
6. Conclusions and Further Work

214

6 CONCLUSIONS AND FURTHER WORK

In the present work a shell for solution of optimisation and inverse problems
in conjunction with simulation programmes was presented. Emphasis was placed on
the open and flexible structure of the shell, which makes it general with respect to the
variety of problems to which it can be applied as well as the simulation systems with
which it can be used.

The shell was combined with a general finite element system Elfen and
applied to selected problems related to metal forming. This provided a good test for
the adequacy of the shell concepts from the point of view that a complex simulation
system was successfully utilised for solution of optimisation problems involving
non-linear and path dependent responses, coupling of phenomena, frictional contact
and large deformations. Experience justified the initial idea of the optimisation
system consisting of a set of independent tools for solution of individual
subproblems. The shell offers a framework for connecting such tools in a common
system where they can be combined in the solution of complex optimisation
problems. Once these tools are linked with the shell, the necessary interaction
between them is established and they can be employed for the solution of
optimisation problems as a part of a synchronised solution environment.

One of the basic guidelines in shell design was that it should not impose any a
priori restrictions regarding the type of optimisation problems to which it is
applicable. It was however assumed throughout that the shell will be applied to
problems where evaluation of the objective or constraint functions (and eventually
their derivatives) includes an expensive numerical simulation. This assumption
allowed the file interpreter to be used as a user interface, thus the focus was on
openness and flexibility of the interface rather than its speed.

The assumption regarding computationally demanding numerical simulations
also dictates demands for the optimisation algorithms incorporated in the shell. In
most cases the time needed for algorithm housekeeping operations is insignificant
and the number of direct analyses necessary for finding the solution should therefore
be regarded as principal the measure of effectiveness of the algorithm.

The shell design aims at building a general optimisation system applicable to
a wide variety of problems. To make this goal achievable, the shell must provide a

6. Conclusions and Further Work 6.1. Further Work Related to the Optimisation Shell

215

flexible framework for implementation and testing of new utilities, which must be
accompanied by use in practice. Such a broad scope implies a number of demands,
which can not be met instantly but are a matter of systematic long term development.
The last section in this text is therefore devoted to assessment of possible further
development of the shell. This assessment is based on appreciation of the current
state and practical experience, which gives indication regarding which development
tasks will be among the most important in the future.

6.1 Further Work Related to the Optimisation Shell

Development tasks can be divided in two groups. The first group includes
developments related to the shell structure and concepts, while the second group
includes development and incorporation of modules with given functionality.

Development of a complete open library is currently regarded as a primary
development task. Such a library will enable incorporation of modules developed in
different places. It must provide a condensed standard set of simple to use functions,
which still enable sufficient interaction with constituent units of the shell. A large
portion of the library has already been implemented and must be equipped by
appropriate documentation. Other parts of the library will be developed
simultaneously with introduction of additional functionality and final definition of
additional concepts. Another important task is definition of rules for adding functions
for direct access to module functionality to the shell library. The current arrangement
anticipates access to module functionality through the user interface, while the
framework for making this functionality available for direct use in other modules has
not yet been set up.

The file interpreter will probably undergo substantial changes. Experience
has shown that use of the current implementation is sometimes difficult and prone to
errors. In order to suppress this deficiency, the syntax will have to be modified,
probably towards the syntax of some common high level language such as C. This
will require partial revision of the interaction between the interpreter, the expression
evaluator and the variable system. This will also affect the syntax checker and
debugger, which alone need some improvements to become a more reliable tool for
detection and elimination of errors in command files.

A great deficiency of the shell is that it does not have a sufficiently general
common system for processing and presentation of results. Such a system should
enable, for example, the storing of the complete information about the optimisation
path for later presentation in a standard way. This should be accompanied by
appropriate visualisation tools. Currently the optimisation path can be written to a

6. Conclusions and Further Work 6.1. Further Work Related to the Optimisation Shell

216

file by using the appropriate output command in the analysis block of the command
file.

The need for a modular and hierarchical library of optimisation algorithms
has been indicated by practical experience. The basis of such a library is currently
being set up, while its development is a long term task which will be strongly
affected by simultaneous experience gained by use in practice. One argument for
development of such a library is the observation that more complex optimisation
methods often incorporate more basic algorithms for the solution of subproblems. A
well structured hierarchical library can therefore significantly facilitate development
of increasingly sophisticated algorithms developed for special purposes. The need for
development of special purpose algorithms is always present in an optimisation
system such as the shell. A readily available example which supports this statement
is establishing a recurrent interaction between an optimisation algorithm and a finite
element simulation in such a way that a finer mesh is used in simulation as the
solution of the optimisation problem is approached. This can save time since a coarse
mesh is used far from the solution where high accuracy of simulation results is not
crucial.

There is another argument which supports development of optimisation
algorithms simultaneously with development of the shell. The resulting library will
include some facilities which are usually not a part of existing optimisation libraries,
but are important for incorporation in the shell system in compliance with its
concepts. Such facilities will enable e.g. use of a common system for reporting errors
and a common system for presentation of results.

Development of the optimisation library will induce the need for a suitable
testing environment. By now algorithms were tested either on practical examples or
on test problems defined through the command file. In the future this should be
supplemented by a system of standard test functions pre-defined in the shell. Such a
testing suite will make comparison of different algorithms for similar problems
easier. The test problems will be designed with features which are expected to be
difficult for specific algorithms.

Development of a general shape optimisation module will begin in the near
future. It will increase the applicability of the shell because shape plays an important
role in almost all branches of engineering design. This module will include tools for
definition of parameter dependent transformations of shape and appropriate functions
for transformation of discrete sets of points as well as continuous domains. Module
functions will act on the geometrical level, therefore it will be possible to combine
module functionality with existing functionality already implemented in individual
simulation systems.

More specific tasks will be related to further effective utilisation of
simulation systems. A direct interface with the finite element system Elfen has now

6. Conclusions and Further Work 6.1. Further Work Related to the Optimisation Shell

217

been implemented. This interface is currently on a very basic level and includes
access to programme data structures and basic control over its execution. Higher
level functions will be added in the future, which will enable e.g. direct use of built-
in post-processing capabilities such as integration of derived quantities over surfaces
and volumes. Use of the programme for solution of optimisation problems will be
facilitated by introduction of optimisation entities. These are objects, which include
the definition of geometrical entities that are involved in definition of the
optimisation problems, specification of data needed by the shell and specification of
operations which will be performed on this data.

Use of the shell for practical purposes will in certain cases impose stronger
requirements with respect to simplicity of use. Such requirements will be met by
building templates, which will utilise the shell for solution of specific sets of
problems. These templates will represent upgrades of the shell user interface by
trading a certain level of generality for the required user friendliness. Various
facilities will be employed in building such templates, e.g. high level special purpose
commands implemented in the shell, portions of code for the shell file interpreter
prepared for accomplishing pre-defined combinations of tasks, and pre and post
processing utilities integrated in the simulation environment which will be utilised
for the solution of problems.

6. Conclusions and Further Work References

218

