

Interface Between Elfen and
INVERSE

(PROGRESS REPORT)

Igor Grešovnik

Ljubljana, January 2004

 1

Contents:

1. Specifications ..2
1.1 Interface Functions .. 2

1.1.1 Elfen Functions Used by Inverse ..2
1.1.2 Inverse Functions Used By Elfen ...4
1.1.3 Important functions on Inverse side..4

1.2 Overview ... 5
1.3 Specification of Shell Interpreter Interface Functions 5

1.3.1 elf_analyse { }...5
1.3.2 elfenblock { name1 { block1 } name2 { block2 } … } ...5
1.3.3 simelfevent { eventname } ..6
1.3.4 elf_adddim { dim1 dim2 … } ..6
1.3.5 elf_splitdimfirst { dim } ..6
1.3.6 elf_splitdimlast { dim } ...6
1.3.7 elf_getdimi { recname recnum arrayname dimspec varname }..7
1.3.8 elf_getdatai { recname recnum arrayname varname ind1 ind2 ind3 … }.........................7
1.3.9 elf_setdata { recname recnum arrayname val ind1 ind2 ind3 …}7
1.3.10 elf_fprintelements { recname recnum arrayname } ...7
1.3.11 elf_printelements { recname recnum arrayname } ..8
1.3.12 elf_dprintelements { recname recnum arrayname } ..8
1.3.13 elf_fprintelements2d { recname recnum arrayname } ...8
1.3.14 elf_printelements2d { recname recnum arrayname } ..8
1.3.15 elf_dprintelements2d { recname recnum arrayname } ..8
1.3.16 elf_setcomponents { recname recnum arrayname expression }, elf_setcomp8
1.3.17 elf_setcomponentscond { recname recnum arrayname (expressioncond) expression
}, elf_setcompcond..9

1.4 Specification of Shell Expression Evaluator Interface Functions...................... 9
1.4.1 elf_getdimc [recname, recnum, arrayname, dimspec] ...9
1.4.2 elf_getdatac [recname, recnum, arrayname, ind1, ind2, …] ..9
1.4.3 elf_ind [indspec]...10
1.4.4 elf_dim [dimspec]...10

1.5 Specification of Test Evaluator and Interpreter Functions 10
1.5.1 elf_settestdata { val ind1 ind2 } ..10
1.5.2 elf_testdatadim [dimspec]...11
1.5.3 elf_testdata [ind1, ind2]..11

2. Further Work ..11
2.1 Agreements & Plans... 11
2.2 Questions to Clarify ... 12

2.2.1 It is possible to run only analysis (if only Elfen’s arguments are specified) or only shell
(if analysis is not run from command file).Elfen releases and interface with Inverse12
2.2.2 Elfen – Inverse demo for PC...12
2.2.3 Demonstrative optimisation examples..12
2.2.4 Test examples for the interface...12
2.2.5 Machine dependency of conversion of Elfen types ..12
2.2.6 Availability of the necessary stuff for project examples...13
2.2.7 Question of finance...13
2.2.8 Plan ...13
2.2.9 Problems on Shell Side Exposed by Rockfield...13
2.2.10 Possible Problems in the future..13
2.2.11 Remarks ...13

3. Source Files...14

 2

4. Compiler specific...15

1. SPECIFICATIONS

1.1 Interface Functions

1.1.1 Elfen Functions Used by Inverse

Inverse needs utilities for accessing the database (i.e. reading results and
changing input) and for running a certain part of analysis. In the Elfen-Inverse
interface, Inverse can run the whole analysis at once, but can also interact with Elfen
at certain points during the analysis using interrupts.

1.1.1.1 void define_elfendyn_user_interrupt_function (int
(*func) (const char * message));

Installs user interrupt function (func), i.e. sets the function that is executed at
every interrupt in the analysis. In Elfen, interrupt function is run with a string
parameter that enables identification of location where the function was called.

1.1.1.2 void * elfendyn_database_entry_new (const char *
recname, int recnum, const char *arrayname, char *datatype,
int *arraydim);

A general function for accessing analysis database.
Returns a pointer to the requested array (or NULL if pointer is not available).

 3

Recname is record name, recnum is record number, and arrayname is array
name. Function writes specification of the array type in *datatype and dimensions of
the array in arraydim. arraydim must point to space allocated for at least 5 integers at
function call. After the function call, the first zero element of arraydim indicates the
end of dimensions.

Explanations:
Dimensions returned in arraydim are actual physical dimensions of the field

pointed to by the pointer returned by the function. All pointers returned are zero-
offset. Elements in Elfen arrays are stored in reverse order, i.e. according to
FORTRAN-like conventions, which means for example that matrices are stored
column by column, not line by line.

Remarks:
This function is not yet appropriate as a basis for all data-access functions.

Elfen data-base structure features some peculiarities, which should be hidden by such
function. From the development point of view, mechanisms for overcoming of these
things must be provided by Elfen side, while the Inverse development can only use
these mechanisms. In the opposite case it would not be possible to ensure consistent
development of the interface.

Peculiarities:
Two dimensions are sometimes combined in one returned by

elfendyn_database_entry_new, e.g. number of degrees of freedom times number of
nodes are treated as one dimension at result fields of nodal displacements and nodal
reactions.

Physical dimensions (of the space in memory) can differ from actual ones.
Both for implementation of interface: physical dimensions are needed for correct
positioning of array elements while actual dimensions are those in which user of the
interface is only interested.

Some entries in arrays may not be sorted. User of the interface needs to access
these items directly, identifying them by serial numbers (indices). To enable that,
Elfen general interface function for accessing the database must in such cases provide
an index list.

Important Remark:
Function elfendyn_database_entry_new should mainly remain as it is. The

required corrections should be implemented by another general function for accessing
Elfen database.

1.1.1.3 void ELFRUN(void);

Runs Elfen analysis, i.e. reading input data and evaluation part.

Remark:
In the future analysis should be divided into two parts, for each of it a special

function would be called, namely reading of analysis input data and analysis. A
function could be also added to run only a single increment of the analysis.

 4

1.1.2 Inverse Functions Used By Elfen

Elfen at this stage only needs the function for invoking inverse.

1.1.2.1 void RUN_INVERSE(void)

Runs the optimisation shell Inverse. Analysis runs the shell before reading
input data. When the shell is run, it interprets the command file

Analysis is then run on command from the shell. User also has possibility of
running analysis alone without invoking the shell. In that case the analysis is run
automatically, i.e. programme flow is exactly the same as is in stand-alone version of
Elfen.

1.1.3 Important functions on Inverse side

1.1.3.1 void get_optimisation_shell_arguments_new (int *nargs,
char ***argv)

Gives the shell information about shell-related command-line arguments. In
*nargs it writes the number of arguments passed to the shell and in *argv it writes
string command-line arguments.

Explanation:
This function is necessary because Elfen part of the common programme has

the main function and therefore a direct access to command-line arguments. User tells
Elfen to run optimisation shell by adding the –opt argument in the command-line
when invoking Elfen. All arguments following this argument are passed to the shell
(with –opt included) by the get_optimisation_shell_arguments_new function.
Function extracts these arguments from g_argc and g_argv, which are global
variables. For example, Elfen can be invoked for solving an optimization problem like
this:

elfendyn test 16 –opt test.cm -d
in this case elfendyn is programme name, test and 16 are project name and size
(required by older analyses), -opt is option instructing Elfen to run the shell, and
test.cm and –d are options used by the shell. If argument –opt and subsequent
arguments were not specified, the shell would not be invoked and only analysis would
be run (automatically).

Remarks:
User can invoking only the shell without analysis (for test purposes) by

specifying nonexistent project name as the first and –opt as the third argument.

 5

1.2 Overview

The implemented interface enables the optimisation shell to successively run
analyses and access analysis data at different stages.

Input data for analysis is defined in a standard way. Analysis can be run stand-
alone or from optimisation shell, dependent on command-line arguments. Interaction
between Elfen and the shell during analysis is event driven. At specific points analysis
generates events which can be intercepted by the shell. In the shell command file user
defines what happens when a specific event is intercepted. Each event is characterised
by name. Events occur at standard places like after reading the input data, before
analysis, after analysis, after each increment, and at a specific times during analysis.
User can define via controls in the data file at which times events are generated.

1.3 Specification of Shell Interpreter Interface Functions

1.3.1 elf_analyse { }

Runs Elfen analysis.

1.3.2 elfenblock { name1 { block1 } name2 { block2 } … }

Defines blocks of code that are interpreted when specific events are
encountered during Elfen analysis. String arguments name1, name2, etc. are names of
events. block1, block2, etc. are code blocks that are interpreted when the
corresponding events are encountered during analysis.

The elfenblock commands can be executed arbitrary times. If a block with a
certain name has been defined before by the elfenblock command, new definition
overrides the old one. If a block name is followed by an empty curly bracket without
spaces (i.e. “{}”), the corresponding block is undefined.

A special name “any” defines a block, which is interpreted at every event.
Another special name “default” defines a block, which is interpreted at every event
for which the corresponding block is not defined.

When an event with a given name encounters during analysis, the block of
code associated with the name of the event is interpreted first (or “default” block if
this block is not defined), and then the “any” block is interpreted (if defined). If a

 6

block with a specific name is not defined, nothing happens instead of interpretation of
that block.

1.3.3 simelfevent { eventname }

Simulates occurrence of Elfen event named eventname in the sense that the
corresponding blocks of code are interpreted. This function can be used for testing
purposes when setting a project.

1.3.4 elf_adddim { dim1 dim2 … }

Dimension correction for accessing Elfen database. After execution of this
function, dimensions dim1, dim2, etc. are appended to the dimensions returned by
Elfen general interface function at every access to database via that function. This
function was implemented for handling situations when Elfen function does not return
all physical dimensions of the field.

To restore initial settings, where no additional dimensions are added, function
should be called without any arguments.

1.3.5 elf_splitdimfirst { dim }

Dimension correction for accessing Elfen database. After execution of this
function, the first dimension returned by Elfen general interface function is split to
dim and that dimension divided by dim at every access to the database using that Elfen
function. dim is a numerical argument.

To restore initial settings, where no additional dimensions are split, function
should be called without any arguments.

Example:
Let’s say that some array in Elfen database has dimensions [24,3,2]. After

execution of splitdimfirst { 2 }, user of the shell will see that array as if it was of
dimensions [2,12,3,2] every time he would use shell interface that use the basic Elfen
interface function for accessing the database.

1.3.6 elf_splitdimlast { dim }

Dimension correction for accessing Elfen database. After execution of this
function, the last dimension returned by Elfen general interface function is split to dim
and that dimension divided by dim at every access to the database using that Elfen
function. dim is a numerical argument.

To restore initial settings, where no additional dimensions are split, function
should be called without any arguments.

Example:
Let’s say that some array in Elfen database has dimensions [2,63]. After

execution of splitdimfirst { 3 }, user of the shell will see that array as if it was of

 7

dimensions [2,3,21] every time he would use shell interface that use the basic Elfen
interface function for accessing the database.

1.3.7 elf_getdimi { recname recnum arrayname dimspec varname }

Assigns a specific dimension of Elfen array specified by record name
recname, record number recnum and array name arrayname, to calculator variable
named varname.

dimspec specifies which dimension to assign. If dimspec is less than 0, 0 is
assigned if the specified array does not exist and a non-zero value if it exists. If
dimspec is zero, number of dimensions of the field is assigned to the calculator
variable named varname. If it is greater than zero, the appropriate dimension is
assigned or –1, if the number of array dimensions is lesser than dimspec.

1.3.8 elf_getdatai { recname recnum arrayname varname ind1 ind2
ind3 … }

Assigns value of a specific element of Elfen’s array to the calculator variable
named varname. recname, recnum and arrayname identify the array while ind1, ind2,
etc. are indices of the desired element in that array.

Warning:
Elfen array must be of the admitted type for this operation (i.e. real or integer).

1.3.9 elf_setdata { recname recnum arrayname val ind1 ind2 ind3
…}

Sets value of a specific element of Elfen’s array to value val. recname, recnum
and arrayname identify the array while ind1, ind2, etc. are indices of the desired
element in that array.

Warning:
Elfen array must be of the admitted type for this operation (i.e. real or integer).

1.3.10 elf_fprintelements { recname recnum arrayname }

Prints all elements of the Elfen array identified by recname, recnum and
arrayname, to the output file of the shell. Indices are printed in square brackets before
the value of each element. Elements are printed in separate lines.

Warning:
Elfen array must be of the admitted type for this operation (i.e. real or integer).

 8

1.3.11 elf_printelements { recname recnum arrayname }

Does the same as elf_fprintelements, except that data is printed to the
standard output of the programme.

1.3.12 elf_dprintelements { recname recnum arrayname }

Does the same as elf_fprintelements, except that data is printed to both the
standard output and output file of the shell.

1.3.13 elf_fprintelements2d { recname recnum arrayname }

Prints all elements of the Elfen array identified by recname, recnum and
arrayname, to the output file of the shell. Array is printed in a two-dimensional form
where number of columns equals the last dimension of the field. Indices (except the
last ones) are printed in square brackets at the beginning of each row of the print.

Warning:
Elfen array must be of the admitted type for this operation (i.e. real or integer).

1.3.14 elf_printelements2d { recname recnum arrayname }

Does the same as elf_fprintelements2d, except that data is printed to the
standard output of the programme.

1.3.15 elf_dprintelements2d { recname recnum arrayname }

Does the same as elf_fprintelements2d, except that data is printed to both the
standard output and output file of the shell.

1.3.16 elf_setcomponents { recname recnum arrayname expression
}, elf_setcomp

Sets all elements of Elfen array identified by recname, recnum and arrayname,
to the value of mathematical expression expression.

Calculator functions elf_ind and elf_dim can be used in the expression.
elfi_ind returns a specific index of the element in Elfen array that is currently set, and
elf_dim returns a specific dimension of Elfen array. Both functions require one
argument, which identifies the sequential number of the returned index or dimension,
respectively.

Warning:
Elfen array must be of the admitted type for this operation (i.e. real or integer).

 9

1.3.17 elf_setcomponentscond { recname recnum arrayname (
expressioncond) expression }, elf_setcompcond

Sets all elements of Elfen array identified by recname, recnum and arrayname,
for which conditional expression expressioncond is not zero, to the value of
mathematical expression expression. Note that conditional expression must always be
in round brackets.

Calculator functions elf_ind and elf_dim can be used in both expressions.
elfi_ind returns a specific index of the element in Elfen array that is currently set, and
elf_dim returns a specific dimension of Elfen array. Both functions require one
argument, which identifies the sequential number of the returned index or dimension,
respectively.

Warning:
Elfen array must be of the admitted type for this operation (i.e. real or integer).

1.4 Specification of Shell Expression Evaluator Interface
Functions

1.4.1 elf_getdimc [recname, recnum, arrayname, dimspec]

Returns the specified dimension of Elfen array identified by recname, recnum
and arrayname.

dimspec specifies which dimension is returned. If dimspec is less than 0, 0 is
returned if the specified array does not exist and a non-zero value if it exists. If
dimspec is zero, number of dimensions of the field is returned. If it is greater than
zero, the appropriate dimension is returned or –1 if the number of array dimensions is
lesser than dimspec.

1.4.2 elf_getdatac [recname, recnum, arrayname, ind1, ind2, …]

Returns value of a specific element of Elfen’s array. recname, recnum and
arrayname identify the array while ind1, ind2, etc. are indices of the desired element
in that array.

Warnings:
Elfen array must be of the admitted type for this operation (i.e. real or integer).
Note that there exists interpreter function with the same name.

 10

1.4.3 elf_ind [indspec]

Returns a specific index of the element in Elfen array that is currently being
set by one of the functions for setting elements of Elfen arrays (e.g. elf_setcomp). The
only argument indspec identifies which index is returned. If indspec is 0, number of
indices is returned.

1.4.4 elf_dim [dimspec]

Returns a specific dimension of the Elfen array whose elements are currently
being set by one of the functions for setting elements of Elfen arrays (e.g.
elf_setcomp). The only argument dimspec identifies which dimension is returned. If
dimspec is 0, number of dimensions is returned.

1.5 Specification of Test Evaluator and Interpreter Functions

Explanation:
For testing functions for accessing Elfen database, an internal shell array for

emulation of Elfen array. Its specification is “test”, 0, “double” (record name, record
number and array name) and it holds elements {1.1, 2.1, 1.2, 2.2, 1.3, 2.3} and a
single related dimension (i.e. 6). All general functions for accessing Elfen database
can be tested on this field. Also special functions for accessing this particular array are
implemented in order to show how special functions for accessing individual arrays
should be implemented in the future and how they should work. When reading the
below specifications, note that interpreter functions have argument lists included in
curly brackets and evaluator functions in square brackets.

Remark:
In the future, for all standard sets of data there should exist similar functions

(e.g. for node coordinates, nodal displacements and reactions, mesh topology, material
data, etc.)

1.5.1 elf_settestdata { val ind1 ind2 }

Sets the element specified by indices ind1 and ind2 of the internal test array
(i.e. the array identified by “test”, 0, ”double”), to value val.

 11

1.5.2 elf_testdatadim [dimspec]

Returns the dimension specified by dimspec of the internal test array (i.e. the
array identified by “test”, 0, ”double”).

dimspec specifies which dimension is returned. If dimspec is less than 0, 0 is
returned if the specified array does not exist and a non-zero value if it exists. If
dimspec is zero, number of dimensions of the field is returned. If it is greater than
zero, the appropriate dimension is returned or –1 if the number of array dimensions is
lesser than dimspec.

1.5.3 elf_testdata [ind1, ind2]

Returns the value of element specified by indices ind1 and ind2 of the internal
test array (i.e. the array identified by “test”, 0, ”double”).

2. FURTHER WORK

2.1 Agreements & Plans

We have agreed to continue to develop interface and to work on
commercialisation of the shell in the scope of a common software package.

A rough plan will be made bout further steps at the next meeting (probably in
April). After that, Rockfield will undertake necessary activities for providing its part.
When implementation of that is finished, we will organise the next working meeting.
After that meeting, everything should be prepared for creation of commercial
optimisation package. This includes completion of the current basic part of the
interface and its upgrade, namely entity-based definitions. Plans for development of
shape optimisation modules will be also defined at this stage, but final implementation
will depend on the implementation of 2D and 3D shape optimisation modules in the
shell and Elfen.

 12

2.2 Questions to Clarify

2.2.1 It is possible to run only analysis (if only Elfen’s
arguments are specified) or only shell (if analysis is not run from
command file).Elfen releases and interface with Inverse

To enable normal development work, it would be the best if interface
functions are available in all Elfen libraries. This will also make work in Rockfield
easier because no special versions of Elfen will be needed for linking with Inverse.
When a few problems are solved (i.e. that Elfen analysis will run stand-alone when
optimisation argument –opt is not stated among command-line arguments) this should
not be disturbing at all. Note there are not only a few short interface functions and the
only one that really changes something in Elfen is the one for running analysis.

2.2.2 Elfen – Inverse demo for PC

It would be good to make demo version available.

2.2.3 Demonstrative optimisation examples

These examples should show applicability of the common programme and
attract users.

2.2.4 Test examples for the interface

Test examples should include use of all interface functionality. If specification
of any interface function would change, this should be detected by running test
examples.

Beside for control of the interface, test examples should be used as a reference
list of approaches used for solution of different types of problems (e.g. inverse
material parameter identification or shape optimisation). Therefore it would be good if
all test examples can be run by demo version of Elfen.

2.2.5 Machine dependency of conversion of Elfen types

The problem of converting Elfen types to C types is not solved yet. We would
need reliable information about rules of conversion on different platforms. Currently
it is working on PC when VISUAL C++ compiler for C and Compaq Visual Fortran
compiler for Fortran is used.

 13

2.2.6 Availability of the necessary stuff for project examples

Shape derivatives defined on mesh or on continuous domain; how to get max. values
for divided flow; availability of functionals…

2.2.7 Question of finance

Resources for shell development; Rockfield resources for development of the
interface and commercial package; Taking care for ability of getting European
research projects (and related current problems); Exploitation plan, Rockfield – C3M
relation, definition of target area (e.g. forging)… “How to make things work” versus
“How to sell things”…

2.2.8 Plan

Dates – when to make further steps and which steps; Make further interactions
effective; Employ experience with research and experimental codes (Sava; Tomaz S.);
Employ students to work on it?

2.2.9 Problems on Shell Side Exposed by Rockfield

• Poor human potential
• Introduction of code management system necessary (CVS)
• Warnings generated by compiler
• Use of commercial FSQP

2.2.10 Possible Problems in the future

• Thermo-mechanical analysis (how it will be run?) It should be run from one
file, so 2 databases are used. Problem is because remeshing could not be used
in this case (it is not developed yet).

2.2.11 Remarks

• File Interpreter function exit{} terminates just Inverse

 14

3. SOURCE FILES

ELFEN INVERSE

File Description File Description
Added files Added files
avgeti.f
(avget.f)

subrutine avgeti

elfendyn_database_
entry.c
(database_entry.c)

function
elfendyn_database_
entry_new

elfrun.fpp
(elfen.fpp)

copy of elfen.fpp +
some changes ??

nfckrci.f (nfckrc.f) subrutine nfckrci
rcdefi.f (rcdef.f) subrutine rcdefi
rcincdi.f (rcincd.f) subrutine rcincdi
record_info.c functionrecord_inf

o
(transforms long
record and array
names into short
ones)

Changed files *
File Description
elfen.fpp calls

RUN_INVERSE

invelf.c everything that is
needed for the
interface

immain.f several calls of
interrupt routine
OPTSHL are added

imnonl.f several calls of
interrupt routine
OPTSHL can be
added

* changes in Elfen are commented with string: Inverse_specific:

 15

4. COMPILER SPECIFIC

From: Matthew Ellis <m.t.ellis@swansea.ac.uk> Date
:

10 March 2000

By default, C programs compiled with Visual C++ use a different calling convention
to Fortran programs compiled with Digital/Compaq Visual Fortran. The calling
conventions define who is responsible for cleaning the stack, and how the name is
decorated (the name it is internally assigned during compilation and linking). If
different calling conventions are used, the executable either won’t link, due to the
different name decoration, or will crash on execution due to the stack not being
cleared correctly.

Using the default settings, C uses __cdecl and Fortran uses __stdcall. Previous
versions of elfendyn used INTERFACE statements to change the calling type and
specify the name decoration. The INTERFACE statement is not valid across all
compilers, and as it is far easier to pre-process C code than Fortran, the calling
convention of the C code was changed and the INTERFACE statements removed.

The following details everything that needs to be done to set the correct calling
conventions:

• All C functions called by Fortran must use the same case name as the Fortran
uses to call the function. Elfen uses capitals for all Fortran subroutine names
and for all C function names called by Fortran.

• All C functions called by Fortran must be defined and declared with the
keyword __stdcall. E.g.
int __stdcall CSPAWN(…)

• All Fortran functions called by C must be declared with the keyword __stdcall.
E.g.
extern void __stdcall ELFEN(…)

Note that the __stdcall keyword is Visual C specific. If the C code is to be portable,
then macros must be used to specify the calling convention keywords to use, the case
to use and whether or not to add underscores to the start or end of the function name.
Rockfield can supply a copy of the macros used in-house upon request.

