current position in the code
which is viewed for shift lines and prints few lines of code around this position.

8.4.14 vr, viewrel shift

 Print a segment of code in the currently interpreted file around the line shifted
for shift lines from the current position.

11

INVERSE 3.11

8.4: Syntax Checker and Debugger for Programme INVERSE / A List of Debugger’s
Commands

8.4.15 va, viewabs linenum

 Prints a segment of code in the interpreted file around the line linenum.

8.4.16 nv, nview num1 num2

 Sets the number of lines before (num1) and after (num2) the centerline which
are printed when the code is viewed.

8.4.17 e, calc expr

 Evaluates the expression exp in the expression evaluator. If the argument is
missing, it runs an interpreter which reads and evaluates expressions one by one.

8.4.18 w, watch expr

 Adds expression expr to the watch table. If the command is input without
arguments, values of all expressions in the watch table are printed. This is also done
every time the control is passed to the user if the option for automatic watching is set
(see the aw or autwatch command).

8.4.19 dw, delwatch num

 Removes the expression with serial number num from watch table. Serial
numbers of expressions can be seen by invoking the pw or prwatch command. The
user should be careful when checking serial numbers of expressions in the watch table
because serial numbers can change when expressions are added to or deleted from the
watch table.

8.4.20 aw, autwatch switch

 If switch is zero, it turns automatic watching off, otherwise it turns it on. When
automatic watching is turned on, values of all expressions in the watch table are
printed whenever the control is passed to the user.

8.4.21 pw, prwatch

 Prints all expressions from the watch table.

8.4.22 r, run comblock

 Interprets commands comblock by the file interpreter. If comblock is not
specified, it runs a simple shell where the user can input the commands one by one.
These commands are then interpreted.

12

INVERSE 3.11

8.4: Syntax Checker and Debugger for Programme INVERSE / A List of Debugger’s
Commands

 Individual lines of file interpreter code can also be input directly, without
putting the r or run command in front. In this case, one line is always run at a time. In
fact, any time input sent to the debugger contains a curly bracket ({), this line is run in
the interpreter. Difference between this and the r or run command is that commands
input directly can not be repeated by inserting an empty line.

8.4.23 rd, rundebug commands

 The same as r or run, except that the code input by the user is also debugged,
not only run.

8.4.24 rf, runfile filename

 Sets the name of the file into which the user’s commands will be written, to
filename. The default file name is “0debug.cm”, so that user’s commands for the file
interpreter are written to this file, if not specified differently by the rf or runfile
command.

13

