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5 ILLUSTRATIVE EXAMPLES

5.1 Inverse Estimation of the Hardening Curve from the
Tension Test

5.1.1 The Tension Test

The tension test (Figure 5.1) is widely used for the mechanical testing of
materials. However, accurate estimation of plastic material properties is difficult due
to the non-uniform stress and strain distribution in the necking zone (Figure 5.2).
Because of this phenomenon, it is not possible to determine the hardening parameters
directly by measuring elongations at different loads. In order to determine true stress
the Bridgeman correction is often applied which requires additional measurements of
contractions at the narrowest part of the deformed sample and curvature of the
neck[1]. The approach is based on the assumptions that the contour of the neck is the
arc of a circle and that strains are constant over the cross section of the neck.

In the present section an inverse approach to estimation of hardening
parameters is considered[2],[3]. This approach does not incorporate idealisations in the
form of a priori assumptions on the stress or strain field. The material behaviour is
modeled by a von Mises elasto-plastic material model[1].

Figure 5.1: Sample geometry.
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Figure 5.2: Longitudinal stress distribution obtained by numerical
simulation. Exponential hardening law with MPaC 1271=  and

0886.0=n  was assumed. The elongation is mm8 .

5.1.2 Estimation of an Exponential Approximation

An exponential hardening law is assumed to approximate the relationship
between the effective stress and effective strain:

nCεσ =  . (5.1)

The unknown parameters C  and n  need to be derived from measured  forces at
certain elongations of the samples. Two series of measurements were performed for
two different steel grades. The geometry of the samples is shown in Figure 5.1, while
the experimental data are given in Table 5.1 and Table 5.2 for each series. Graphic
presentation of the same data for the first sample of each series is given in Figure 5.3.

Table 5.1: Experimental data for the first series.

Elongation
[mm]

Force [N],
sample 1

Force [N],
sample 2

Force [N],
sample 3

3 65900 68800 66800
4 67800 69900 67800
5 68650 70600 68700
6 68900 70600 68700
7 68850 69200 68400
8 68000 66600 68200
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9 65800 61300 65100
10 61800 54100 59300

Table 5.2: Experimental data for the second series.

Elongation
[mm]

Force [N],
sample 1

Force [N],
sample 2

Force [N],
sample 3

3 86000 85800 84700
4 87500 86300 85600
5 87800 86500 86400
6 86500 85900 84500
7 81700 84600 80900
8 74800 78200 72600

series 1, sample 1

series 2, sample 1

Force [N]

Elongation [mm]
4 5 6 7 8 9 10

70000

75000

80000

85000

Figure 5.3: Measured data for the first  sample of each series.

Solution of the problem was found by searching for the parameters which give
the best agreement between measured and respective numerically calculated
quantities. The agreement can be defined in different ways, but most commonly used
is the least-square concept, mostly because of its statistical background[21]-[23]. The
problem is solved by minimising the function
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where ( )m
iF  are measured forces at different elongations, ( )F C ni ,  are the respective

quantities calculated with the finite element model by assuming trial values of
parameters C and n, σi  are the expected errors of appropriate measurements and N
is the number of measurements.

The scatter of experimental data for the same series which is evident from
Table 5.1 and Table 5.2 is mainly due to differences in samples rather than
experimental errors. This has an effect on the estimated parameters C and n. The
results are summarized in Table 5.3 and Table 5.4.

Table 5.3: Calculated parameters C and n for  the first series.

sample 1 sample 2 sample 3

[ ]C M Pa 1271 1250 1258

n 0.1186 0.1010 0.1132

Table 5.4: Calculated parameters C and n for  the second series.

sample 1 sample 2 sample 3

[ ]C M Pa 1492 1511 1462

n 0.08422 0.09269 0.08318

It seems that the applied numerical model simulates the bahaviour of the
investigated material adequately. This is indicated[22],[24] by the fact that the obtained

minimal values of the function ( )χ2 C n,  were never much greater than one, assuming

that the measurement errors ( σi in (5.2)) are one percent of the related measured
values.

5.1.3 Estimation of a Piece-wise Linear
Approximation

The flow stress of the material is a result of different hardening and softening
phenomena which interact during plastic deformation. This interaction is often so
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complex that it is difficult to predict the form of the hardening curve ( )σ ε . In such

cases it would be desirable to find an approximation of the hardeining curve without
making any preassumptions regarding its form. This can be done in  several ways. In
this work, an approach where points of the hardening curve defining a piece-wise
linear approximation are sought is considered.

The experimental measurements used for estimation of the piece-wise linear
approximations are summarized in Table 5.5 and Figure 5.4. The data are for the first
sample of the first series, but with 16 measurements instead of eight used for
evaluation of exponential approximation.

Table 5.5: Experimental data used to obtain a piece-wise linear
approximation of the hardening curve.

Elongation [mm] Force [N]
2 62200

2.5 64400
3 65900

3.5 67000
4 67800

4.5 68200
5 68650

5.5 68800
6 68900

6.5 69000
7 68850

7.5 68600
8 68000

8.5 67100
9 65800

9.5 64000
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Figure 5.4: Measurements used for calculating a piecewise
approximation of the hardening curve (measurements are for the first
sample of the first series).

The points on the hardening curve were obtained by minimising the function
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where parameters σi  are values of the curve ( )σ ε  at arbitrary equivalent strains εi .

The yield stress was known from experiments.

Approximations of the hardening curve with 4, 6, 8 and 10 points were
calculated. The results are shown in Figure 5.5 to Figure 5.8. The exponential
hardening curve with parameters C M Pa= 1271  and n = 01186. (as obtained by the
inverse analysis assuming the exponential hardening law) is drawn in each figure for
comparison. It is evident from these graphs that calculated piecewise linear
approximations are in relatively good agreement with the calculated exponential
approximation.



5. Illustrative Examples      5.1. Inverse Estimation of the Hardening Curve from the Tension Test

180

0.1 0.2 0.3 0.4 0.5 0.6 0.7

900

1000

1100

1200

Exponential law
Piece-wise linear

( )MPaσ

ε

Figure 5.5: Comparison between exponential and piece-wise linear (4
points) approximations  of the hardening curve.
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Figure 5.6: Comparison between exponential and piece-wise linear (6
points) approximations of the hardening curve.
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Figure 5.7: Comparison between exponential and piece-wise linear (8
points) approximations  of the hardening curve.
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Figure 5.8: Comparison between exponential and piece-wise linear
(10 points) approximations  of the hardening curve.

5.1.4 Numerical Tests

A number of numerical tests were performed to investigate the stability and
uniqueness of the inverse solutions for the exponential approximation of the
hardening curve.
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Several inverse analyses were performed with very different initial guesses
and they always converged to the same results. This is the first indication that the

problem is not ill-posed. Further examination was made by plotting the χ2  function
(Figure 5.9 and Figure 5.10). A distinctive minimum can be recognised in these
figures without indication of possible existence of several local minima.
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Figure 5.9: Dependence of function 2χ  on parameter n at measured
data for sample 1 of  series 1. Parameter C is set to 1271 MPa.
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Figure 5.10: Dependence of function 2χ  on both parameters for the
same measured data as in Figure 5.3.
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To test the stability of the solutions, a Monte Carlo simulation[11] was
performed. It was assumed that the correct values of both parameters were known.
For this purpose, the previously calculated values for the first sample of the first
series were taken, namely C MPa= 1271  and n = 01186,  (see Table 5.1). With

these values the so called “exact measurements” ( )Fi
0

 were obtained with the same

finite element model used for the inverse analysis of the real measurements. The

“simulated measurements” ( )Fi
m

 were successively obtained by adding random

errors ri  to the “exact measurements”. Errors were distributed normally as
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where si  is the standard deviation of distribution. This distribution is often used to
simulate measurement errors which do not have a clearly defined origin[22].

For each set of “simulated measurements” parameters C and n were calculated.
Three different sets of  si  were chosen so that ratios

R
s

F
i

i

i

=
0

(5.5)

were uniform within each set. Fifty numerical experiments were performed for
R = 0 01. , twenty for R = 01.  and twenty for R = 0 001. . Then average values z  and
dispersions Sz  of the searched parameters were calculated for each set, according to

z
k

zi
i

k
=

=
∑1

1
(5.6)

and

( )S
k

z zz i
i

k
2 2

1

1
1

=
−

−
=
∑  . (5.7)

The results are summarized in Table 5.6. Figure 5.11 shows the distribution of
calculated parameters at R = 0 01. .
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Figure 5.11: Results of the Monte carlo simulation for R = 0 01. .

Table 5.6: Results of Monte Carlo simulations: Average values and dispersions of
calculated parameters at different Ri

R = 0 001, R = 0 01, R = 01,

C 1271.4 1271.8 1287
SC 0.58 4.9 69

n 0.118628 0.11867 0.1163
Sn 0.00016 0.0015 0.014

5.1.5 Concluding Remarks

The above example illustrates the applicability of the inverse approach in
parameter identification. Inverse identification can become a useful tool for
estimation of those parameters which are difficult to obtain with analytical treatment
of experimental results due to the complexity of the phenomena involved. An
important advantage of the approach is that parameters are derived by using the same
numerical model which is then applied in direct simulations.

It is necessary to take the appropriate precautions when the approach is used.
It is especially necessary to make sure that the inverse problems is well conditioned
and has a unique solution. If measurement errors can be estimated, then statistical
tests can be used to verify the adequacy of the applied model and estimated
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parameters. It is wise to use the estimated parameters in additional tests where
simulation results are compared with measurements.

5.2 Shape Optimisation of Cold Forging Processes

Two simple examples are included to illustrate the applicability of the
optimisation techniques in the design of forming processes. In the first example a
pre-form of a cold forged workpiece is optimised in order to obtain the desired final
form. In the second example the shape of the tool in the first stage of a two stage cold
forging process is optimised with the same objective. These examples explain the
methodology which could be applied in the optimisation of real processes.

5.2.1 Optimisation of Preform Shape

In the present example an axisymmetric workpiece is upset by flat tools
(Figure 5.1) with a constant stroke. The optimisation objective is to achieve a
prescribed shape of the free boundary of the workpiece by changing the initial shape
of this boundary. The Von Mises elasto-plastic material model was used for the
workpiece while the tool was modelled as a rigid body. The coulomb friction law
was used to model the contact condition between the die and the tool. Because of
symmetry the process was modelled in two dimensions.

h

F

x x

y

y

F

PREOBLIKOVANJE

INVERZ. ANALIZA

Free surface

Figure 5.12: The forming Process.
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The initial height (h=100 mm) of the workpiece was reduced by 40 per cent.
The desired shape of the free edge was specified by a function prescribing the
dependency of x position on y position of the nodes on the free boundary, i.e.

� � �
L L

= � ������� � ��		� 
 , (5.8)

where N is the number of nodes on the free boundary. Two different final shapes
were prescribed:

� � �
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The problem was solved by minimisation of the following objective function:

( )∑
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p is the vector of optimisation parameters which describe the initial free boundary
shape and ix  and iy  are the final positions of these nodes.

The initial free boundary shape was parametrised by polynomial Lagrange
interpolation[23]

( )yPx ,p= (5.12)

 on a given number of control points equidistantly distributed in the y direction
between the lowest and the highest point of the workpiece (including the extreme
points). The x coordinates of the control points represented optimisation parameters

ip . Optimisation parameters (i.e. coefficients of the interpolation polynomial)

determined the initial positions of nodes on the free boundary:

( ) NiyPx ii ,...,1,, 00 == p , (5.13)

The Lagrangian interpolation is defined with[23]
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and M is the number of parameters. The control points lie on the interpolation
polynomal, therefore parameters which are the x coordinates of these points have a
geometrical interpretation.

Table 5.1 summarises the optimisation results. The results are shown
graphically in Figure 5.13 and Figure 5.14. The quantity

< >=∆�



χ �

(5.16)

was introduced in order to make comparison of the results more evident.

Table 5.7: Results of optimisation for required flat boundary defined
by (5.9) and for the required curved boundary defined by (5.10) for
different numbers of parameters.

Flat boundary required Curved boundary required
M χ2[mm2] <∆x>[mm] χ2[mm2] <∆x>[mm]
2 0,1072244 0,0125943 24,6340628 0,1908951

3 0,0114715 0,0041194 0,4628830 0,0261675

4 0,0000310 0,0002143 0,4060472 0,0245084

5 0,0000033 0,0000700 0,2874089 0,0206194

6 0,1152899 0,0130594

7 0,0209804 0,0055710
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M=2

χ =1.072e-12 < x>=1.259e-2∆     

M=3

χ =1.147e-22 < x>=4.119e-3∆

M=4

χ =3.1e-52 < x>=2.143e-4∆     

M=5

χ =3.3e-62 < x>=7.0e-5∆

Figure 5.13: Comparison of solutions for the required flat free
boundary defined by (5.9). The initial finite element mesh is depicted on
the left hand side and the mesh after the forming process on the right
hand side of each graph.

M=2

χ =24.6342 < x>=1.91e-1∆     

M=3

χ =4.629e-12 < x>=2.617e-2∆

M=4

χ =4.060e-12 < x>=2.451e-2∆     

M=5

χ =2.874e-12 < x>=2.062e-2∆
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M=6

χ =1.153e-12 < x>=1.306e-2∆     

M=7

χ =2.098e-22 < x>=5.571e-3∆

Figure 5.14: Comparison of solutions for the required curved free
boundary defined by (5.10).

The above results were obtained with a friction coefficient 1.0=µ  between
the tool and the workpiece. The friction coefficient plays an important role in the
process, therefore its influence was analysed. Figure 5.15 shows the simulation of the
process with different friction coefficients, where the optimal initial shape of the
optimisation problem with a required flat boundary was adopted as the initial
geometry of the workpiece. Figure 5.16 shows the optimal initial shapes for this
problem with different values of the friction coefficient.

µ =0 µ =0.1

µ =0.2 µ =0.3

Figure 5.15: Simulation of the process with different values of
friction coefficient µ . The process starts with the optimal initial shape
for 1.0=µ  and required flat free boundary.
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µ =0 µ =0.1

χ =2.615e-7 χ =3.321e-6< x>=1.967e-5∆ < x>=7.000e-5∆2 2

µ =0.2 µ =0.3

χ =4.004e-4 χ =5.739e-3< x>=7.696e-4∆ < x>=2.914e-3∆22

Figure 5.16: Solution of the optimisation problem with different
friction coefficients µ .

5.2.2 Shape Optimisation of a Tool in a Two Stage
Forging

In the previous example the shape of the forged workpiece was optimised
with the aim of achieving the desired final shape. In multi stage forging processes the
shape of the workpiece is obtained by the preceeding operation in the forging
sequence. This situation is illustrated by the following example where the tool shape
for the first of the two forging operations is optimised in order to achieve the desired
final shape of the workpiece.

The optimised process is outlined in Figure 5.17. In the first stage the
axisymmetric workpiece is forged by a tool with curved boundary. In the second
stage the workpiece is forged by a flat tool with the stroke corresponding to the final
height reduction of 40 per cent. The same material model as in the previous example
was assumed.
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cylinder radius r=50 mm

cylinder height: h=50 mm

tools radius R=75 mm
tool 1 height: h1=30 mm

allowed parameter range: ∆p=15 mm

ui: contact surface control point y coordinates
vi: free surface control point x coordinates
pi: tool 1 control point x coordinates
(correspond to optimisation parameters)

Figure 5.17: Outline of the optimised process.

The objective of optimisation was to find such a shape of the first tool that
both the contact surface and free boundary of the workpiece are flat after the second
stage. This was achieved by minimisation of the following objective function:
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M is the number of control points (nodes) on the contact surface of the workpiece, N
is the number of control points on the free surface of the workpiece, and the meaning
of other quantities is evident from Figure 5.17. The dependence of iu  and iv  on

optimisation parameters p was suppressed for clarity.
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The shape of the contact surface of the first tool was parametrised with 3rd

order splines in such a way that optimisation parameters correspond to y coordinates
of the equidistant control points defining the splines.

In order to avoid physically infeasible situations, the range of parameters ip

was limited to an interval of the height p∆  (Figure 5.17). This was achieved by

introducing new variables[4] it  and defining the transformation F that maps it  to ip ,
in the following way:

)( )()()( minmax
1

maxmin2
1

iii tarctgpppptFp −++== π , (5.20)

where minp  and maxp  are lower and upper bounds for parameters ip , respectively.

The transformation F maps the interval ( )∞∞− ,  to ( )maxmin , pp . The objective

function defined in the space of parameters it , i.e.

( ) ( )( )tpt DD =~
, (5.21)

was minimised with respect to these parameters. Results are summarised in Table
5.8. Parameters ip  in the table are scaled with respect to mmh 301 = . Five shape

parameters were used, while 6p  denotes the tool stroke. The first row of the table

contains results for the process performed with the flat tool in the first stage. The
second row contains results for the optimised shape with a constant stroke in the first
stage (20 mm). The third row contains results for the case where the stroke of the
tool in the first stage is taken as the sixth parameter. The corresponding forging
sequences are shown in Figure 5.18 to Figure 5.20

Table 5.8: Optimal parameters and values of the objective function.

p1 p2 p3 p4 p5 p6 Du Dv D
1 1 1 1 1 1 2/3 1.063E-4 7.927E-3 8.033E-3
2 0.506 0.992 0.991 0.539 0.509 2/3 1.67E-04 2.61E-04 4.28E-04
3 0.506 0.991 0.992 0.832 0.51 0.832 1.30E-04 1.49E-05 1.44E-04
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Figure 5.18: Forging process with a flat tool.

            

Figure 5.19: Forging process with an optimised tool shape and a
prescribed stroke.

            

Figure 5.20: Forging process with an optimised tool shape, where the
stroke was taken as a parameter.
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5.2.3 Optimisation of Heating Parameters for Hot
Forming Operation

In the present example a two stage forming process is considered. In the first
stage (heating, Figure 5.21) an axisymmetric billet with length L=30 mm and radius
r=10 mm with initial temperature 20°C is heated at x=L with a heat flux Fo for time
th while the surface at x=0 is kept at the initial temperature. Other surfaces are
insulated.

In the second stage (forming, Figure 5.22) the billet is deformed in such a
way that the prescribed displacement at x=L is ux=-2 mm and at x=0 is ux=0. Other
surfaces are free. The deformation is modelled  by an ideal elasto-plastic material
model where the flow stress depends on temperature. No heat transfer is assumed in
the second stage.

Material properties are summarised in Table 5.9 and Table 5.10. Figure 5.21
and Figure 5.22 show the discretised configurations of the specimen before and after
heating and forming. Only half of the domain is represented due to symmetry.

        

Figure 5.21: Temperature distribution after heating. The heat flux
Fo=3.500 W/m2 is applied for th=10 s.



5. Illustrative Examples      5.2. Shape Optimisation of Cold Forging Processes

195

       

Figure 5.22: Effective stress distribution in the deformed specimen
after forming. Displacement of the right surface is  ux=-2 mm.

Table 5.9: Material properties.

Thermal conductivity  (K) 30 W/mK
Heat capacity (C) 500 J/kg K
Density (ρ) 7850 kg/m3

Youngs modulus (E) 210000 MPa
Poissons ratio (ν) 0.3

Table 5.10: Yield stress as a function of temperature.

Temperature [oC] Yield stress [MPa]
20 700

100 620
200 560
300 540
400 510
500 500
600 390
700 200
800 180
900 150

1000 120
1100 90
1200 60
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The aim is to find optimal heating parameters defined by heat flux Fo and
heating time th so that the difference between the required and computed shapes of
the specimen after forming is minimal. The objective function to be minimised is
expressed in terms of the differences of the required and computed node coordinates
in the interval 20mm ≤ x ≤ 28mm. The choice of heating parameters is constrained by
a maximum permissible temperature of the specimen Tmax=1200oC. The constraint is
presented in Figure 5.23.

Figure 5.23: Constraint imposed on the choice of heating parameters.
Contours show maximum temperature of the specimen as a function of
applied heat flux and heating time. Spacing between contours is 100oC

The constraint is implied by adding a penalty term in the objective function:
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[ ]t
htF ,0=p  is the vector of optimisation parameters. The nodal coordinates

prescribed by the required final shape are denoted by upper index p and the nodal
coordinates calculated at given values of optimisation parameters are denoted by
upper index m. The temperature at the right-hand end of the billet after heating is
denoted by )(pT .
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The heat flux and heating time can only have positive values. This is ensured
by applying a transformation function that maps parameters from [-∞,∞] to [0,∞]:

2,1),(exp)( === iBqAqGp iii . (5.23)

The billet deformation after the forming depends on the billet temperature
distribution, which is calculated according to the following equation[20],[22]:
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Temperature distributions for three different heating regimes are presented in Figure
5.24.

Figure 5.24: Temperature distributions along the x axis for three
different heating regimes.

Different temperature distributions result in different shapes of the billet after
the forming. Shapes that correspond to temperature distributions from the Figure
5.24 are presented in Figure 5.25.
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Figure 5.25: Deformed shapes of the specimen after forming for three
different heating regimes from Figure 5.24.

The required shape of the billet after both stages of forming was prescribed
by the following function:

))20(2exp(250001

3
)(

−−+
+=

x
rxy p . (5.25)

Optimisation was done by the inverse shell using the nonlinear simplex
method. Optimal solution was found in 34 iterations. The required shape and the
shape achieved with optimal parameters are shown in Figure 5.26.

 Required

 Optimal

Figure 5.26: Required and optimal shape of the billet at optimal
parameter values Fopt = 3628674.9 W/m2 and topt = 7.99 s. Value of the
objective function at these parameters was D(popt) = 0.1448.
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The optimisation shell tabulating utilities were employed to sample the
objective function in the neighbourhood of optimal parameters. Sampled data was
plotted by Mathematica. Figure 5.27 shows 19x17 points diagram of the objective
function without the penalty term. In Figure 5.28 the constraints, the optimisation
path and the optimal solution are also shown.

Figure 5.27: Objective function without the penalty term.
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Figure 5.28: Contours of the objective function with temperature
constraint and optimal solution.
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5.3 Optimal Prestressing of Cold Forging Dies

The final example considered is an industrial case and is related to
prestressing of cold forging dies which are subject to low cycle fatigue.

Cold forging dies are subjected to high operational loads which often lead to
fatigue failure. To prevent or reduce excessive growth of fatigue cracks the dies are
used in a prestressed condition which must be designed in such a way that plastic
cycling and tensile stress concentrations in the die are minimised[5],[6]. This can be
achieved by optimising the geometry of the interface between the stress rings and die
inserts. Prestressing of an axisymmetric die[7]-[9] which can be simulated in two
dimensions is considered first. Then a three dimensional prestressing example[13],[14]

is presented.

5.3.1 Optimisation of the Geometry of the Outer
Surface of an Axisymmetric Die

Prestressing is used in cold forging technology to increase the service life of
tooling systems. In conventional approaches the interference between the stress ring
and the die insert is uniform resulting in small variations of fitting pressure
distributions. However, the introduction of high strength stripwound containers[5]

allows relatively high variations of the fitting pressure which can be optimised.

Figure 5.29: Prestressing of the die insert.

In the approach proposed in [6] a non-uniform fitting pressure distribution is
obtained by modifying the geometry of the interference which is parametrised as
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presented in Figure 5.30. By optimising the position and geometry of the groove it is
possible to achieve high compressive stresses in the inlet radius (Figure 5.29) and
therefore reduce damage and eventual crack propagation in this critical part of the die
insert during use.

∆z

Figure 5.30: Geometric design of the interference at the die-ring
interface.

The tooling system was discretised by the finite element method as presented
in Figure 5.31. Both the tool and the ring were considered elastic and Coulomb’s
friction law was assumed at their interface. The prestressed conditions were analysed
so that the die insert and the ring overlap at the beginning of the computation.
Equilibrium is then achieved by an incremental-iterative procedure by updating the
contact penalty coefficient.

Two objectives of the optimisation procedure were applied: to position the
minimum of the axial stress acting in the inlet radius close to node 6 (see Figure
5.31) and to make this minimum as numerically large as possible. Optimisation was
performed as minimisation of the objective function which was designed to measure
the violation of our objectives in the following way:

( ) ( )( ) ( ) ( )F a b r z K f a b r z a b r zm zz, , , , , , , , ,∆ ∆ ∆ ∆ ∆ ∆= +
2 6σ , (5.26)

where ( )f a b r zm , , ,∆ ∆  is a measure of the distance between node 6 and the point on

the inlet radius where minimum axial stress is calculated, ( ) ( )σ zz a b r z6 , , ,∆ ∆  is the

axial stress at node 6 and K  is a weighting factor which weights the importance of
the two objectives. If the second term in (5.26) is omitted, the problem does not have
a unique solution. There is more than one set of parameters for which the minimum
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axial stress appears exactly in node 6. Therefore the objective function was designed
with both terms. The results obtained with K = 1000  and K = 100  are given in
Table 5.11 and Table 5.12, respectively.

These two nodes are fixed in
vertical direction

Figure 5.31: Numerical discretisation of the tooling system.

After the optimisation a parameter study has been performed to assess the
stability of the problem. It has been found that the problem is well posed, so that the
optimisation approach presented can be applied. The only restriction is the initial
guess which should be chosen so that the axial stresses in the inlet radius are
compressive.

Table 5.11: Results of optimisation with K = 1000 .

a [mm] b [mm] ∆r [mm] ∆z [mm]
Initial guess 6 8 0.3 -4
Final solution 4.97 6.15 0.319 -7.01
Final value of F   -1511
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Table 5.12: Results of optimisation with K = 100.

a [mm] b [mm] ∆r [mm] ∆z [mm]
Initial guess 6 8 0.3 -4
Final solution 5.79 7.11 0.308 -5.28
Final value of F   -1855

5.3.2 Evaluation of Optimal Fitting Pressure on the
Outer Die Surface

In the present example the fitting pressure distribution at the interface
between the die insert and the stress ring (Figure 5.32) was optimised.

In order to reduce the appearance of cracks, the spherical part of the stress
tensor at the critical locations is to be minimised by varying the fitting pressure
distribution at the interface between the die insert and the stress ring. The following
two constraints were taken into account:
•  The normal contact stress distribution at the interface between die insert and

stress ring must be compressive.
•  The effective stress distribution at all points within the prestressed die must be

below the yield stress.

Critical locations

Figure 5.32: A prestressed cold forging die with indicated critical
locations where cracks tend to occur.
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The fitting pressure distribution was represented by 220 parameters
corresponding to a subdivision of the contact surface into 20 vertical and 11
circumferential units ijA  (Figure 5.33). Index k  which associated the optimisation

parameter (i.e. the pressure) kp  with the corresponding ijA  is computed as

( ) ijk +⋅−= 111 .

Because of symmetry only one half of the die was simulated (Figure 5.33).
The objective function was defined as the spherical part of the stress tensor at the
critical location, i.e.

( ) ( )pp .

3

1 crit
kkσθ = . (5.27)

The first constraint was enforced by using transformations where instead of
optimisation parameters p a new set of variables t is introduced. The following
transformations are applied:

kt
k

ii

k
k eg

gg

g
p == ;α . (5.28)

In the above equation α  is a scalar variable which satisfies the second
constraint. Once the optimisation problem is solved for t the optimal set of
parameters p is derived by using equation (5.28).

Sensitivities of the objective function with respect to optimisation parameters
were calculated according to the adjoint method (chapter 3) in the finite element
environment, as well as the objective function. They are shown in Figure 5.33. These
calculations were used in the optimisation procedure. The obtained optimal pressure
distribution is shown in Table 5.13 and in Figure 5.34. Figure 5.35 shows the
prestressing conditions and the effective stress distribution for the optimally
distributed fitting pressure.

Table 5.13: Optimal set of parameters popt defining the fitting
pressure distribution.

j \ i 1 2 3 4 5 6 7 8 9 10 11
1 93.22 89.60 85.38 82.11 80.36 83.31 92.85 105.13 121.88 136.91 147.27
2 101.00 97.53 90.23 82.95 81.88 87.34 102.07 121.50 151.92 174.00 185.89
3 116.63 103.89 91.26 81.00 77.90 90.44 119.19 160.50 209.39 246.51 270.45
4 129.90 108.10 86.25 66.13 60.13 79.96 135.44 209.61 297.44 357.58 398.65
5 138.26 103.64 64.15 27.40 7.03 43.68 124.26 257.59 409.57 526.52 600.05
6 129.25 85.72 27.50 0.55 0.30 0.58 102.36 328.85 582.39 764.12 859.46
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7 99.56 46.61 0.71 0.19 0.13 0.20 104.45 409.26 733.05 977.29 1109.89
8 64.44 4.84 0.28 0.13 0.10 0.19 128.25 468.18 830.35 1113.63 1261.72
9 24.71 0.77 0.24 0.15 0.14 0.58 208.79 532.54 851.79 1117.16 1259.67

10 0.75 0.47 0.30 0.25 0.38 73.55 274.47 556.57 807.61 1007.96 1121.13
11 0.28 0.29 0.28 0.48 19.04 138.51 302.58 506.80 687.32 843.22 915.33
12 0.19 0.21 0.27 0.59 41.78 148.50 282.74 415.76 560.36 661.28 716.32
13 0.16 0.18 0.24 0.51 27.46 118.75 225.14 332.13 424.23 500.06 542.03
14 0.15 0.17 0.22 0.43 6.14 84.16 164.29 246.59 320.54 374.65 403.52
15 0.16 0.18 0.23 0.38 1.75 53.06 116.07 176.89 231.37 270.39 289.37
16 0.18 0.20 0.25 0.39 0.99 27.31 74.64 118.57 156.76 187.19 200.39
17 0.21 0.23 0.28 0.40 0.80 5.40 44.14 73.12 99.67 119.70 132.83
18 0.27 0.29 0.34 0.45 0.71 1.86 12.72 29.81 49.39 65.89 72.32
19 0.36 0.38 0.43 0.51 0.66 0.96 1.54 2.83 6.18 15.27 23.07
20 0.51 0.52 0.54 0.56 0.57 0.62 0.66 0.68 0.69 0.72 0.72
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Figure 5.33: Subdivision of the outer surface of the die and
sensitivities 

kDpDθ .
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Figure 5.34: Optimal fitting pressure distribution.

        

Figure 5.35: Prestressing conditions 3kkσ  and effective stress

distribution for popt
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5.4 Further Examples

A number of other problems were solved by the presented optimisation shell.
In the work done by Musil[15] friction parameters were estimated from the results of
the spike forming test (Figure 5.36). A block sample was pressed between two
cylinders and a plate. Torque and the two components of the force acting on the
cylinders were measured at different stages to provide input for inverse analysis.

cylinders

plate

deformed
specimen

    

Figure 5.36: Experimental set-up and numerical simulation of the
spike forming test.
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Another inverse parameter identification is described in the work done by Goran
Kugler[16] where the dependence of the heat transfer coefficient between two bodies
in contact on the normal contact stress is estimated. A hotter cylindrical specimen
was symmetrically pressed by cooler dies. The temperature in a few sampling points
within the dies was measured at different times.

These two examples illustrate the applicability of the inverse approach to
identification of model parameters which are difficult to estimate by other methods.
The parameters of physical models that describe contact phenomena which take
place during hot working operations are especially difficult to quantify. Due to high
contact stresses and temperatures it is hard to make in situ measurements. It is
however possible to design experiments in which conditions similar to those in the
real process are reestablished and where accurate indirect measurements can be
performed. The estimated parameters can be used to calibrate numerical simulation
of the real process.

A shape optimisation example which is close to real-life problems in metal
forming was solved by Damijan Markovi�[19]. A pre-form shape was optimised in
order to obtain optimal die filling and material flow. The problem is outlined in
Figure 5.37, while the results of a numerical simulation are shown in Figure 5.38.

Initial geometry

Preform shape = ?

Final geometry

Figure 5.37: Two stage forging process where the pre-form shape is
to be optimised.
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Figure 5.38: Numerical simulation of a two stage forging process.

An interesting example which demonstrates a stand-alone use of the
optimisation shell was designed by Jelovšek[18]. Equilibrium arrangements of a given
number of equally charged particles in a planar circular region were obtained by
minimisation of the total potential energy with respect to particle positions. Different
arrangements were obtained by different initial guesses. Expressions defining the
objective and constraint functions and their derivatives can be expressed analytically
and were evaluated by the optimisation shell. Sample results are shown in Figure
5.39.
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          w = 382.14

          w= 380.51

          w = 384.55

Figure 5.39: Three different equilibrium arrangements of 27 charged
particles in a circular region[18]. The corresponding random initial
configurations are shown on the left. Relative potential energy of the
equilibrium states is indicated on the right.
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