

 The Expression Evaluator of the
Optimization Program INVERSE

(FOR VERSION 3.11)

Igor Grešovnik

Ljubljana, 27 September, 2005

INVERSE 3.11

4.1: Expression Evaluator / Table of contents

Contents:

4. Expression Evaluator... 3
4.1 Basic Properties of the Expression Evaluator ... 3
4.2 Expression Evaluator Operators .. 4

4.2.1 Expression Evaluator Binary Operators.. 4
4.2.2 Expression Evaluator Unary Operators (functions) .. 4

4.3 Pre-defined Functions of the Expression Evaluator ... 6
4.3.1 random [] ... 6
4.3.2 If [cond, exp] .. 6
4.3.3 Else [cond, exp1, exp2] .. 6
4.3.4 Case [] .. 6
4.3.5 Min [arg1, arg2, arg3, ...] .. 6
4.3.6 Max [arg1, arg2, arg3, ...] ... 6
4.3.7 Sum [arg1, arg2, arg3, ...] ... 7
4.3.8 Prod [arg1, arg2, arg3, ...] ... 7
4.3.9 Trapint [func[0.0], left, right, numsteps] .. 7

4.4 Pre-defined Variables of the Expression Evaluator.. 7
4.4.1 c_pi ... 7
4.4.2 c_e .. 7

4.5 File Interpreter Functions which Affect the Expression Evaluator 8
4.5.1 = { var : expr } .. 8
4.5.2 $ { var : expr }, $ { func[arg1, arg2, ...] : expr } ... 8
4.5.3 definefunction { funcname [defblock] }.. 8
4.5.4 return { expr } ... 10
4.5.5 argument [num] .. 10
4.5.6 numargs [] ... 10

2

INVERSE 3.11

4.1: Expression Evaluator / Basic Properties of the Expression Evaluator

4. EXPRESSION EVALUATOR

4.1 Basic Properties of the Expression Evaluator

The expression evaluator, also referred to as calculator, is a system which
evaluates mathematical expressions. These expressions consist of numbers, operators
(unary and binary), parentheses, and symbols. Spaces are allowed between these
expression parts, but they have no meaning in expressions. Symbols can be variable or
function names. They are case sensitive, can consist of letters, digits and underscore
characters, and must begin by a letter. There are some pre-defined functions of the
expression evaluator, but functions can also be defined anew, either by the file interpreter
or the expression evaluator itself. There are also some pre-defined variables, which
represent mathematical constants. The expression evaluator variables differ from the
user-defined variables of the shell.

Expressions can be formed in conventional way. When there are several binary
operators in the expression, operators with lower piority number take effect first. When
there are several binary operators with the same priority, the operators which appear
before take effect first. The order of operations can be changed by round parentheses
which group sub-expressions.

Variable and function names consist of letters and numbers. The first character of
the name must be a letter. Difference is made between capital and small letters.

The expression evaluator functions can take one or more arguments. They must be
listed in square brackets which follow the function name, and must be separated by
commas. Arguments can be expressions which can be evaluated in the expression
evaluator. Of course, these expressions can consist of a single variable or number.

Some expression evaluator functions can also take string arguments. This feature
was actually added to support functions which access the shell’s user defined variables.
The use of strings as arguments is limited due to the fact that any mathematical
expression evaluated in the expression evaluator can evaluate only to a real number, not
to a string. Therefore, the expression evaluator functions defined by the definefunction
command can not take string arguments.

3

INVERSE 3.11

4.2: Expression Evaluator / Expression Evaluator Operators

4.2 Expression Evaluator Operators

4.2.1 Expression Evaluator Binary Operators

Operator Meaning Priority
number

+ addition 4
- substraction 4
* multiplication 3
/ division 3
% int. modulus 3
^ Power 2
P power 2
CP power with integer exponent 2
LOG logarithm with arbitrary basis 2
MIN lesser of both arguments 2
MAX greater of both arguments 2
< is lesser than 5
> is greater than 5
!= is not equal 5
<= is lesser or equal 5
>= is greater or equal 5
== is equal 5
&& and 6
|| or 6
: definition 10
, enumeration 9
= assignment 10

4.2.2 Expression Evaluator Unary Operators (functions)

All unary operators of the expression evaluator have the priority 1.

Operator name Meaning
EQ equality
- negative value

4

INVERSE 3.11

4.2: Expression Evaluator / Expression Evaluator Operators

NEGV negative value
exp exponential function
ln natural logarithm
sqr square
sqrt square root
abs absolute value
sin sine
cos cosine
tg tangent
ctg cotangent
arcsin inverse sine
arccos inverse cosine
arctg inverse tangent
arcctg inverse cotangent
sh hyperbolic sine
ch hyperbolic cosine
th hyperbolic tangent
cth hyperbolic cotangent
arsh inverse hyperbolic sine
arch inverse hyperbolic cosine
arth inverse hyperbolic tangent
arcth inverse hyperbolic cotangent
st converts radians to degrees
deg converts radians to degrees
rad converts degrees to radians
round rounds its argument to the nearest integer
trunc truncates its argument to the nearest integer below
floor truncates its argument to the nearest integer below
int truncates its argument to the nearest integer below
frac returns the fractional part of the argument
sign returns 1 if the argument is positive, -1 if it is negative, and 0 if it is 0
positive returns 1 if the argument is positive and 0 otherwise
negative returns 1 if the argument is negative and 0 otherwise
pospart returns the argument if it is positive, otherwise it returns 0
negpart returns the argument if it is negative, otherwise it returns 0.

5

INVERSE 3.11

4.3: Expression Evaluator / Pre-defined Functions of the Expression Evaluator

4.3 Pre-defined Functions of the Expression Evaluator

Expression evaluator functions can have more than one argument. Their
arguments must be in square brackets and separated by commas. The expression
evaluator has some basic pre/defined functions:

4.3.1 random []

Returns a random number between 0 and 1.

4.3.2 If [cond, exp]

Returns the value of exp if the value of cond is not 0, else it returns 0.

4.3.3 Else [cond, exp1, exp2]

If the value of cond is not 0, it returns the value of exp1, else it returns the value
of exp2.

4.3.4 Case []

4.3.5 Min [arg1, arg2, arg3, ...]

Returns the value of the least of its arguments arg1, arg2, etc. It requires at least
one argument and can take unlimited number of arguments.

4.3.6 Max [arg1, arg2, arg3, ...]

Returns the value of the least of its arguments arg1, arg2, etc. It requires at least
one argument and can take unlimited number of arguments.

6

INVERSE 3.11

4.4: Expression Evaluator / Pre-defined Variables of the Expression Evaluator

4.3.7 Sum [arg1, arg2, arg3, ...]

Returns the sum of its arguments arg1, arg2, etc. It requires at least one argument
and can take unlimited number of arguments.

4.3.8 Prod [arg1, arg2, arg3, ...]

Returns the product of its arguments arg1, arg2, etc. It requires at least one
argument and can take unlimited number of arguments.

4.3.9 Trapint [func[0.0], left, right, numsteps]

Returns the integral of function func between left and right calculated by the
trapezoidal rule with numsteps steps. The first argument must be a function call with an
argument which is a real number. Such arrangement speeds up the calculation. func can
be a pre-defined function of one argument, a function defined with the expression
evaluator, or a function defined by the definefunction command.

Example of function use:
= { b : Trapint[sin[0.0], 0, 1, 100 }
write { “Integral of the sine function between 0 and 1 is “ $b “.\n\n” }

4.4 Pre-defined Variables of the Expression Evaluator

Expression evaluator pre-defined variables are used for keeping mathematical
constants. They can be re-defined, but this should be avoided.

4.4.1 c_pi

Holds the value of 43.14159265)1arcsin(2 ≈⋅=π (ratio between circle
circumference and diameter).

4.4.2 c_e

Holds the value of (basis of natural logarithm). 82.71828182≈e

7

INVERSE 3.11

4.5: Expression Evaluator / File Interpreter Functions which Affect the Expression Evaluator

4.5 File Interpreter Functions which Affect the Expression

Evaluator

4.5.1 = { var : expr }

The = function assigns the value of the expression expr to the expression
evaluator variable var. If a variable named var does not yet exist, it is created.

4.5.2 $ { var : expr }, $ { func[arg1, arg2, ...] : expr }

The $ function assigns the expression expr to the expression evaluator variable
var. After the execution of this function, the value of variable named var changes if the
values of variables or definitions of functions which are included in the expression expr
change. If a variable named var does not yet exist, it is created.

The $ function can also be used for the definition of new expression evaluator
functions. In this case, func is the name of the newly defined function, arg1, arg2, etc. are
the names of function arguments which must be listed in square brackets and separtated
by commas, and expr is the expression which defines how the newly defined function
willl be evaluated. The expression exp usually contains objects named as formal
arguments listed in the sqare brackets. At the function evaluation, these objects are
replaced by the actual arguments with wich function is called.

The expression expr can also contain other variables and functions of the
expression evaluator. If the definitions of these variables or functions are changed later,
the definition of the variable or function defined by the $ function changes accordingly.

Example:
$ { powsum[x,y,z]:x^[y*z] }

defines a new function of the expressionn evaluator named powsum, which takes three
arguments and returns the first argument raised to the power of the sum of the second and
the third argument.

4.5.3 definefunction { funcname [defblock] }

The file interpreter's function definefunction defines a new expression evaluator
function. funcname is the name of the function and the defblock is the definition block of
the function. At every evaluation of the function after this definition, this block is
interpreted.

8

INVERSE 3.11

4.5: Expression Evaluator / File Interpreter Functions which Affect the Expression Evaluator

 Calculator functions defined by the definefunction command can be called with
arbitrary number of arguments. These can be accessed by the expression evaluator
function argument. This function returns the value of a specific argument which was
passed to the expression evaluator function defined by the definefunction command.
Therefore, the argument function can be evaluated only within the definition block of an
expression evaluator function defined by the file interpreter’s command definefunction.
The only argument of the argument function is the sequential number of argument the
value of which should be returned. Since expression evaluator functions can only return
(i.e. evaluate to) real numbers, the expression evaluator functions defined by the
definefunction command can not take string arguments. Such arguments could not be
accessed in the defblock block because the only way of accessing arguments in this block
is through the calculator function argument. Arguments must therefore be expressions
which evaluate to real numbers.
 The number of arguments which have been passed to the function defined by the
definefunction command can be accessed by the expression evaluator function numargs.
This function takes no arguments and can also be evaluated only within the definition
block of the definefunction command.
 The value which is returned by a function defined by the definefunction
command must be specified by the file interpreter’s function return. The only argument
of this function must be a mathematical expression which can be evaluated in the
expression evaluator. The value of this expression is what the function defined by the
definefunction command returns.
 Example:
 The following portion of code defines an expression evaluator function Sumation
which takes an arbitrary number of arguments and returns their sum:
 definefunction { Sumation
 [

 ={retsum:0}
 ={indsum:0}
 while { (indsum<=numargs[])

[
 ={retsum:retsum+argument[indsum]}
 ={indsum:indsum+1}
] }
return{retsum}

] }
After the function is defined, it can be used in mathematical expressions. For example,
the expression “Sumation[3,2*4,5]” will evaluate to 16 (=3+2*4+5).
 Warning:
 At the definition of new expression evaluator functions we must be careful at
choosing names for auxiliary variables used as counters or for carrying intermediate
results. A concept of local variables is not implemented in the file interpreter, therefore
all variables are global. The variables used locally in the definition block of the
definefunction command can therefore interfer with global variables if we accidentally
chose the same name for them.

9

INVERSE 3.11

4.5: Expression Evaluator / File Interpreter Functions which Affect the Expression Evaluator

4.5.4 return { expr }

The file interpreter's function return is used for setting the value which is returned by
user defined functions of the expression evaluator which are defined by the
definefunction command. expr is a mathematical expression which defines the value
which will be returned by such function. The return function can be used only in the
definition block of the definefunction command.

4.5.5 argument [num]

The expression evaluator-s function argument returns the value of num-th
argument passed to the expression evaluator function which is currently being evaluatd.
Therefore, this function can be evaluated only within the definition block of the
definefunction command.

4.5.6 numargs []

The expression evaluator-s function numargs returns the number of arguments
that were passed to the expression evaluatro-s function which is currently being
evaluated. This function can therefore be evaluated only within the definition block of the
definefunction function.

10

