Igor GreSovnik & TadeKodelja NeurApp

Work in progress!@

NeurApp

Exploring Approximation
by Artificial Neural Networks

User Manual

Version 1.0, March 2013.

by Igor GreSovnik & Tadej Kodelja

This software is based on the Investigative Gerghicary (IGLib).
It was originally created as auxiliary tool for hots’ work at COBIK.

i r
oo‘ COBIK Hhmsh’nga’n your fitture
Centre of Excellence for Biosensors, CIFERATICN AT FINANCED By THE FLEOFEAN UK
g\) Instrumentation and Process Control Eurcpean Regioral Develepment Fund

Igor GreSovnik & TadeKodelja NeurApp

Contents:
IR I 01 oo U o o o 1
2 SNOrTUSE MaANUAL......c.oiiiiecie e e e et e e e e b e e saeeebeesaeesnreesseeenreenns 1
21 RS ==V o] =g To I = 1
2.2 One ParametricC APPrOXiMaLiONS......cccieeieiieeese st ere st ste e e te st s e e sa e s re e e stesreeaesneennese e 2
2.2.1 Defining the Approximated Function and Training ®at.............ccccccviiiiieiiiiiieeee e e 3
2.2.2 Training the NeUral NEIWOIKooi ettt e e e e e e e e ettt e e e e e e e aaaaeaeeaeeaaaaaaannns
2.2.3 SAFELY FACLOIS ...coiiiiieiiee ettt ettt ettt e e e e e e e e e e e e e e aaabbat e e et e et e e e e e aaeaaaaaaaaeeaaan 5.
2.2.4 CheCKING RESUILScoiiiiiiiiiii ittt ettt ettt et e e e e e e e e e e e aeaebbetbe e e et eeeeeaaaaaaaaaaesaesaaaannns
23 Functionsof 2 Variableswith 3D SUrface PlOtS........cccoieeeiiieeeee e 6
2.3.1 Defining the Approximated Function and Training ®at.............ccccccviiiiiiiiiiieeeee e e 7
2.3.2 Network Architecture and TrainiNng ParametersS.........iiiiiieee e e e e e e 7
2.3.3 Showing Training Data and RESUILS...........cceueeeiiiiiiiiiiicicce e e e e e e e e e e sennneees 8
24 Accessing HElp and WED PagesS..........ooeeiiiceecee ettt sttt 11
GBS o = 1= o oS 12
4 ADOUL the SOFIWAIE......ccieii et e e ae e be e ereenreeennas 16
oS [0 o0) S 20

1. Introduction NeurApp

1 INTRODUCTION

NeurApp is an educational software intended useadefploring how neural network
approximation works on functions of one and twaalkales. You can input different functions to be
approximated by an artificial neural networks (ANNgnerate training points where the values of
reference function are calculated and used foraqumation, set some parameters of the training
procedure, train the neural network on the genérdéta, and compare the obtained model (i. e. the
approximation obtained by the trained neural nekyvoo the original function that was used for
generation of training data.

2 SHORT USER M ANUAL

2.1 Installation and Use

Installing and using the software is extremely danfn order to install the software, just
grab the archive, expand it, and copy the contafilednto some directory. Double-click on the
executable file in any file browser (such as thed@ws Explorer) in order to execute the software.

In order to start using the software, click eitberthe "1D Approximation” or on the “2D
Approximation” tab, dependent on whether you wanmtapproximate functions of one or two
variables. Then, click on the “Generate Data” buttwait a moment until a graph of the model
function with the generated training points is shpwand then click the “Start” button. This will
trigger the training procedure and when traininfinshed, the obtained approximated function will
be plotted.

Training may take a while, dependent on the valtighe number of epochs that are
performed. Everything else is quite intuitive; yoan change the number of generated training
points, choose or manually insert the approximétedtion, and adjust parameters of the training
procedure.

When approximating functions of 2 variables, gramisthe original function and its
approximation will be shown in a separate windotheathan in embedded window. After pressing
the “Generate Data” button, wait until the grapmaaw is launched, then you can view it from
different angles and zoom it. Before proceedinghien, close the graph window. After pressing the
“Start” button, wait again until graph is launchedhd close the graph window when viewing is
done. You can interact with 3D graphics windowsnbguse and keyboard, press the ‘R’ key in

2. Short User

Manual

NeurApp

order to position the objects in default way, ahd fI" button in order to change the interaction

mode

ry,
1D Appre 1| 2D App

2.2 One Parametric Approximations

Load data

ion | About |
Seve ANN | Load ANN |

ANN Settings

I Function defined by user

fix) = {x’x

Number of training samples

Generate Data

Neurons in hidden layers
MAX Epochs

Epochs in Bundle

RMS

Learning Rate
Momentum

Input Safety Factor

Qutput Safety Facior

£
=

™ Random Training Data

R
[0 =
0.20 =

v 2

Limits

[so0 = [0 3

—Approximation error

Max Training Error
Rms Training Error
Max Verification Error

Rms Verification Error

0.6 +

| o
l—r“
[
ﬁlﬁ

Error

o

24

0.6
Epochs

Figure 1: GUI for approximation of functions of one variable

While approximation of functions of a single vat@bs the least interesting problem in
ANN-based modeling, playing with such approximasias instructive because very clear graphic
representations of results can be made.

Exploring 1D ANN-based approximations in NeurAppnguitive and can be learned in a
minute. Clicking on theID Approximation” tab on the top of the application’s form activatbe
user interface for 1D approximations. To see howoitks, click first on the Generate data” button
and then on theXtart” button, and that’s it.

Clicking on the Generate data” button samples the function that you want to agpnate
and is specified next to thd(X) = ” label, in order to generate function values usedrain the

2

2. Short User Manual NeurApp

neural network. After the training data is genatateis immediately shown on the graph on the
right-hand side (together with the approximatecctiom on the interval where values are sampled),
and the Sart” button gets active. Pressing the start buttomsréhe neural network on the data that
has been generated.

During the training procedure, the neural networstto produce an intrinsic function that
fits well the training data, without knowing anytli about the original function used to generate
that data. After training is done, the graph on tihe right of the form shows the approximation
generated by the neural network, the training destad to generate this approximation, and the
original function used to generated the data. lis thay you can visualize how much the
approximated function deviates from the originaé.on

You can vary the number of sampled function vaindse training data, change interval on
which training data is generated, modify the appnation function itself, and change neural
network architecture and training parameters arsioie how any of these circumstances affect the
accuracy of the approximation (i.e., how closelg #pproximation fits the original function). In
further subsections it is explained how to adjpsictfic things that influence the approximation.

2.2.1 Defining the Approximated Function and Training Data

When starting the application, there is alreadyeaget default function to be approximated.
You can change the approximated function by udmeginput field next to thef(x) =" label, and
this can be done in two ways. If the checkb&xiriction defined by user” is unchecked, you can
choose one of the pre-defined functions from thepdtown list that opens when clicking on the
triangular arrow positioned on the right-hand sfléhe text field.

In order to define at own will an arbitrary functito be approximated, check theuhction
defined by user” checkbox. When the checkbox is checked, you nasrt expressions defining an
arbitrary function in a standard symbolic way byngs“x” for independent variables, standard
operators such as +, -, * (multiplication), / (dian), a number of standard mathematical functions,
and parentheses for grouping expressions and dwegroperator precedence in order to define
order of evaluation. There is no operator for p@yand you must used the functigpow”, e.g. the
expression “pow(x,3/2)” means the independent bégix raised to the power of 3/2 (which is
equivalent to calculating square root of x andingishe obtained value to the third power).

Warning: You can not insert your own function dafon when the Function defined by
user” checkbox is not checked. The text field for inBey functions is green when user defined
functions are allowed. If you insert an invalid eagsion that defines the approximated function
(e.g. forget a bracket or use a mathematical fancthat is not defined, the text field will turn
orange when you attempt to generate the data.

In the “Limits” box, you can define the interval on which the mpgmated function is
sampled in order to generate the training data. parmof function values to be generated and used
in training is defined next to “Number of trainirgamples”. If the Random training data” is
checked then function will be evaluated in randomiysen points. Otherwise, it is sampled in
equidistant points on the selected interval.

2. Short User Manual NeurApp

Generation of function values used for trainingn{phng) is triggered by clicking on the
“Generate Data” button. Sampled function values sirewn as points on the graph where the
original function is shown, too.

2.2.2 Training the Neural Network

The ANN-based approximation of the original funatis calculated by training the neural
network on the sampled values generated beforthisnprocedure, the internal state of the neural
network is continuously updated in such a way thatdiscrepancy between the training data and
the outputs generated by the network are minimiZedining (generation of the approximation)
begins by pressing th&tart” button and finishes either when the prescribemligacy is reached or
when the maximal prescribed training time (measumneepochs, i.e. in iterations of the training
algorithm) elapses.

The user can define the required accuracy by ge#titolerance (a small positive number)
on the RMS (root mean square) error, which is tesenext to the RMS’ label. The training
procedure will stop when the error measure dropewbé¢he user defined tolerance. In order to
prevent infinite looping when the tolerance canlmiachieved, the maximal number of epochs can
be set next to theMax. Epochs’ label. If the training algorithm performs thatmber of epochs, it
will stop even if the required accuracy is not rest The box next toEpochs in bundle’ just
defines granularity of convergence checks, whiehrext performed after every epoch (iteration) of
the training procedure, but only after each spedifiumber of iterations defined by this parameter.
This has no significant effect on results in mases, but speed ups computation by a small factor.

Network architecture can be defined next to tNeufons in hidden layers’ label. Networks
with one or two layers of hidden neurons can bealuaad the number of neurons in each hidden
layer can be independently defined in the corredimonfield. The second number can be 0
meaning that a neural network with a single hid#smer is be used. In general, more neurons in
hidden layers means more connections between neutars more free parameters (weights) to be
adjusted and better fitting capabilities of thewwek (but also increased probability for overfigin
and longer computation times). Therefore, approkonaof more complex functions (e.g. with wild
oscillations or sharp transitions) requires moraroes to achieve comparable accuracy as with
simple functions, provided of course that the nundfdraining data is also appropriately larger. In
a two layer network, each neuron of the first hrdtiyer is connected to each neuron in the second
layer, meaning that the number of connection irsgeaquadratically with simultaneously
increasing number of neurons in both layers.

Two parameters of the training procedure, namedydhrning rate and themomentum, can
be adjusted in the corresponding text fields. Them@meters can be both set to positive values
lesser than 1. Increasing the learning rate melaaisthe weights and biases are more quickly
adjusted in the opposite direction of the errodgrat in order to decrease the error, which means
faster decrease of errors at the beginning, butceaise more numerical instability. Momentum
adds inertia to the training procedure, and singalgs a fraction of the previous weight update to
the current one calculated by error back propagatio

2. Short User Manual NeurApp

2.2.3 Safety Factors

In neural networks used, output signals of neuamestransformed by a sigmoid activation
function that has a range between 0 and 1. In dodapproximate different ranges of values, output
of the neural network are scaled by an affine fimmcthat maps the [-1, 1] interval to some other
interval, say § b]. Only values within that interval are attainabby the neural network
approximation. The question that arises is howpprapriately choose the interval. An obvious
strategy would be to choose a very large intefaagje enough to include any value that could be
possibly expected to be generated by the approgonédinction on the interval of interest.
However, making this interval too large can redtlve approximative capabilities of the neural
network due to wasting large portions of the outmtérval that would never contain realistic
values. The interval attainable by the outputs (@ the mapping function) should therefore be
set such that there is some space beyond the valwesexpected to be attained by the original
(approximated) function, yet not too big.

It is obvious that the interval should at leasttaomall the values generated by sampling,
i.e. all function values contained in the trainchgta. However, since it is likely that some funatio
values on the sampled interval exceed the intehadlcontains all sampled values, some extension
of the interval should be provided beyond that, Hnsl is what we call the safety factor. User can
vary the output safety factor from 1 upwards byertiag the factor into the text field next to the
“Output Safety Factor” label.

As far as inputs are concerned, any input form shtouplus infinity can be fed to the neural
network to produce the appropriate output. Inpuésteansformed by the sigmoid function before
they are sent to the neurons in the next layer. é¥@w since the slope of the transforming function
approaches zero far from 0, it is numerically ddde that most of the inputs that will be fed te th
network fall on the interval [-1, 1]. Input valuese therefore also scaled in a similar way as
outputs, and the mapping function is specifieduohsa way that all inputs from the training data
are mapped close to the interval [-1, 1] beforey thiee fed to the neural network. The input safety
factor defines how much smaller from the referdntgel] interval is the interval to which all inpaut
from the training data fall when scaled before pdetd to the network.

2.2.4 Checking Results

When the training procedure is completed (afterkalig the “Generate Data” and then the
“Start” buttons), results are shown automaticallhe original function, its neural network
approximation calculated by the training procedweg the training data on basis of which the
model is calculated are plotted on the graph latatethe top-right portion of the form.

On the graph below, inside thépproximation error” box, the course of different error
measures during the training procedure can be shpletted against the number of epochs. By
clicking on the appropriate radio button you canage which error measure is shown on the graph,
while final values for all error measures are \erntin the appropriate boxes.

2. Short User Manual NeurApp

2.3 Functions of 2 Variableswith 3D Surface Plots

| & | Neural Approximation Demo - ! |—lﬁ“ =) |
1D Approximation 20 Approimation | About |
Losddata | SaveANN | LoadANN |
ANN Settings Limits
[~ Function defined by user Max Y Bound
10 E:
f(x) = |[x'xj+{y'y} j Min X Bound Max X Bound
A0 3: 10 =
Samples on Y axe 5 = Min Y Bound =
Samples on X axe 5 "5 10 =
G Deta rr T Visualization
enarate Dal l tandom Training Data
Training POINTS Default GRAPH Appraximation GRAPH Contoure GRAPH
¥ Points ™ Surface | ¥ Surface | I Default l
Neurons in hidden layers |5 E]Z 0 3: W Grid = ™ Gnd TI - .-lopaommanaT
MAX Epochs 5000 = T
Epochs in Bundle |500 =4
RMS ooot00 =
Learning Rate 0.30 = | _
Approximation error i
Momentum 080 = Max Tramning Error ’7 ® I
L
Input Safety Fact 2 = 8
i 12 = Rms Training Error "_' E' 0.6 4 : : I
Output Safety Factor 13 = ¢4 : £ |
= Max Verification Error " e : : : ;
oo 02 04 056
Reset [Rms Verification Error - Epochs

Figure 2: GUI for approximation of functions of two variable

Exploring 2D approximations is just as simple aplesing 2D approximations. You can
start without any special knowledge, just clicktbe “2D Approximation” tab in order to display
the appropriate panel (Figure 2), and then tBenérate Data” and then the Sart” button. Before
clicking on the Sart” button, you should wait until the graphic wind@lvowing the approximated
function and sampled data is displayed, and clbsewindow.Graphs are shown in a separate
windows in order to allow better quality and intdran with 3D graphs.

When the training procedure completes, the graplwsty the result is open immediately in
a new window. You can interact with the graph (®if zoom in or out, and translate it) in order t
view interesting details from the best perspeciargl you should close the graph before performing
other actions.

2. Short User Manual NeurApp

2.3.1 Defining the Approximated Function and Training Data

The function to be approximated is defined simylax$ for 1D approximation (see Section
2.2.1). In the case of user defined function, tkpression defining the function can contain two
independent variables denoted)bgndy, respectively. Since there are two variables, foterval
bounds must be defined in thieifmits’ box.

Everything is similar rather similar than in 1D apgmation, and some differences will be
outlined below. Also the number of sampled valsedéfined by two values instead of one. If you
clear the Random Training Data” checkbox then values are sampled on a regular @rpoints,
where the text field besidé&dmples on X axis’ defines number of points on the grid in x direati
and “Samples on Y axis’ defines number of points on the grid in the peqteular (y) direction. If
the “Random Training Data” checkbox is checked teampling points are generated randomly
(with uniform distribution) and the two directioase not distinguished what concerns the generated
points. The total number of the generated sampimigts equals to the product of both nhumbers,
but their order is interchangeable.

2.3.2 Network Architectureand Training Parameters

Things related to the network architecture and rpatars of the training algorithm are
defined in the same way as in the case of 1D appaiion (see SectioR.2.2).

Just take into account that in general, in the ca$&o independent variables, more degrees
of freedom are needed for the same quality of appration as in 1D. This means that the number
of neurons in each hidden layer should usuallyigbdr than in the 1D case, but consequently also
the number of sampling points should be higherb&mrecise, this is a bit simplified and overly
generalized statement since the optimal numbereafans varies from case to case and depends
primarily on the complexity of the function to bpproximated. However, on average over a large
range of functions, the statement is valid.

2. Short User Manual NeurApp

2.3.3 Showing Training Data and Results

7 = B
1| Visualization Tuofhlﬂlg

Figure 3: Results of a 2 parametric approximation are shasvaD gra-ph. Right-hand side:
window that shows the original function sand traghdata. 3D graphics is rendered by the
VTK graphical engine.

Training data and the approximated function arewshaafter clicking on the “Generate
data”, in a separate interactive 3D window. Inraisir way, the resulting approximation is shown,
together with the approximated function and tragnifata, after clicking the “Start” button (Figure
3). You user can interact with 3D graphs by mousg lkeyboard in order to adjust the viewing
angles, position and zoom as desired. Close thdamirafter viewing is done, since failing to do so
may result in undesirable effects, depending orofieating system.

2.3.3.1 Interaction with the 3D Graphic Windows

You can interact with the graphs by using mouse kayboards. Click on the window in
order to make it active and interact with it. Teéewrant commands are listed below:

* r — resets the viewpoint along the viewing directionhstiat all graphic objects are
within the viewing areal. This centers and scales Yiew appropriately. If the
graphics window opens and nothing is visible, ptees key because objects may
just be out of scope.

* | /t—toggles betweeroystick or_tackball mode. In joystick mode, motion occurs
continuously as long as mouse button is pressettatikball mode, motion occurs
only during dragging (when the mouse button is ggdsand the mouse cursor
moves). The trackball mode is more suitable foelfiradjusting the view.

2. Short User Manual NeurApp

e |eft mouse button — rotates the camera (in the camera mode, switdmedy
pressing the key) or graphic objects (in the actor mode, svattbn by pressing).
The camera is rotated around the focal point (whih be repositioned by pressing
thef key over a graphic primitive). In trackball mogeu must press the button and
move the mouse cursor, while in joystick mode pregsthe button is enough (switch
between the two modes by pressingttbethej key).

o Citrl + left mouse button — rotates the camera (in camera mode, switchedyon
presing thec key) or graphic objects (or actors, switched omplBssing the keys)
around the axis perpendicular to the projectiomgla

» Shift + left mouse button — pans the camera (moves it parallel to the ptiojec
plane) in camera mode or translates the graphiectdbjactors) in actor mode. Does
the same as the middle mouse button.

* middle mouse button — pans the camera (moves it parallel to the ptioje@lane)
in camera mode (switched on by pressingdlkey) or translates the graphic objects
(actors) in actor mode (treekey). In joystick mode, translation is from thentsr of
viewport toward the mouse cursor position (togdigdoressing for joystick andt
for trackball mode). Camera mode is switched orpigssing thec key and actor
mode by pressing thekey.

* right mouse button — zooms the camera (in camera mode, switched qrdssing
the c key) or the graphic objects (actors). In joystickde (switched on by pressing
thej key) the direction of zoom depends on whethemtloeise cursor is located in
the top half of the window or viewport (zooms in)io the lower half (zooms out)
while the zoom speed depends on the distance fierhdrizontal centerline.

* mousewheel — zooms in or out, dependent on the directiorottion.

» f —flies to the point under the mouse cursor, andtket$ocal point on it (rotations
then occur around that point). This command wonky evhen the mouse cursor is
located closely enough over a graphic primitivex{leary objects such as axes do
not count). It centers the graph around the pamtten the mouse cursor. If later on
the graph is translated, the point of rotation stinains on the same point until the
next ” fly to” operation is performed.

¢/ a-toggles betweenamera and @or modes. In camera mode, user interaction
affects the camera position and focal point, whilactor mode it affects the object
(“actor” in VTK terminology) under the mouse point&herefore in actor mode one
can rotate and translate different objects indeeetigl This enables e.g. separation
of different graphic objects. You can presshen click on the graph of the original
function with the middle mouse button and dragwiag from other objects, then
pressc and center the view around the graphs of the appaiion and sampled
points in order to view them together, without drginal function.

* p — pick operation. This shows a wire frame aroumel dbject under the mouse
cursor. This may turn useful in rare occasions ritep to see to which object the
graphic primitive under the cursor belongs, e.gemviseparating objects in actor
mode.

s/ w — all objects become represented as surfacewiténframe. You will seldom
need this command.

* e/ q - exits/ quits the graphic window.

2. Short User Manual NeurApp

User interaction capabilities can be used to pedciposition the view in order to make
interesting details appear more obvious, but atsoaichieving some special effect. Figure 4
demonstrates, for example, how actor mode (switdmebly pressing tha key and switched off by
pressing the key to go back to camera mode) can be used to thevgraph of the approximation
apart from the graphs of the approximated funciind sampled values used for training. This has
been done in the following way. First the trackbatide was switched on by pressinghen the
graph was rotatedeft mouse button, with holding theCtrl key for rotation in the projection plane),
translated $hift + left mouse button) and zoomedr{ght mouse button or mouse wheel) in order to
achieve the appropriate view. Then, the actor nveale switched on by pressing théey, and the
approximation (the colored surface) was moved afay the original location to the right by
pressing and holding tHshift key and pressing tHeft mouse button and moving the mouse to the
right. Finally, thec key was pressed in order to get back to the camede and finely tune the
whole graph by translation of the camera. Sinceaibjwere not zoomed while in the actor mode
and since rotations were not performed since ergehe actor mode, one can see the realistic ratios
between the original function (blue wireframe) atsdapproximation (colored surface) and it is
obvious that the approximation has lesser totat $ipan the original.

In the camera mode (switched on by pressingctkey), all graphic objects stand still and
the camera rotates and translates around. In tioe sode (switched on by pressing thdey),
camera remains still and the selected graphic bbjdch may consist of many graphic primitives,
such as the whole surface in the above describsg) caoves and rotates (thus it can also change
position with respect to other objects).

2.0 =

:‘ \\“t\n‘&
““ \\\\‘ |
..w‘\‘\\ \\\\\\w \

\ i "’/ﬁ/ il
‘\\\\\ \\‘\\‘\\ m% ‘
\‘\‘\

5L R
z LA

#mrfﬂ”

0.5k

APROMATION ERRON
3.3939-0035 0153 0,329 0459 0.9551 0,514

10

2. Short User Manual NeurApp

Figure 4: Separation of the graph of the original functiow dampling points (left-hand
side) and approximation (right-hand side) by usheyactor mode. Case is the same as shown
in Figure 3.

2.3.3.2 Showing Convergence Path

This is equivalent as in 1D case (SectioB.4). Final values of different error measures ar
shown in the Approximation error” box and course of the selected error measurkawis on the
graph on the right of error values. Radio buttaesused to select the error measure to be shown on
the graph.

2.4 Accessing Help and Web Pages

| /— |Info box — this contains

r__‘.E' Neural Approximation Demo - / basic information about .)
1D Appraimation | 2D A on Aot | the software. ‘
About the Software

_~ Hep |
Launches help.
| ;

,| Neural Approximation Demo, version 1.0
duth Navigates to software
Autnors:

Igor Grafovnik, Tadej Kodalja home page.
GLT design: Tadej Kedelja

Contact:

gresovnik@gmail.com, tadej kodalja@gmail com |

htpwwwl graes sif~liciml/igor gl
\

to navigate to the softwal

b Software home — click thi
web page.

-_— 4

Figure5: Accessing help and other information.

11

3. Screenshots NeurApp

3 SCREENSHOTS

| ™ K
| & | Neural Approximation Demo ¢ u CHLCE
1D Approximation 20 Approsimation | About |
| Loaddata | SaveANN | Lot |
ANN Settings Limits
™ Function defined by user Max ¥ Bound
1.0 5:
[)= [eary) = Min X Bound Max X Bound
N —=| | Fad fro =5
[10 = 10 =
Samples on Y axe F = Min Y Bound
[Samples on X axe EE 5: 10 3‘
| Visualizabion
Generate Data [Random Training Data
_J n Training POINTS Default GRAPH Approxamation GRAPH Contoure GRAPH
¥ Points I Suface | ¥ Sutce | I~ Default
Neurons in hidden layers 3 =1 [L‘ 3’ W Grid ™ Grid T[™ Approximatior
MAX Epochs 5000 5: T/
Epochs in Bundle 500 3:
RMS 0.00100 5: |
Leaming Rate 030 3: |
Appraximation error i
Momentum 060 = Max Training Error | @ i :
Input Safety Fact = e
[ot Sebes i 13 Rms Training Error £ £ o |
Output Safety Factor 13 3: -, 4 : \
Max Verification Error £ pis l B £
T 0z 04 0.6
Reset [Rms Verification Error e Epochs
[

‘ |
Figure 6: NeurApp has a very intuitive user interface. Alyhave to remember is to press
the “Generate Data” and then the “Start” buttorheéthings are for changing parameters of
the training procedure, bounds for the trainingadand the function to be approximated.

Figure 7. After generation of data, you can immediatelytheegraph of the original
function and data that will be used for training.

12

3. Screenshots NeurApp

1D Approximation | 20 Approximation | About |

losddata | SaveANN | LosdANN |
ANN Settings Limits
| ™ Function defined by user 0 = oo =
fx)= |x'x :J
|
|| | Number of training samples 20 3:

Generate Data ¥ Random Training Data
Neurons in hidden layers 5 3: 0 3:

MAX Epochs 5000 EI
Epochs in Bundle 500 5: = i d 5
RMS w0 =] G M } 2 ‘
I
Learning Rate 030 3:
Approximation error |
Momentum foeo = Max Training Error [13se5119 & 148 :] :
Input Safety Factor 10 3: 5 -
Rms Training Error W @ 1 I
Output Safety Factor 10 =] g
Max Verification Error ~ [27595374 1.40 : : : ;
1000 200 3000 4000 5000
Swart | Reset | Rms Verification Error 12558341 c Epachs

Figure 8: After pressing the “Start” button, training of theural network begins, and the
result is shown immediately after training is coetpl It is easy to compare the generated ANN
model with the original function. Smaller graph sischow error was reduced during the
training procedure, making possible to correct sparameters such as tolerances and maximal
number of epochs if results are not as expected.

13

3. Screenshots NeurApp

r z
] Visualization Toolkit - Win320penGL £7 - sil=]

1 (i

)
\

R
|

il

"‘t ol

AR

b

S
sl 1‘“1 ()

Figure9: Exa-mple §D plot of the original?unction of 2 vaties and the generated training
data on the surface of the function graph.

14

3. Screenshots NeurApp

L APFOLAMATION 27707

EXIERR g P 0y

'.'J.'T‘ 804 i
| -)
Figure 10: After training of the neural network is compledesurface plot of the

approximated function is shown together with thigioal function and with the generated
training data. Error magnitude is shown in colalsc

||

15

4. About the Software NeurApp

APROXIMATION ERROR "
0.000104 0.586 1.17 JE7EA

Figure 11: One can interactively adjust the viewing angle aoom in order to inspect
properties of the approximation in detail.

4 ABOUT THE SOFTWARE

Software was developed by Igor GreSovnik and Tdtwsjelja as an easy to use and
intuitive tool for exploring features of approxin@t by the artificial neural networks (ANN).
Authors have developed the software while workingAdN-based model of process parameters in
material production in the Centre of Excellence Ripnsensors, Instrumentation and Process
Control COBIK). In the scope of his work at COBIK, Tade] Kodelj@s also working on his
Ph.D. thesis under supervision of Prof. Bozidateésand Igor GreSovnik.

16

4. About the Software NeurApp

The software is based on theestigative Generic Library (IGLib), a framework library for
development of technical applications. The librisglf is based on the .NET framework and relies
on a number of third party libraries. It has beesediby several commercial software projects as
well as in research projects. Among the otherseintves as code base for the software for industrial
ANN-based modeling, which is developed by the atgtlod NeurApp. This is a complex software
used as support to tackle most challenging ANN riegl@roblems in industry. It requires some
expertise and skills to use that software, but itk benefit of a powerful and flexible problem
solving tool. The software is used internally faerforming research and providing services to
industry, but authors are open for all kinds ofatobration where the software can be utilized.

Motivation for development of the software cametipdy from authors’ personal needs,
since authors wanted to gain better insight in uiest and function of the ANN-based
approximations, gained from practical experiencd an fast and intuitive way. Therefore they
devised a software where one can conceive arbituactions of one and two variables, input these
functions through a graphical user interface aridhsam as the reference functions for ANN-based
models, sample function values on a regular grich@andomly distributed values, train the neural
network to obtain an approximate model, and inspemperties of the obtained model by observing
various statistics and by visual comparison ofrtteglel and the original reference function. In this
way, it is easy to develop an intuitive feeling tbe capabilities and limitations of the ANN-based
modeling.

Additional motivation was in creating a tool thaiutd be easily utilized to demonstrate
some features of the artificial neural networksdiar colleagues. Often people have wrong
expectations about the ANN-based modeling. Mangsithey heavily overestimate the capabilities
of the neural network modeling, considering thisl s a kind of Panacea, an almighty remedy for
all problems. It is sometimes difficult to explalmat ANNs are just an ordinary (though very strong
in some aspects) utility for black box modeling. Ah, it crucially depends on the availability and
quality of data, thus being susceptible to manyl&iof data deficiency and absolutely adherent to
the “garbage in, garbage out” principle. By a tsach as NeurApp, it is easier to plastically
demonstrate how ANN-based modeling works.

17

References NeurApp

Some References

Below there is a collection of selected refereraes links that are in some way related to
the NeurApp software. They are mainly related te #uthors’ past work that brought to the
situation where NeurApp was created. References [3] are some papers published within the
scope of our work at the . [4] - [9] are referenoglated to optimization shelhverse, which is a
complex industrial & research optimization softwaretten in C that preceded th&Lib library,
and where many concepts and ideas used inGh#b library (a framework library for development
of technical applications reference developed byr IGreSovnik, reference [10]) come from.
Aforge.Net (reference [11]) is a library that isedsas neural networks computation engine in
NeurApp.

References [12] and [13] are links to the instimtiCentre of Excellence for biosensors,
instrumentation and process control (COBIK) andl#®ratory where the authors currently work.
Within COBIK, authors are developing methodolodi@sapplication of artificial neural networks
to modeling of industrial processes. The probleiwisg software developed in the scope of this
work is based on the IGLib ([10]). This is also ttese with NeurApp, which is just a side product
of the above work initially developed as a simpdeltfor authors’ training in basic features of
ANN-based approximation.

The more professional software used for actualarete& industrial work is quite complex
and requires a high level of expertise from the,umad it is interpreter - centered rather thand G
- based. It is used internally for performing resbaasks and to offer services to industry, with
interfaces to a number of partner software and satime specialized interfaces for users in partner
institutions. This software is designed to be hyghdxible and quickly adaptable to new problems
and customer requirements. It does not targetedpegific range of tasks, but is a good base for a
wide range of specialized modules or applicati@nspecific and well defined tasks. The software
is not available for purchase, but authors willeeehe any suggestion for collaboration on research,
development or industrial projects or request fevedopment of software needed, where they can
provide reliable and professional service.

[1] GreSovnik, |.; Kodelja, T.; Vertnik, R.; Sar|éB. (2012): A software Framework for
Optimization Parameters in Material Production. kggbMechanics and Materialds,
vol. 101-102, pp. 838-841. Trans Tech Publicati@wsitzerland.

[2] GreSovnik, I.; Kodelja, T.; Vertnik, R.; SarjeB. (2012): Application of artificial neural
networks to improve steel production process. Bounez A. G.; Hamza, M. H.
Proceedings of the 15th International ConferencAnbificial Intelligence and Soft
Computing, Napoli, Italy, pp. 249-255.

[3] GreSovnik, |.; Kodelja, T.; Vertnik, R.; S&&. B.; Kovasi¢, M.; Sarler, B. (2012):
Application of artificial neural networks in desig steel production path. Computers,
Materials and Continua, vol. 30, pp. 19-38.

18

References NeurApp

[4] Gresovnik, I. (2000): A General Purpose Compatal Shell for Solving Inverse and
Optimisation Problems - Applications to Metal FongpiProcesses, Ph. D. thesis,
University of Wales Swansea, U.K.

[5] GreSovnik, I. (2012): Optimization shell Inversttp://www?2.arnes.si/~ljc3m2/inverse/

[6] GreSovnik, I. (2012): loptLib User Manual. Alalble at:
http://www?2.arnes.si/~ljc3mz2/igor/ioptlib/doc/ofilpdf

[7] GreSovnik, I. (2007): The use of moving leagtiares for a smooth approximation of
sampled data. Journal of Mechanical Engineering,9@p. 582-598.

[8] GreSovnik, I. (2009): Simplex Algorithms for Niinear Constrained Optimization
Problems, technical report. Available at:
http://www?2.arnes.si/~ljc3m2/igor/doc/rep/optalgpiex.pdf

[9] GreSovnik, I. (2012): 10ptLib — library for sahg inverse and optimization problems.
Available at:http://www2.arnes.si/~ljc3m2/igor/ioptlib/

[10] GreSovnik, I. (2012): IGLib.net - investigaggeneric library. Available at:
http://www?2.arnes.si/~ljc3m2/igor/iglib/

[11] Aforge.Net. (2012): Artificial intelligencebrary. Available at:
http://www.aforgenet.com/

[12] Centre of Excellence for biosensors, instrutagon and process control (COBIK)
http://www.cobik.si/index?lang=eng

[13] Laboratory for Advanced Materials Systems,BIK
http://www.cobik.si/laboratoriji/laboratorij-za-$eme-z-naprednimi-materiali?lang=eng

19

