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4 OPTIMISATION SHELL “INVERSE”

4.1 Aims and Basic Structure of the Shell

4.1.1 Basic Ideas

As mentioned in the introductory part, the main purpose of the optimisation
shell “Inverse” is to utilize a finite element method based simulation code for solving
inverse and optimisation problems. The philosophy of the shell[4]-[6] follows the idea
that two naturally distinct parts can be recognized in the solution scheme of
optimisation problems (Figure 4.1).

One part of the solution procedure is the solution of a direct problem at given
optimisation parameters. This comprises numerical solution of the equations that
govern the system of interest. In the scope of this work, this is performed by a finite
element simulation, referenced in chapter 2 and schematically shown in a dashed
frame on the right-hand side of Figure 4.1.

It is regarded that when a set of optimisation parameters is given, the system
is completely determined in the sense that any quantity required by the optimisation
algorithm can be evaluated. This usually refers to the value of the objective and
constrained function and possibly their derivatives for a given set of parameters.
Evaluation of these quantities is referred to as direct analysis1 and is shown in the
larger dashed frame in Figure 4.1.

                                                
1The notion of direct analysis is not used in a uniform way in the literature. Some authors use this term
to denote merely the numerical simulation and sometimes the term is not defined strictly. In the
present work the term “direct analysis” refers strictly to evaluation of the relevant quantities (e.g. the
value of the objective and constraint functions) at a given set of optimisation parameters and includes
all tasks that are performed as a part of this evaluation.
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Figure 4.1: Typical solution scheme for an optimisation problem.

In order to utilise an existing simulation environment for solution of inverse
and optimisation problems, the optimisation shell performs tasks on the left-hand
side of Figure 4.1. Taking into consideration merely the solution scheme as shown in
this figure, these tasks can be further divided into two parts. The part not included in
the larger frame obviously represents an optimisation algorithm in its most basic
sense (i.e. as was treated in the previous chapter). The part included in the frame
represents those tasks of the direct analysis that are not performed by the simulation
environment. This part can be viewed as an interface between the optimisation
algorithm and the simulation.

The above discussion indicates that two basic elements of an optimisation
system, i.e. optimisation algorithms and simulation tools, can be implemented as
physically separate parts. This is one of the key ideas followed by the present work
and is clearly reflected in separate and independent treatment in chapters 2 and 3. It
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must be emphasised that the above statements do not exclude dependency between
optimisation algorithms and solution algorithms for the direct problem applied in
specific cases. It is evident that close correlation between different numerical
algorithms applied in the solution scheme of a specific problem is not excluded and
was actually stressed at the end of the previous chapter. For example, whether
analytical derivatives are provided by the simulation module or not usually plays a
crucial role in defining the optimisation algorithm whose use will result in the most
effective overall solution of the problem. This however does not affect physically
separate treatment or implementation of either algorithm.

The scheme in Figure 4.1 is restricted to a solution process of a specific
problem. When an optimisation system is treated, it is also important how the
problem is defined and which solution strategies can be applied by using the system.
In this respect it is significant to consider individual tools and algorithms
implemented within the system, operational relations and interfaces between the
parts of the system, which enable synchronous function, and finally the user
interface.

Figure 4.2 outlines the operation of the presented optimisation system. It
consists of the optimisation shell and the finite element simulation environment. In
the solution scheme, the shell performs the tasks on the left-hand side of Figure 4.1,
while the simulation environment is employed in solution of the direct problem,
which corresponds to the tasks shown in the right-hand side of the figure.

The direct problem solved within the optimisation loop is determined by the
values of the optimisation parameters. The problem is determined when boundary
conditions, geometry, constitutive relations, etc. are known. These represent input
data for numerical simulation. A transformation between optimisation parameters
and the input data must therefore be defined. This transformation is referred to as
parametrisation and is shown in Figure 4.1 as the first task of a direct analysis. This
task is typically performed by the shell.

Optimisation parameters usually affect only a part of the simulation input
data1. It is therefore advantageous to prepare a skeleton of the direct problem in
advance and use it as a template for parametrisation. Most conveniently this skeleton
is a definition of a direct problem at a specific set of optimisation parameters. It is
usually created using pre-processing facilities of the simulation environment as
shown in Figure 4.2.

The optimisation shell changes the affected input data according to the values
of optimisation parameters. In the figure, this is done by updating the simulation
input file, but can also be done directly by manipulating the data structure of the

                                                
1 In this respect we talk more specifically about parametrisation of individual components, e.g.
parametrisation of shape (or domain), parametrisation of material models, etc.
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simulation programme, provided that the shell and the simulation unit can share data
structures in the memory. After the simulation is performed, the shell reads the
results and evaluates the quantities required by the optimisation algorithm. The shell
must therefore be able to access the necessary simulation results. In the figure, results
are accessed through the simulation output file, but a direct access can also be
implemented.

Optimisation shell

 FEM System

 FEM output file

 FEM input file

FEM pre-
processor

FEM analysis
programme

 Shell command file  Shell output file

Update parameters

Read analysis results

Output
results

Interpret
command
file

Define the optimisation problem and solution procedure

Check results

Define the
skeleton of
the problem

Figure 4.2: Operation scheme of the optimisation system.

Changing input data for numerical simulation, running the simulation and
reading its results are performed by interface utilities of the shell. These are direct
analysis tasks performed by the shell and are shown within the left-hand side of the
larger frame in Figure 4.1. The shell can also perform a certain amount of processing
of simulation results. It is not strictly defined which parametrisation and result
processing tasks are performed by the shell and which by the simulation
environment. This depends mostly on the capabilities of the simulation pre- and post-
processing modules. The shell should permit employment of available capabilities in
the simulation environment if these are convenient for performing the relevant tasks.

The optimisation shell includes implementation of various optimisation
algorithms and other tools which can serve in the solution of optimisation problems.
These tools are accessible through the shell user interface, which is separated from
the user interface of the simulation environment. The current user interface is
implemented through the shell input file in which the user defines the problem, and
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the shell output file, where the shell writes its results (Figure 4.2). Unlike traditional
simulation input files, which consist of various sets of data written in some
prescribed format, the shell input file consists of commands that are interpreted by its
built-in interpreter. It is therefore commonly referred to as the shell command file.

4.1.2 Requirements Taken into Consideration

Before continuing with description of the optimisation shell, it is appropriate
to  mention some requirements which affect its design[1]-[3],[7]. These requirements
will be referenced later in the text in order to justify certain design aspects.

The basic demand for a good optimisation system is flexibility. It must be
possible to apply the system to a large variety of problems that can possibly appear.
This concerns definition of the problem itself as well as definition of the solution
strategy. On one hand this flexibility is determined by the set of tools for solution of
different subproblems, which are offered by the system. On the other hand the
conceptual structure of the system should not impose any fundamental restrictions on
the way how different tools can be combined to solve complex problems.

Somehow conflicting with flexibility is the demand for simplicity of use.
Logical structure of the system is a prerequisite for avoiding conflicts induced by
these two demands. A system is easy to be applied for certain types of problems if
the user is required to provide only that information necessary to define the particular
problem and if the requirements are set by the system in a clear way. It is obvious
that this can be achieved only on a case to case basis, so that all particularities can be
taken into account. The system must be structured hierarchically, so that high level
easy-to-use tools for particular problems can be implemented by templates built on
the lower-level basis. These tools can introduce additional concepts, but these should
apply locally and should not affect the underlying system, which can be still applied
independently and should retain generality.

A group of requirements is related to the economy of the system
development. This essentially means the ability of achieving the best possible effect
with limited development resources. The effect is measured in terms of applicability
of the system to various problems the potential user can be faced with and in terms of
effort needed for problem definition and computer time needed for problem solution.
Beside logical structure of the system, economy of development is mostly related to
its portability, modularity and openness.

Portability means that the system can be easily transferred from one
computational platform to another. A portable system can be developed in any
homogeneous or heterogeneous computer environment so that its transfer to a
different environment requires minimal additional development effort. It is most
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easily achieved by using portable development tools. Due to portability reasons most
of the system was developed in ANSI C[25],[26]. Compilers based on the ANSI C
standard are available on most existing computer architectures and are usually
implemented in a strict enough manner that it is possible to transfer programmes
between different platforms without major modifications. Use of non-standard
libraries has been avoided as much as possible in the shell development. Where
system dependent details could not be completely avoided, they were captured in
isolated and clearly distinguished locations which are easy to identify and modify
when transfer to a new platform is performed. One of the development principles that
were taken into account is also that turning off system dependent details should
affect as little functionality as possible. In this way detrimental effects of non-
standard behaviour of any system part can usually be avoided to a great extent.

The modular structure of the system also has beneficial effect on economy of
development. In a modular system, tools that constitute its functionality are
implemented in separate units. Development of these units must be as independent as
possible, so that development and change of specific tools does not affect and is not
affected by existent structure and functionality. Modularity is best achieved by
imposing a limited number of clear general rules on the system and providing a
simple implementation interface for development of new modules. This interface
must be such that it does not restrict the range of tools which can potentially be
added to the system. It must be possible to apply this interface to existing general
tools which were not primarily developed to be included in the system. Optimisation
algorithms provide a good example of these principles. The main concern of an
optimisation algorithm is to effectively locate a constrained local minimiser to a
given accuracy, i. e. with as few function evaluations and housekeeping operations as
possible. If the algorithm is used as a part of a complex optimisation system, a
number of additional implementation details must be solved such as interaction with
the simulation environment. However, this should not affect development of the
algorithm itself, because the aim of the algorithm remains the same. Additional
requirements such as interaction with simulation environments must be overcome by
the implementation interface, which is used at the final stage when the already
implemented algorithm is built into the system.

Openness of the system includes two aspects. The first aspect regards the
definition of the problem. In this respect openness means that the user can easily
access various built-in utilities and employ external programmes using the available
interfacing utilities when defining a solution strategy for the problem to be solved.
This has strong impact on the flexibility of the system. The development aspect of
openness means that existing functionality can be directly employed when
developing additional tools in the system. The shell can therefore be easily integrated
with other programmes and different modules can be developed independently and
merged together. This facilitates development of higher level and more case specific
tools on the basis of lower-level utilities. Openness of the system is to a large extent
conditional on its modularity.
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4.1.3 Operation Synopsis

The optimisation shell “Inverse” operates on the basis of an input (or
command) file, in which the user defines what the shell should do. The problem to be
solved is not defined in a descriptive way as is usually the case with simulation
programmes, but as a set of instructions for the shell, which ensures sufficient
flexibility of the user interface[5],[6].

Figure 4.3 shows how parts of the optimisation system interact in the solution
procedure. Any action of the optimisation shell is triggered by the corresponding
command in the command file. The shell file interpreter[15] reads commands one by
one and runs internal interpreter functions that correspond to them. The built-in
optimisation algorithms and other utilities such as mathematical tools (function
approximation, matrix operations etc.) or interfacing with the simulation, are
accessed through the interpreter functions. Each command in the command file has
its own argument block through which arguments can be passed to corresponding
functions. The argument block is enclosed in curly brackets that follow the
command.

The shell includes a general built-in function that performs the direct analysis
(Figure 4.3). Optimisation algorithms and some other utilities such as tabulating
functions call this function for evaluation of necessary quantities such as values of
the objective and constraint functions. Actually there is an additional interface
function between this function and any calling algorithm (not shown in the figure).
This function covers specificity of the algorithm regarding input and output of the
direct analysis. This includes formats of function arguments prescribed by the
specific algorithm. It also concerns the fact that different algorithms require different
data to be evaluated, e.g. some of them require derivatives and the others do not.

The general analysis function runs interpretation of a specific block in the
shell command file, referred to as the analysis block. This block is so interpreted
every time the direct analysis is performed and is therefore used for user definition of
the direct analysis. Since the complete interface with the simulation environment is
accessible through interpreter commands, the user can precisely define how the
numerical simulation at specific values of optimisation parameters is performed and
how data is transferred between the shell and simulation environment. The analysis
block is physically an argument block of the analysis command. When this command
is encountered by the interpreter, the position of its argument block is stored so that
the block can be interpreted any time by the general analysis function.

There must exist a data link for transferring input and output parameters of
the direct analysis between the calling algorithm and user definition in the analysis
block. The data is passed through function arguments between the algorithm and the
direct analysis function called by that algorithm. The data link between this function
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and user definition is established through pre-defined variables. These variables
uniquely define the place where particular input and output data of the direct analysis
is stored. The internal analysis functions automatically update input data obtained by
the algorithm (e.g. values of optimisation parameters) on the appropriate pre-defined
location. After interpretation of the analysis block it retrieves the data to be returned
to the calling algorithm (e.g. values of the objective and constraint functions) from
the locations defined for this purpose. The user can access these locations through
interpreter functions for accessing variables. The user must ensure in the analysis
definition that analysis results are correctly evaluated and stored to the appropriate
locations, where they can be retrieved by the analysis function and returned to the
algorithm[18].

Algorithms

Tabulating
utilities

Inverse
algorithms

Optimization
algorithms

Function for direct analysis
  (evaluation of objective and
  constraint functions, etc.)

User interface
(interpreter)

Data
exchange

Simulation
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programme

Command file
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Figure 4.3: Structure and operation of the optimisation shell.

Beside interpreter commands for accessing various built-in tools, there are
also commands for controlling the flow of interpretation, such as branching and
looping commands, for example. Programming capabilities of the interpreter are
supplemented by a system of user-defined variables[17] and a system for evaluation of
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mathematical expressions[16]. The shell can therefore be programmed in a way that
resembles a high level programming language1.

The shell design allows the user to interact with the solution process at
several levels. All tools and algorithms provided by the shell are run from the
command file. Their output results can be stored in user-defined variables, and so
used as input for other built-in algorithms. The available utilities can therefore be
easily combined as necessary when applied to the solution of more complex
problems. This feature is further enhanced by programming capabilities of the
interpreter, which makes the shell very flexible and applicable to a large variety of
problems.

At first sight the consequence of such a flexible user interface implemented
through the interpreter is that the optimisation system can not be made easy to use. It
might seem that solution of any optimisation problem requires detailed programming
of the solution process, which is only assisted by built-in utilities.

This is not an entirely correct impression. For any set of similar problems it is
possible to implement a high level interface in such a way that definition of the
problem and the solution procedure require a minimum amount of user interference.
Such an interface can be built by templates written for the shell interpreter. User
interaction can be reduced merely to insertion of input data, which can eventually be
assisted by an external user interface.

Such high level interfaces inevitably restrict the range of problems that can be
solved by the system. Their use is adequate when the optimisation system is used for
highly specialised purposes. Another way of making the system easier to use is to
introduce high level functions that perform complex tasks or combination of groups
of tasks, which appear steadily in a larger group of related problems. This can result
in a hierarchical structure of utilities where the user can decide which level to use.
High level tools make the use of the system easier without imposing a priori
restrictions on flexibility. New higher level commands can be created by
combination of existing lower level utilities using the shell interpreter. In this way
interventions in the shell source code are avoided, which reduces the level of skill
necessary for implementation of such tasks.

By implementation of hierarchically structured sets of lower and higher level
commands, the two fundamentally conflicting demands for flexibility and simplicity
of use can be compromised. Currently the most urgent problem with the shell is that
many necessary sets of high level specialised commands are not as yet implemented,
which is especially expressive at interfacing the simulation environments.

                                                
1 In this respect file interpreter commands are also referred to as functions. This is sometimes better to
be avoided in order to avoid ambiguity and confusion of interpreter commands and internal functions
of which the shell consists.
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4.2 Function of the Shell

The discussion in the previous sections was centered around the basic
concepts of the shell. In order to make these things less abstract, a few more details
regarding the shell function are given in the present section. Some details will be
cleared from the user point of view. The intention of this section is however not to
serve as a user reference, but merely to give more insight into how previously
described concepts are reflected when the shell is applied to the solution of problems.
Detailed reference of the existing functionality of the shell exist in the form of
manuals available on the Internet[12],[14]-[22].

4.2.1 Basic File Interpreter Syntax

The basic file interpreter syntax is simple:

command1 { arguments } command2 { arguments } …

When a shell command file is interpreted, the interpreter simply searches for
commands, locates their argument blocks and passes control to the appropriate
functions that are in charge of execution. For each interpreter command there exists
an appropriate function installed in the file interpreter system. These functions are
usually just an interface between commands in the command file and those functions
which really do the job, and are referred to as interpreter functions in this text.
Interpreter functions take care of the correct transfer of arguments from the argument
block in the command file and for imposing additional syntax and other rules
imposed by the optimisation shell. Such two stage arrangement makes it possible to
easily incorporate functions and modules that were not primarily developed for use
in the shell. Separation of the concepts imposed by the shell and those implied by a
specifically incorporated function or module is achieved in this way. The two stage
calling arrangement is evident from Figure 4.3.

The file interpreter is supported by the system for evaluation of mathematical
expressions or expression evaluator. This is an independent system of the shell. Its
capabilities are accessed by the file interpreter functions for treatment of their
arguments. The basic functionality offered by the expression evaluator is evaluation
of mathematical expression with the ability of defining new variables and functions.
For the interpreter itself the most important use of the expression evaluator is
evaluation of conditions in branching and looping commands. This enables the
interpreter to be used as a programming language.

Control of the interpretation flow[13][15] is implemented through branching and
looping interpreter commands and through the function definition utility. All related



4. Optimisation Shell “Inverse”      4.2. Function of the Shell

126

functionality is treated as a part of the file interpreter. The syntax of these utilities is
described below.

The if command interprets a block of code in the basis of the value of a
condition. Its syntax is the following:

if { (condition) [ block1 ] else [ block 2 ] }

If the condition in round brackets  is true (that is non-zero), then the block of
code block1 is interpreted, otherwise the block block2 is interpreted. The condition is
evaluated by the expression evaluator.

The while commands repeatedly interprets a block of code. The block is
being interpreted as long as the condition remains satisfied (i.e. the value of the
condition expression is non-zero). The syntax is the following:

while { ( condition ) [ block ] }

The condition in the round bracket is evaluated by the expression evaluator in
each iteration of the loop before the code block in square brackets is interpreted. The
first evaluation of the condition expression as zero causes exit of the loop and
interpretation is continued after the while command argument block. Typically the
code block contains commands that affect the value of the condition expression, so
that after a certain number of iterations the value of the expression becomes zero and
the loop exits.

Similar to the while command is the do command, except that the condition
expression is evaluated after interpretation of the code block and therefore the block
is interpreted at least once. Its syntax is the following:

do { [ block ] while (condition) }

Beside standard branching and looping commands, the ability of defining
new interpreter commands is relevant. This is referred to as the function definition
utility and is also implemented through an interpreter command. This utility enables
implementation of commands that perform combined tasks by employing existing
commands. Higher level commands can therefore be implemented without
interference in the shell source code. Commands defined by the function definition
utility behave in a similar manner to the built-in commands.

New interpreter commands are defined by using the function command. Its
syntax is the following:

function { funcname ( arg1 arg2 … ) [ defblock ] }
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funcname is the name of the new function, arg1, arg2, etc. are names of
function arguments, and defblock is the definition block of the new command. The
function command makes the interpreter install a new command, which includes
storage of the function argument list and position of the definition block. When the
newly defined command is encountered later during interpretation, its definition
block is interpreted. Occurrences of arguments in the definition block are replaced by
actual arguments prior to interpretation. The replacement is made on a string basis,
so that the meaning of arguments is not prescribed by the definition of the new
function[15]. In the definition block, the arguments must be marked by argument
names preceeded by the hash sign (‘#’). The interpreter can in this way recognise
occurrences of arguments and replace them by actual arguments stated in the
argument block of the called command.

A clear example[13] of how the function definition utility can be used is given
by the implementation of the for loop through the interpreter. This can be done in the
following way1:

1. function { for ( begin condition end body )
2. [
3.   #begin
4.   while { ( #condition )
5.   [
6.     #body
7.     #end
8.   ] }
9. ] }

The function requires four arguments. begin is the code block interpreted
before the loop is entered. condition is the looping condition that is checked before
every iteration of the loop. It must be an expression that can be evaluated in the
expression evaluator. body is the code segment that is interpreted in the loop, and end
is the code segment that is interpreted after the loop. Using the newly defined
function for, the following code will print numbers from 1 to 5 to the standard
output:

for { ={i:1}   i<=5   ={i:i+1}
  { write { $i “\n” } }
}

When the interpreter encounters the command for, it replaces formal
arguments in the definition block (lines 2 to 8 in the definition segment of the code)
with actual arguments and interprets the definition block. The resulting code that is
actually interpreted is then as follows:

                                                
1Line numbers simply enable referencing portions of code. In the command file lines are not
numbered.
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={i:1}
while { ( i<=5 )
[
  write { $i “\n” }
  ={i:i+1}
] }

4.2.2 Expression Evaluator

The expression evaluator (succinctly referred to as the calculator)[16] is an
independent shell module. Support to control of the interpretation flow is one of its
basic tasks, therefore the interpreter and the expression evaluator are inseparably
connected.

The calculator contains a set of built-in mathematical functions and operators,
which can be arbitrarily combined with variables and numbers to form expressions.
The calculator system currently supports only scalar variables. The syntax for
forming mathematical expressions is standard and is described in detail in [16].

The file interpreter commands = and $ serve for user interaction with the
expression evaluator.

The syntax of the = command is the following:

= { varname: expression }

The expression is first evaluated by the calculator and its value is assigned to the
calculator variable named varname.

The $ commands calculator variables and functions in terms of expressions.
Definition of a variable has the following syntax:

$ { varname : expression }

The expression is not evaluated at execution of this command. It is assigned to the
variable as an expression that defines how the value of the variable is calculated. If
the value of any part of the defining expression is changed, this affects the value of
the variable. It is not even necessary that all calculator variables and functions that
appear in the expression are defined at the time the $ command is interpreted. The
value of the variable becomes defined as soon as all variables and functions
appearing in the expression are defined.

Definition of new expression evaluator functions have the following syntax:
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$ { funcname [ arg1, arg2, … ] : expression }

The defining expression contains formal arguments arg1, arg2. After the definition,
the function can be used in the same way as built-in expression evaluator functions.
Function evaluation consists of evaluation of the defining expression after
replacement of formal arguments by the values of actual arguments.

The definition of new calculator functions may, as definition of variables,
include variables and functions that are not yet defined. The use of functions = and $
is illustrated by the following example:

1. ${ a: cubesum[b,c] }
2. ${cubesum[x,y]: (x+y)^3 }
3. ={ b: 1 }
4. ={ c: 2 }
5. write { $a }

The first line defines a new calculator variable a as cubesum[b,c]. Neither the
variables b and c nor the function cubesum are defined at the point of execution of
this line. The function of two variables cubesum is defined in line 2 as the third
power of the sum of its arguments. In line 3 the variable b is defined and assigned the
value 1, and in line 4 the variable c is defined and assigned the value 2. The value of
the variable a is defined after this because the values of all terms of its defining
expression are defined. The last line writes the value of the expression evaluator

variable a, which is ( ) ( ) ( ) 2721, 33 =+=+= cbcbcubesum .

New expression evaluator functions can also be defined using the interpreter
by the definefunction command[15] with the following syntax:

definefunction { funcname [defblock] }

Evaluation of a function defined in this way includes interpretation of its definition
block defblock. Additional calculator and interpreter functions, which can be used in
the definition block, facilitate definition of how the function is evaluated. The file
interpreter function return is used for final specification of the value which the
function evaluates. Its syntax is

return { expression }

The function defined by the definefunction command is evaluated to the value of the
expression given at interpretation of the return command in the function definition
block.
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The function definition is also facilitated by two pre-defined expression
evaluator functions. numargs is evaluated to the number of actual arguments passed
at function evaluation while argument is evaluated to values of specific arguments
that are passed.

Use of the definefunction can be illustrated by the following example, where
an expression evaluator function Sumation, which evaluates to the sum of its
arguments, is defined[13]:

definefunction { Sumation
[
  ={retsum:0}
  ={indsum:1}
  while { (indsum<=numargs[ ])}
  [
    ={retsum: retsum+argument[indsum] }
    ={indsum: indsum+1 }
  ] }
  return{retsum}
] }

Beside evaluation of condition expressions in branching and looping
interpreter commands, the expression evaluator can be used for evaluation of
numerical arguments of file interpreter commands. Any numerical argument can be
given, stated either in the direct form by specifying its value, or by an expression
evaluator variable in the form

$ varname

or by a mathematical expression of the form

$ { expression }

The interpreter function that corresponds to the command called by such arguments,
use the expression evaluators to evaluate the appropriate values that replace variables
or expressions before arguments are used.

4.2.3 User Defined Variables

The shell uses a system of user defined variables (also referred to as shell
variables) for data storage. Individual algorithms and other utilities usually have their
own local data storage, but input and output data of built-in utilities should be
transferable to or from the system of user defined variables. In this way results of any
algorithm can be used in other algorithms. Since running of any algorithm or utility
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as well as access to user variables is arranged through a common user interface (i.e.
the command file interpreter), the necessary data transfer between different utilities
is easily achieved.

The system of user-defined variables is considered as an individual module of
the shell, which provides data storage and transfer services. These services are
accessible through special interpreter and calculator commands for manipulating
variables and through the possibility of using variables of various types as input
arguments of interpreter commands. It must be noted that the calculator variables are
a part of a separate system and are not treated as shell variables. Transfer between
both systems is completely supported and in some cases calculator variables are used
for the same purpose as the user-defined variables.

The shell variables hold objects (elements) of different types: options,
counters, scalars, vectors, matrices, strings and files. Each variable can hold a
multidimensional table of elements of a specific type (Figure 4.4). The number of
dimensions of this table is referred to as the rank of the variable.

Element sub-table m[3]

m[3,2,3]

m[3,1,1] m[3,1,2] m[3,1,3]

m[2,2,3]

m[2,1,1] m[2,1,2] m[2,1,3]

Element sub-
table m[1,2]

m[1,2,1] m[1,2,2] m[1,2,3]

m[1,1,1] m[1,1,2] m[1,1,3]

Matrix element m[1,2,2]

1.1 1.2 1.3
2.1 2.2 2.3

Matrix
variable m

getmatrix[“m”,2,1,1,2,2]

Figure 4.4: Example of a matrix variable that holds a 323 ×× -
dimensional table of 2 by 3 matrices.

For each type of variable there is a set of interpreter and expression evaluator
functions for their manipulation, i.e. creation, initialisation, copying, moving, etc.
The following example shows how to create a matrix variable as shown in Figure
4.4:
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newmatrix { m [ 3 2 3 ] }
setmatrix { m [ 1 2 2 ]
  2 3 { { 1: 1.1 1.2 1.3 } { 2: 2.1 2.2 2.3 } }
}

The newmatrix command creates a matrix variable with a 323 ××  - dimensional
table of elements, each of which is a matrix. Indices in square brackets specify
dimensions of the variable element table (note that these dimensions are not related
to dimensions of matrix elements of the variable). After creation, the matrix elements
are not initialised and contain no data. Values of specific elements are set by the
setmatrix command. Indices in square brackets in this case specify the matrix in the
variable element table whose values are set. In the above case, the element with
indices [ ]2,2,1  is set to the following 32×  matrix:









3.22.21.2

3.12.11.1
. (4.1)

If the rank of the matrix variable (which is three in this case) was zero, then a
call to the newmatrix command would not be necessary since the setmatrix function
creates a zero rank variable automatically if it does not yet exist.

The expression evaluator functions can be used for accessing data stored in
variables. For each variable type there exist functions, which are evaluated as
dimensions of variable element tables or as components of variable elements. For
example, the getmatrixdim function evaluates a specific dimension of the variable
element table. The expression

getmatrixdim[“m”,2]

evaluates to the second dimension of the element table of the matrix variable m,
which is 2 in the case that m is defined as above (Figure 4.4).

The getmatrix function evaluates to the value of a specific component of a
specific matrix element. The expression

getmatrix[“m”,2,1,1,2,2]

evaluates the component 2-1 of the element [ ]2,2,1  of the matrix variable m, which is
2.1 if the variable is defined as above. The first two indices specify the component
(row and column number, respectively) and the last indices specify the matrix
element of the variable element table.
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There are several other functions for manipulation of matrix variables, and
analogous functions are implemented for other types of variables. A complete list of
these functions can be found in the corresponding manual[17].

Some interpreter commands can operate on whole sub-tables of variable
elements. The notion of a sub-table is also illustrated in Figure 4.4. The matrix
variable m shown in the figure contains an element table of rank 3 and of dimensions

323 ×× . This table consists of two sub-tables of rank 2 and of dimensions 32× ,
each of which further consists of two sub-tables of rank 1 and dimension 3, each of
which contains 3 matrix elements.

Some shell variables are used for carrying specific data relevant for
optimisation. Such variables are referred to as variables with pre-defined meaning or
briefly pre-defined variables.

Of particular importance are those variables which are responsible for data
links between user definition of the direct analysis in the analysis block of the
command file and optimisation algorithms[18] (Figure 4.3 and the surrounding
discussion). A list of these variables is shown in Table 4.1.

The pre-defined variables are a part of the user-defined variables, therefore
all functions for manipulating variables are applicable to these variables. Some
additional commands are designed especially for easier handling of these variables.
Some general functions of the pre-defined variables operate in a slightly different
way on pre-defined variables. This is especially true for creation and initialisation
commands, which take into account known information regarding dimensions.
Dimensions of the pre-defined variables are often related to the characteristics of the
optimisation problem being solved, therefore the same dimensions can be shared
with more than one variable (Table 4.2). These characteristic dimensions have a
special storage space that is not a part of the variable system. Their values are
however directly accessible through the interpreter and expression evaluator
functions[17].

There are some other variables with pre-defined meaning[17], which support
common tasks related to the solution of optimisation problems. For example,
variables in Table 4.1 have equivalents with the suffix “opt” instead of “mom”,
which store optimum values of the corresponding quantities so that they can be
retained for further use. Vector variables meas and sigma are used for holding input
data for inverse problems, namely the measurements and their estimated errors. Pre-
defined file variables for holding commonly used files are also defined, i.e. infile for
shell input file, outfile for shell output file, aninfile for simulation input file and
anoutfie for simulation output file. There are groups of interpreter and calculator
functions, which operate specifically on these variables. A set of output functions
operate on outpfile, and a set of general interfacing functions operate on infiile[19].
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Some functions of the interface module with the simulation programme operate on
aninfile and anoutfile[22].

Table 4.1: Variables with pre-defined meaning, which are used for
transfer of input and output arguments of direct analysis between user
definition and the calling algorithm. The meaning of dimensions is
shown in Table 4.2.

Variable name [ element table
dim. ] ( element dim. )

Meaning

Scalar variables
objectivemom [] <
[numobjectives] >

Value(s) of the objective function(s) at the current parameter
values.

constraintmom
[numconstraints]

Values of the constraint functions at the current parameter
values.

Vector variables
parammom [] (numparam) Current values of parameters.
measmom [] (nummeas) Current values of simulated measurements.
gradobjectivemom [] <
[numobjectives] > (numparam)

Gradient of objective function(s) at the current parameter values

gradconstraintmom
[numconstraints] (numparm)

Gradients of constraint functions at the current parameter
values.

gradmeasmom [nummeas]
(numparam)

Gradients of the simulated measurements at the current
parameter values.

Matrix variables
der2objectivemom [] <
[numobjectives] >
(numparam,numparam)

Second derivatives (Hessian) of the objective function(s) at the
current parameter values.

der2constraintmom
[numconstraints]
(numparam,numparam)

Second derivatives (Hessian) of the constraint functions at the
current parameter values.

der2measmom [nummeas]
(numparam,numparam)

Second derivatives (Hessian) of the simulated measurements at
the current parameter values.

Table 4.2: Characteristic dimensions of variables with a pre-defined
meaning.

Dimension Meaning
 numparam Number of optimization parameters
 numconstraints Number of constraint functions
 Numobjectives Number of objective functions (usually equals 1)
 Nummeas Number of measurements (applicable for inverse problems)
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4.2.4 Argument Passing Conventions

The file interpreter itself has nothing to do with interpretation of command
arguments. It only passes positions of command argument blocks to the
corresponding functions. Each individual function (shown in the user interface area
in Figure 4.3) is responsible for interpretation and treatment of its arguments. The
shell provides some general rules about argument passing, which represent a non-
obligatory recommendation and may be overridden by individual functions. This
freedom allows implementation of interpreter commands with arguments of types
and format adapted to specific tasks and not common for the shell. The shell user
interface can therefore be customised to a great extent.

The shell provides a set of functions for interpretation of specific supported
types of arguments. Within functions installed in the file interpreter system these
functions can be used for interpretation of arguments. Shell functions for
interpretation of arguments can be used as library functions and provide an
implementation interface, which enables new utilities to be built into the shell in
accordance with standard rules that apply for the shell. Such an implementation
interface plays an important role in ensuring openness and flexibility discussed in
section 4.1.2. Argument passing rules supported by the shell are briefly described
below, while a complete description can be found in [15].

Multiple arguments may be separated either by spaces or by commas.
Because some arguments (respectively strings that represent them) themselves
contain commas and spaces, it must be unambiguous for each argument to which
position it extends, which is a basic requirement for formatting conventions.

Objects of all types defined by the shell can be passed as arguments. Each
type has its own formatting conventions. For example, a matrix object given by (4.1)
can be given in one of the following forms:

1. 2 3 { { 1: 1.1 1.2 1.3 } { 2: 2.1 2.2 2.3 } }

2. 2 3 { { 1 1: 1.1 } { 1 2: 1.2 } { 1 3: 1.3 } { 2 1: 2.1 } { 2 2:
2.2 } { 2 3: 2.3 }  }

3. 2 3 { { 1.1 1.2 1.3 2.1 2.2 2.3 } }

If we just want to specify a matrix with a given number of rows and columns without
specifying components, only dimensions need to be given followed by empty curly
brackets, e.g.

2 3 {  }
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In commands that assign a matrix to an existing object, we can specify an arbitrary
number of its components without dimensions, e.g.

{ { 1 1: 1.1 } { 2 2: 2.2 } { 2 3: 2.3 }  }

The setmatrix command mentioned in the previous section is an example of an
interpreter command that takes a matrix argument. For this function, the last format
can be used if the matrix element, which is being initialised by the setmatrix
function, already exists and is of correct dimensions. Since in all possible formats
specification of a matrix object is concluded by curly brackets (usually containing
components), it is unambiguous where the argument ends and where to expect the
next argument.

Other types of objects have similarly logical format conventions. String
objects must be specified in double quotes if they contain spaces. Special characters
that can not be represented in text files or can not be specified directly because of
formatting rules, can be specified by two character sequences consisting of a
backslash and specification character. For example, the newline character can be
represented by the sequence “\n”.

Variable arguments are specified by variable names not included in quotes.
Variables can contain more than one object of a specific type. Commands that
operate on individual objects therefore do not take variable arguments. Variable
arguments are typical for commands which create, copy or move a whole variable,
like for example the newmatrix command for creation of matrix variables, mentioned
in section 4.2.3.

Arguments that refer to variable elements are specified by a variable name
followed by element indices in square brackets. Indices specify element position in
the variable element table. Elements of zero-rank variables can be in some cases
specified only by variable name, but the name followed by empty square brackets is
always acceptable. Sub-tables of variable elements are specified in the same way as
individual elements. For example, the [ ]3,2 -th element of a matrix variable mat1 is
specified by

mat1 [2 3]

Numerical arguments can be specified by numbers, expression evaluator
variables (variable name following the dollar sign) or mathematical expressions
(stated in curly brackets following the dollar sign), as has been described in section
4.2.2. Indices in element specifications are also regarded as numerical arguments,
therefore this rule applies. If an expression evaluator variable a is defined and has a
value 2, the above specification of a matrix element can be written equivalently as

mat1 [$a ${a+1}]
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Objects of any type can also be specified by a reference to an existing object
of the same type in the shell variable system. A copy of that object is created in this
case and passed as an argument. Object specification must be included in curly
brackets following the hash sign, e.g.

# { mat1 [4 1] }

specifies a matrix that is a copy of the element with indices [ ]1,4  of the matrix
variable named mat1.

Finally, variable names in specification of variables, elements or sub-tables of
elements can be replaced by a reference to an existing string element. For example, if
a zero rank string variable str is defined and its only element is the string “mat1”,
then the following specification of the [ ]3,2 -th element of a matrix variable mat1 is
adequate:

# { str [ ] } mat1 [2 3]

4.2.5 Summary of Modules and Utilities

A brief survey of modules that provide basic functionality needed for solution
of inverse and optimisation problems is given in this section. Figure 4.3 and the
surrounding discussion provides a basic explanation of the importance of individual
modules. A basic functionality of the shell is listed in Table 4.1.

The core of the shell is optimisation algorithms. Other utilities provide the
functionality needed for the definition of the problems to which optimisation
algorithms are applied. In this respect utilities that enable the definition of the direct
analysis are the most important, which especially refers to interfacing with the
simulation environment. Open structure of the shell enables interfacing with any
simulation environment. An interface module[22] for a finite element system
Elfen[30],[31] has already been implemented.

A general file interface[19] enables interfacing with any programme for which
a special interface module is not implemented, through its input and output files.
These modules provide a set of basic utilities for manipulating text files, such as
searching for data, reading and updating data, copying data, etc.

Additional support for the definition of the direct analysis is offered by the
expression evaluator. It can be used in combination with the file interpreter
capabilities to specify how the quantities required by an optimisation algorithm are
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derived from basic results obtained by a numerical simulation. It can be regarded in
this respect that additional post-processing of results, which is not provided by the
simulation environment but is needed for formation of information required by
algorithms, is taken over by the shell.

Table 4.3: Principal modules of the optimisation shell inverse.

Optimisation module[18] includes optimisation algorithms and other tools (e.g. tabulating utilities,
support for Monte Carlo simulations, etc.). It also includes utilities for definition of direct analysis,
including organisation of data transfer between analysis definition and optimisation algorithms.
File interpreter[15] represents the shell user interface.
Flow control module includes implementation of branches and loops, a function definition utility,
and some other flow control utilities.
Syntax checker[20] enables checking command file syntax before running it. Some troublesome
errors such as parenthesis mismatches can be detected by this tool. Arguments are also checked for
some basic interpreter commands (e.g. for flow control commands).
Debugger[20] allows step-by-step execution of commands, execution of arbitrary portions of code,
checking and changing values of variables between execution, etc.
Expression evaluator (calculator)[16] evaluates mathematical expressions which appear in
argument blocks of file interpreter commands.
Variable handling module[17] includes basic operations on variables such as creation and deleting,
copying, initialisation, etc.
General file interface[19] provides a set of functions for interfacing simulation and other
programmes.
Interfacing modules provide tools for interfacing specific simulation programmes, which includes
execution control and data exchange functions.
Miscellaneous utilities module[21] include various auxiliary utilities, for example utilities for
interaction with the operating system.

Various auxiliary utilities[21] can be used to control the solution process or
provide additional support to the interfacing module. The most important are output
commands, which enable the user to output any information of interest to the
terminal or shell output file. Other utilities enable control of execution and CPU time
and interaction with the file system (changing directories, deleting files, etc.).

The file interpreter[15] represents a user interface, which provides access to
the shell utilities. Accessibility of the shell functionality through the file interpreter is
the basis of flexibility, which enables the shell to be applied to a large variety of
problems. The ability of installing new file interpreter commands is a basis of
openness of the shell as regards the possibility of implementing new tools that
interact with the existing functionality. An open library provides an implementation
interface for building in new tools in accordance with the shell concepts. A part of
this library consists for example of functions for interpretation of arguments of file
interpreter commands.
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Instruments for checking the shell execution and correctness of user
definition of the problem are a significant part of the shell. A user interface
implemented as a file interpreter imposes a high level of flexibility on one hand, but
on the other hand definition of problems with such an interface is prone to errors.
This is especially true when a lack of high level commands is experienced and must
be overcome by using programming capabilities of the shell user interface to a large
extent.

Table 4.4: A list of debugger commands with brief descriptions.

e expr evaluates the expression expr by the
expression evaluator. If expr is not specified the user
can input expression in several lines, ending with an
empty line.
w expr adds expression expr to the watch table.
Without the argument, values of all expressions in the
watch table are printed.
dw num removes the expression with serial number
num from the watch table.
aw switch with switch equal to zero turns automatic
watching off; otherwise it turns it on.
pw prints all expressions in the watch table.

r comblock interprets comblock by the file interpreter.
If comblock is not specified the user can input
commands in several lines, ending with an empty
line.
rd comblock does the same as r, except that the code
is also debugged.
rf filename sets the name of the file into which the
user’s commands will be written, to filename.

? prints a short help.
q finishes the debugging process.
s executes the next file interpreter’s command.
S executes the next file interpreter’s command;
commands that execute code blocks are executed as
single commands.
n num. Executes the next num commands.
N num executes the next num commands; functions
that contain code blocks are executed as single
commands.
x num executes the code until num levels lower lever
of execution is reached. Default value for num is 1.

c executes the code until the next active break
command is reached.
ab id activates all breaks with the identification
number id (“*” means all identification numbers).
sb id suspends all breaks with the identification
number id (“*” means all identification numbers).
pb prints information about active breaks.
tb id prints status of breaks with identification
number id.

v shift prints a segment of code around the current
viewing position shifted for shift lines.
vr shift prints a segment of code around the line of
interpretation shifted for shift lines.
va linenum prints a segment of code in the interpreted
file around the line linenum.
nv num1 num2 sets the number of printed lines
before and after the centerline when the code is
viewed.

Breaks are set in the command file by function
break, whose argument (optional) is break
identification number, e.g.

  break { 3 }

The shell contains two tools, which facilitate location of errors[20]. The syntax
checker detects some common and obvious syntax errors such as misspelling of
commands and mismatched brackets. It can be applied to check the command file
before the shell is run. The debugger (Table 4.4) enables tracing an execution of the
shell. It enables step by step interpretation of the command file between which  the
state of the calculator and shell variables can be inspected or changed. The debugger
is a useful tool not only for detection of logical errors in the command file, but also
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for detection of unexpected results of various built-in tools or stand-alone programs
which are employed in problem solution.

4.2.6 A Simple Example

A simple example[13] is shown in order to highlight the shell function
discussed in previous sections. The example shows how the following problem can
be solved by the shell:

yx
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The command file which makes the shell solve this problem is the following:

1. setfile{outfile quick.ct}

2. *{ Objective and constraint functions: }
3. ${f[x,y]: x^2+y^4 }
4. ${g1[x,y]: -((x-3)^6-y) }
5. ${g2[x,y]: -(17-x^2-y) }
6. *{ Objective function derivatives: }
7. ${dfdx[x,y]: 2*x }
8. ${dfdy[x,y]: 4*y^3 }
9. *{ First constraint function derivatives: }
10. ${dg1dx[x,y]: -(6*(x-3)^5) }
11. ${dg1dy[x,y]: 1 }
12. *{ Second constraint function derivatives: }
13. ${dg2dx[x,y]: 2*x }
14. ${dg2dy[x,y]: 1 }

15. setvector{parammom 2 {} }
16. newscalar{objectivemom}
17. newscalar{constraintmom[2]}

18. analysis
19. {
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20.   ={x:getvector["parammom",1]}
21.   ={y:getvector["parammom",2]}
22.   setscalar{objectivemom ${f[x,y]} }
23.   setvector{ gradobjectivemom
24.     {  ${dfdx[x,y]}  ${dfdy[x,y]} }
25.   }
26.   setscalar{constraintmom[1] ${g1[x,y]} }
27.   setvector{ gradconstraintmom[1]
28.     {  ${dg1dx[x,y]} ${dg1dy[x,y]}  }
29.   }
30.   setscalar{constraintmom[2] ${g2[x,y]} }
31.   setvector{ gradconstraintmom[2]
32.     {  ${dg2dx[x,y]} ${dg2dy[x,y]}  }
33.   }
34. }

35. setvector{parammom { 0 0 } }
36. analyse{}

37. optfsqp0{ 1 2 0 0 0 0.00001 0.00001 300 1
38.   { 2 { 15 -3 } }
39.   { 2 {} }
40.   { 2 {} }
41. }

The setfile command in line 1 creates the shell output file outfile where
functions will write their reports and error reports, and connects this file with the
physical file named “quick.ct”.

Lines 3 to 14 contain some preliminary definitions of new expression
evaluator functions, which will be used later in the analysis block. These are the
objective (line 3) and both constraint functions (lines 4 and 5), derivatives of the
objective function with respect to the first (line 7) and the second (line 8) parameter,
and derivatives of the first (lines 10 and 11) and the second (lines 13 and 14)
constraint function with respect to both parameters.

In lines 15 to 16 we create variables with pre-defined meaning parammom,
objectivemom and constraintmom. The aim of this is merely to specify the relevant
characteristic dimensions of the problem. These are stored in internal variables of the
shell and are used when creating pre-defined variables whose dimensions are by
definition equal to these characteristic dimensions. By creating vector parammom,
the number of parameters numparam is defined, by creating scalar objectivemom the
number of objective functions numobjectives is defined and by creating scalar
variable constraintmom the number of constraints numconstraints is defined. No
values are assigned to these variables. The same effect as creating parammom would
have been obtained for example by creating paramopt, and creating vector
gradconstraintmom could replace both creating vector parammom and scalar
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constraintmom, since both numconstraints and numparam are relevant for this
variable.

Lines 20 to 33 form the analysis block, which represents the definition of the
direct analysis and is interpreted at every analysis run. This block specifies how
relevant quantities such as the objective and constraint functions and their derivatives
are evaluated at a specific set of optimization parameters.

In lines 20 and 21 the current values of parameters are stored in expression
evaluator variables x and y. These values are obtained during optimisation from
vector parammom where they are put by the general analysis function, called by the
algorithm that requests execution of a direct analysis.

In lines 22 to 33 the relevant quantities are evaluated and stored into the
appropriate pre-defined variables where the calling algorithm can obtain them. The
value of the objective function is stored into scalar objectivemom (line 22), its
gradient is stored into vector gradobjectivemom (lines 23 to 25), values of the
constraint functions are stored into scalar variable constraintmom (lines 26 and 30),
and their gradients to vector variable gradconstraintmom (lines 27 to 29 and 31 to
33) Auxiliary functions, which were defined in lines 3 to 14 of the initialisation part
are used, called with the current parameters stored in calculator variables x and y
(lines 20 and 21). In more realistic cases this part would include running some
numerical simulation at the current parameters, the necessary interfacing with the
simulation programme (for updating simulation input and reading results) and
possibly some housekeeping for deriving final values from the simulation results.

A test analysis at parameters [ ] T0,0  is run in line 36 by the analyse
command. This command takes parameter values from the pre-defined vector
parammom; which is set in line 35.

Finally, the problem is solved using the command fsqp0, which runs the
feasible sequential quadratic programming optimization algorithm (lines 37 to 41).
This function requires nine numerical arguments, namely the number of objective
functions, the number of non-linear inequality constraints, the number of linear
inequality constraints, the number of non-linear equality constraints, the number of
linear equality constraints, the final norm requirement for the Newton direction, the
maximum allowed violation of nonlinear equality constraints at an optimal point, the
the maximum number of iterations, information on whether gradients are provided or
not, and three vector arguments, namely the initial guess and lower and upper
parameter bounds.

Suppose that the above command file has been saved as “quick.cm” and that
the shell programme is named “inverse”. We can run the shell by
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inverse quick.cm

which solves the problem (4.2). The report including final results can then be
checked in the file “quick.ct”.

4.3 Selected Implementation Issues

4.3.1 Programming Language and Style

The present section discusses some basic implementation issues, which
influence the shell function, effectiveness and economy of its development.

As regards computer programming, the same operations can usually be
implemented in a number of different ways. It is the function of a programme that
matters the most, however there can be big differences in programme efficiency and
final development cost between different implementations of the same system.
Awkward implementation usually results in unexpected bugs and unnecessary
problems with inefficiency, which can never be completely disclosed at the testing
stage.

Careless programming frequently results in a rigid system, which serves its
purpose well, but it is hard to introduce changes and add new functionality. For
complex systems it is impossible to predict all requirements that can possibly arise
from application needs. System design can therefore not be completely planned in
advance and it is particularly important that it is easy to introduce changes in the
system and expand its functionality.

Since the implementation style has a strong influence on the overall quality of
the system and economy of its development, it deserves special attention. The
desired system properties often impose conflicting implementation demands,
therefore it is difficult to set generally applicable implementation rules. What is
appropriate depends on what should be achieved.

A common conflicting situation in programming is induced when the need for
maximum efficiency arises simultaneously with the requirement to make the system
open and accessible to different developers. The last demand is achieved if the
system is logically structured and its function implemented through small closed
units. Such implementation leads to a certain overhead of function calls and
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allocation of data, which could otherwise be reused, which to some extent affects the
programme efficiency. The loss of efficiency is in some cases negligible and can be
sacrificed without hesitation. In other cases a compromise must be accepted after
consideration of solutions that are acceptable in view of openness and still have a
lesser impact on efficiency.

Knowing programming rules means being aware of the effects of different
programming approaches. Implementation of complex systems is to a large extent
the art of making good compromises. This requires a significant amount of planning,
sometimes in a very abstract sense because situations in which the system might be
exposed can be foreseen only to a limited extent.

The optimisation shell Inverse is programmed in ANSI C[24]-[26]. This is an
extension of the traditional Ritchie’s C[23]. It is implemented in more or less an
invariant way on all modern platforms and is currently one of the most portable
programming languages1. C is a terse and logical language with a small set of
keywords and powerful set of operators which support low level access to computer
capabilities. It still provides all facilities typical for high level languages, such as
structured data types.

Unlike many other programming languages C does not impose unnecessary
restrictions which do not arise from the computer architecture. Many of these
restrictions imposed by other languages are in some cases extremely difficult to
overcome. C completely supports dynamic memory allocation. Arrays can have
variable length. This is for example not the case in Pascal, which makes it difficult to
handle matrix operations in a modular way. Function addresses are treated in a
natural way in C and can be assigned to variables. This enables the fully dynamic
treatment of function calls, which can in some languages be achieved only by
passing function addresses through function arguments (as in FORTRAN) or not at
all (as in Pascal). A favourable feature for programmers who wish to have a complete
understanding of code function is that function arguments are always passed by
value. Effects equivalent to passing by reference in some other languages are
achieved by passing a pointer to a variable instead of the variable itself. In many
other languages this is done implicitly, so that the language rules hide to a great
extent what is actually happening. Having complete insight in the code function
therefore requires a deeper knowledge of the programming language, which is not
true for C. A similar example is pointer arithmetic, which closely follows native
computer logic.

An often heard argument against the use of C in numerical applications is that
programmes written in C are slower than for example programmes written in
FORTRAN. The author of this text is not aware of any theoretical arguments or

                                                
1 Experience show that in practice there are minor differences between various implementations of
ANSI C. However, the number of particularities is small and they can be kept under control.
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comparable tests which would support such statements1. It is however possible to use
C for specific tasks in an inefficient way, which is less usual in other programming
languages because of their restrictions. This simply means that it is less likely in
some languages that an unskilled programmer would implement specific tasks in an
inefficient way. A typical example is unnecessary overuse of dereference inside
iterative parts of the code, for example in matrix operations.

C does not directly support object oriented programming in a way as C++
does[28]. Object oriented programming was introduced to support more human-like
formulation of ideas in programming languages and a more open structure of
programmed modules. An especially strong feature of object oriented programming
is that commonality between different ideas can be made explicit by using
inheritance. Therefore it is possible to relate similar ideas in a natural way, which
makes the code clearer. There are some examples in the shell where advantages of
object oriented programming could be used. Such situations are however not typical
and use of plain C does probably not represent a great loss in terms of development
efficiency.

The shell consists of a number of hierarchically arranged modules. Modules
represent closed units, which provide a given kind of functionality and make it
available to other parts of the programme. The design of a module includes definition
of related data types and a complete set of operations that can be performed on these
types. This leads to a given functionality, which represents realisation of some a
given idea in the programming sense.

Programming in a modular way allows concentration on one type of problems
at a time. Solutions are provided independently of other problems. An important gain
of such an approach is that functionality can be tested independently for small and
well defined units, which significantly reduces testing complexity. Modular
programming in C significantly reduces the possibility of memory handling errors,
which are among the most problematic and common errors in C. Such errors can be
avoided if all memory allocation and deallocation is performed by functions provided
by the appropriate modules, which are designed so that they exclude the possibility
of common errors such as accessing memory through bad pointers, releasing the
same pointer several times, etc.

4.3.1.1 Example: the Stack Module

A typical example is the stack module. This module introduces stacks of
objects and provides a complete set of operations on such data structures. Objects on

                                                
1 It is possible that this common opinion was influenced by inefficiency of the C compilers at the early
stage of the language development.
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stacks are represented by their pointers, which are of type void *, so that any type of
objects can be stored on such stacks.

The module does actually not provide only the push and pop utility, which
are typical for stacks in a common sense, but also insertion of an object to a given
position, deletion of an object on a given position, sorting of objects according to a
specified criterion, etc.

The stack type is defined in the following way:

typedef struct{
  int n,r,ex;
   void **s;
} _stack;

typedef _stack *stack;

Type stack is defined as a pointer to a structure of the type _stack. It is
common in the shell that objects are presented by pointers of a given type. Another
commonly accepted rule is that all pointers are initialised to NULL. This pre-defined
value (which is essentially 0 on all modern systems) is used as an unambiguous
indication that the specific object is not allocated.

Structure member (or field) s is the array of pointers, which holds objects that
are on the stack. The structure also contains three integers. n is the number of objects
that are on the stack, r is a number of allocated pointers in the array, and ex is an
auxiliary field which defines the excess of memory allocated for the table s when it
runs short of space to hold objects that are added to the stack. The possibility of
allocating more memory that is currently needed allows that the array s is not
reallocated every time a new objects is added to the stack.

All possible operations on stacks are provided by the functions which are
defined in the module. These functions take care that the stack type is always used in
a prescribed way, which excludes the possibility of errors. Internal rules that ensure
proper function are hidden to the user of the module, which will be shown on some
specific functions provided by the module. The user must only be aware of module
functionality and some general rules for using the module.

The basic operations on any type of complex objects are creation and
deletion. Stack objects are created by function newstack, which is declared as

stack newstack (int excess);

The function creates a new stack object and returns a pointer to it. It takes an
integer argument, which specifies the value of the field ex of the created stack. The



4. Optimisation Shell “Inverse”      4.3. Selected Implementation Issues

147

function also allocates the table of pointers s so that it can hold ex pointers. r is set to
excess and n to 0.

Deletion of a stack object is achieved by the function deletestack, which is
declared as

void dispstack(stack *st);

The function requires a pointer to stack, which must be the address of the stack to be
deleted. This enables the function to set the value of the deleted stack to NULL after
performing other necessary operations on it (note that arguments in C are passed by
value). In this way other functions that would operate on the same stack can detect
that the stack no longer exists. The function dispstack first releases the memory used
by the field s (if it is allocated). Then it releases the memory used by the structure
itself. This memory was dynamically allocated by the newstack function and can be
used by other objects after it is released. The dispstack function checks if the
memory to be released is allocated (this is detected through pre-defined value NULL,
which is generally used for pointers that are not initialised). This excludes the
possibility of trying to release the same pointer twice, which is an error that on most
systems causes abnormal programme termination. The user of the stack module does
not need to take care of the possibility of such errors, because all necessary
mechanisms are built into functions provided by the stack module. The only concern
is that all pointers to objects are initialised to NULL before they are used. This is a
general rule of safe C programming and is strictly obeyed in shell development.

The dispstack functions does not affect objects that are on the stack. If
pointers to these objects reside only on the stack that is being deleted, these objects
must be deleted prior to deletion of the stack, otherwise the memory occupied by
them is not accessible any more and is a permanent waste untill the end of
programme execution. Deletion of objects on the stack can be performed explicitly
by deleting objects one by one. The module also provides a function for deletion of
all objects at a time, which is declared as

void dispstackvalspec(stack st,void (*disp) (void **));

This function requires two arguments. The first argument is the stack (a pointer)
whose elements will be deleted. The second argument (disp) is the function which is
used for deletion of each individual object. The function deletes all objects on the
stack by calling function disp with their addresses as arguments. disp must be a
function that is equivalent to dispstack for the type of objects that reside on the stack.
It is also supposed that the function sets the pointer value to NULL after the object
pointed to by that pointer is deleted.

There also exists the function dispstackallspec which does deletion of objects
contained in a stack and the stack itself. Its declaration differs from declaration of
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dispstackvalspec in that the address of the stack must be passed as the first argument
rather than the stack itself, because this is required for deletion of the stack. The
declaration of the function is the following:

void dispstackallspec(stack *st,void (*disp) (void **));

It is appropriate to give an implementation note at this stage. The
dispstackallspec function could be implemented in the following very simple way:

void dispstackallspec(stack *st,void (*disp) (void **))
{

dispstackvalspec(*st,disp);
dispstack(st);

}

Functions dispstackvalspec and  dispstack perform all that is necessary for the
function dispstackallspec. However, by implementing the function this way we have
two additional function calls inside the function. From the point of view of efficiency
it is better that bodies of both functions are explicitly repeated within the function, so
that these two calls are avoided while other code that is executed remains the same.
This will make the appearance of the function more complex, which is not important
since the user of the stack module will typically not interfere with the function
definition but only with its declaration. Also the compiled programme that uses the
module will be of a slightly larger size, but this is not problematic because the code
of the function body appears only in one place within the programme, while the
function will be typically called many times. The effect on efficiency is in this case
more important than the effect on the code size.

Basic operations on stacks are push and pop. Push adds an objects on the top
of the stack, while pop takes an object from the top. Their declarations are

void pushstack(stack st, void *el);

and

void *popstack(stack st);

Both functions require the stack on which the operation is performed as the first
argument. The second argument of the push function is the object (a pointer), which
is pushed to the stack. The function adds this pointer to the table s of the stack after
the last object on it and increments the field n which holds the number of occupied
places. If the table of pointers s does not contain enough space to hold a new
element, it is reallocated. Existing objects that are already on the stack are kept in the
new table. The number of elements for which s is allocated is always written in the
field r, which excludes the possibility of mistakes. Whenever the table is reallocated
or deleted by any function of the module, the r field is updated.
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Function popstack picks the last object on the stack and returns it as a pointer
of undefined type (void *). This pointer can be assigned to any variable which is of
the same type as the object obtained from the stack. It is the user’s responsibility to
ensure that the types match. The type agreement could be more easily ensured in
object oriented languages such as C++, in a sense that errors regarding type
compatibility would be detected during compilation time. In practice this has not
shown to be a serious problem, because stack objects are usually used in a limited
scope where it is not hard to mix up pointer types.

The popstack function also decrements the value of the n field of the stack. It
does not set the value of the last pointer in the array s to NULL, because since n is
reduced, that pointer is out of the range and can never be accessed. When an object is
picked from the stack, the array of pointers is larger than necessary. If the difference
between the number of pointers which the array can hold (indicated by the field r)
and the actual number of pointers on the stack (indicated by the field n) is larger than
the value of the field ex, s is reallocated so that its physical size matches the number
of objects which it holds.

Beside the above mentioned functions, the stack module contains many other
functions, which allow the user of the module to perform the necessary operations.
Among important functions provided are searching for an object with certain
properties and sorting of objects on the stack according to a provided comparison
operator.

The aim of this brief description of a module is to show the role of such
closed modules in construction of the programme. A module consists of data types
and a full set of operations on these types, which together represent implementation
of some idea. In the case of the stack module the underlying idea is abstract and very
general. It implies that multiple objects of a given type can be arranged in a stack, so
that objects can be taken from the top or added to the top of the stack, sorted,
searched for, etc.

The module hides all implementation details that are not relevant for use of
the module. In other words, its user does not need to know much more about the
module than what it is used for and how it is used. For a programmer who wants to
use stack functionality it is not important what the structure of the stack object is. It
is important for example that there exists a function for pushing a new object to a
stack, that the objects on the stack can be sorted and that searching for objects on a
sorted stack is much quicker than searching on unsorted stacks. The user must be
aware of the underlying ideas, but on an abstract level which has nothing to do with
implementation inside the module. Implementation of the module functions can be
changed (e.g. in order to improve efficiency or eliminate bugs) without changing
function declarations, which represent the implementation interface and the only
interaction point of the user with the module. Introducing changes inside a well
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designed module therefore does not affect any portion of code where this module is
used. The same reasoning as for function applies to data types, which can be
extended without affecting any portion of the code outside the module. The only
consequence of such changes is that the programme must be recompiled.

The advantage of such closed modules is also that their function can be tested
in a very limited scope, which makes it easier to find bugs before the module is
actually used. Modules prevent unnecessary code replication. When similar ideas
arise on different places, the same implementation is used everywhere. This implies
also that bugs are likely to show on more than one place, which makes their detection
easier. When for example a bug in the stack module is detected through errors in a
part of the code where the idea of stacks is used, the bug is eliminated once (in the
module) and this corrects the function of any portion of code where the same idea is
used. This can be especially beneficial for bugs which show in rare and random
occasions.

The idea of stacks as described above is very basic. The stack module has
therefore a low rank in programme hierarchy and is used in many other modules. For
example, stacks are used to hold shell variables, calculator variables, operators and
functions, interpreter functions, etc. Stacks are often used for holding multiple input
or output arguments of the same type, but variable number. For example, a function
that finds all occurrences of a given string in a file returns string positions on a stack.

In many modules the idea of stacks arises within a broader context, which
form the basis of the module. More complex derived data types therefore include
stack objects as fields in their structure. All operations provided by the stack module
can be performed on these fields, which means that an existing idea already
implemented in a closed module is incorporated as a part of a broader idea. The new
type inherits properties of stacks in a way, which resembles some concepts of object
oriented programming.

The concept of inheritance can also be observed in a reverse way. We can
have stacks of objects of different types, e.g. a stack of matrices or a stack of vectors.
Various objects are implemented through completely different structures and sets of
functions that can operate on them. Different objects are also deleted in different
ways, and when we want to delete a whole stack of objects, this procedure must
inherit specifics of deletion of the objects of a given data type. The mechanism of
deletion of a stack of objects has already been described above in connection with
the function dispstackvalspec and dispstackallspec.

Figure 4.5 shows the organisation of the main shell modules.
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4.3.2 File Interpreter and Open Library

All shell functionality is accessed through file interpreter commands. The file
interpreter therefore deserves special attention. Core data type of the file interpreter
is the _ficom type, which is fundamentally defined as follows:

typedef struct{

  . . . /* syntax definition */

  char stopint;

  . . . /* support to flow control */

  stack functions;
  FILE *fp;
  char *filename;
  long from,to;

  . . . /* support to user defined functions */

  int which;
  fifunction func;
  long pos,begin,end,argpos;

  . . . /* temporary files */
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  FILE *in;
  FILE *out;
  ssyst syst;

  . . . /* support to definition of calculator functins */

  . . . /* support to tracing of calling sequence */

  char debug, check;
  licom lint;

  . . . /* support to debugging */

} _ficom;

Only the most important fields are written. Comments indicate the missing
groups of fields. File interpreter is an object of type ficom, which is a pointer to the
above structure and is defined as

typedef _ficom *ficom;

Interpretation is performed by the function fileinterpret, which is declared as

void fileinterpret(ficom com);

Its only argument is an object of the type ficom, which actually represents the
interpretation and is also referred to as the interpretation object. More than one
interpretation can be independently performed within a programme, provided that
there is more than one interpretation object. The corresponding object must be
initialised before the interpretation begins. Memory for its structure must be
allocated and the file name (field filename) and scope of interpretation (fields from
and to) must be set.

An object of the type ficom holds all data relevant for interpretation. Beside
the state of interpretation (e.g. current position of interpretation and information
about the executed command) it also holds data which instructs the interpreter how to
perform interpretation (e.g. in debugging mode or not). Function fileinterpret, which
performs the interpretation, therefore does not need any local variables. This function
is sometimes referred to simply as the interpreter, although this term is in its broadest
meaning used for the whole interpreter module.

The field stopint tells the interpreter to exit interpretation if the field value is
different from zero. This field is set by some functions or automatically if the
interpreter hits the end of the interpreted code.

The field fp is the file pointer of the interpreted file. The interpreter and
functions called by the interpreter accesses the interpreted file through this pointer.
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The name of the interpreted file is stored in the field filename. It is used by the
interpreter to open the file if it is not yet open. It is also used by some other
functions, for example by those which report errors.

The interpreter can be used for interpretation of a part of a command file.
Fields from and to hold the beginning and the end of the block which should be
interpreted (zero values indicate that the whole file should be interpreted).

Interpreter commands are installed on the field functions, which is a stack.
Objects on this stack are of the type fifunction. Such an object holds a command
name and address of the function that corresponds to the command. When the
interpretation object is initialised, its own commands such as looping and branching
commands are installed on this stack. The shell installs additional commands through
which its functionality can be accessed before it runs the interpreter. The fifunction
type is defined in the following way:

typedef struct{
  char *name;
  void (*action) (ficom);
  void (*checkaction) (ficom);
} _fifunction;

typedef _fifunction *fifunction;

Field name is the name of the installed interpreter command, action is the function
that corresponds to the command, and checkaction is the function that checks the
syntax of command arguments. The last function can be executed only when the
syntax checker is run.

Fields which, func, pos, begin, end and argpos are set by the interpreter and
contain information about the command that is currently being interpreted. which is
the position of the interpreted command on the stack functions, func is the
corresponding object on this stack, and other fields are positions in the interpreted
file. pos is the position of the command, begin and end define the position of the
command argument block and argpos is an auxiliary field used by functions which
correspond to interpreter commands. These functions use the field at interpretation of
command arguments. argpos is set to the same value as begin by the interpreter.

While interpretation takes place, the interpreter searches for commands in the
command file. When another command is found, the interpreter sets the field pos to
its position and finds the corresponding object (i.e. the object with the command
name) on the stack functions. Such an object represents the definition of the
command and contains the address of the function that corresponds to the command
(see the declaration of fifunction above). The interpreter sets the field which to the
position of the object on the stack and the field func to the object itself, or reports an
error if the corresponding object does not exist. It then finds the position of the
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command argument block (which is enclosed in curly brackets) and sets the fields
begin, end and argpos to the appropriate values. Finally it calls the function, which
corresponds to the command and whose address can be accessed through the field
func (i.e. func->action). This function takes the interpretation object as argument.
This gives the function access to relevant information concerning the interpretation,
especially information about command argument block, which is needed for
interpretation of arguments.

The interpreter module provides some basic command such as commands for
controlling execution flow and some input and output commands. Fields in and out
hold input and output files of the interpreter. It is not necessary that these files are
defined during interpretation. The shell installs its output file to the field out when
that file becomes defined (which is on user command in the command file). This way
the output commands which are defined in the interpreter module use the same file as
the commands which are additionally installed by the shell.

The expression evaluator offers a similar example. This module is similar to
the interpreter module in that several independent expression evaluators (with their
own private set of user defined variables and functions) can exist in a programme at
the same time. This is however not the case in the optimisation shell because there is
no need to have more evaluators. Some basic file interpreter commands need the
expression evaluator for evaluation of branching and looping conditions. It is
represented by the field syst. The commands that need the expression evaluator
access its function through this field. It is of the type ssyst, which has a similar
meaning for an expression evaluator as the type ficom has for an interpreter. The
optimisation shell initialises the expression evaluator and installs it in the file
interpreter before it starts interpretation of the command file. Other functions of the
shell that use the expression evaluator therefore use the same object as the file
interpreter.

Initialisation of the expression evaluator prior to file interpretation is not
compulsory. If none of the commands that need the expression evaluator is ever
used, then the interpreter can run without it. Such a situation can actually occur if an
interpreter is used for some specific purpose where the expression evaluator is not
needed. This illustrates the flexibility of modules such as the file interpreter. The
expression evaluator is a complex system that needs substantial memory in order to
function, therefore it is beneficial if the interpreter may not use it when this is not
necessary.

Fields check and debug hold instructions for the file interpreter. If check is
nonzero, then the command file is just checked for syntax errors rather than
interpreted. The interpreter can only find errors which concern its function and rules.
This excludes errors in command arguments since the interpreter itself has nothing to
do with interpretation of arguments. The interpreter allows functions to be installed
that check argument syntax for commands that are installed on its system. These
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functions are specified in the checkaction field of the object of the type fifunction
(see its declaration above). Such objects are a representation of installed command
on the stack field functions of the file interpreter object. If for a specific command
the field checkaction is not NULL then the interpreter runs this function to check
command arguments. The only argument of the function is the interpreter object
itself, through which the checking function can find all necessary data, including the
position of the argument block and the file pointer through which the command file
is accessed.

If the debug field is nonzero, the interpretation is performed in the debug
mode. A number of control parameters are used for telling the interpreter how to
function, e.g. how many commands to interpret at a time or how many interpretation
levels to exit. After interpretation of a specified portion of the code, control is passed
to the user. A line interpreter is run in which the user inputs instructions for the
interpreters through a command line. Basic debugger commands that can be used in
this place are summarised in Table 4.4. Functions that carry out debugger commands
are installed on the line interpreter system. Some of these functions give instructions
to the interpreter through the appropriate fields on the interpreter objects. Such
instructions are, for example, that only one command or a group of commands must
be interpreted, or that a certain number of interpretation levels must be left. Other
functions perform concrete actions, for example change the definition of the
expression evaluator variables and functions or print variable values. In the
debugger, the user can also run arbitrary interpreter commands. In debugger it is
therefore possible to check directly the effect of changes in the command file on
function of the shell.

Shell functions that correspond to interpreter commands usually just extract
arguments and call other functions to perform algorithms and other tasks. Such a two
stage arrangement is evident from Figure 4.3. Its advantage is that the shell side of
the implementation is separated from the module which is a source of a specific kind
of functionality. Different modules can therefore be developed independently. The
functions that correspond to interpreter commands take care of proper incorporation
of functionality provided in the shell system. The most basic task in this respect is
data exchange between the shell and module functions. This is done through
arguments of interpreter commands in accordance with argument passing
conventions, which were described in section 4.2.4.

Argument passing mechanisms are facilitated by a set of shell functions for
interpretation of command arguments and for interaction with the shell variable
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system. These functions are a part of the shell open library1, which represents an
implementation interface for incorporation of any kind of functionality within the
shell.

Functions of the shell open library are mostly used for implementation of
interpreter functions, which correspond to interpreter commands and provide
interface between the shell and the incorporated modules (Figure 4.6). Library
functions hide unnecessary implementation details. They also provide a certain level
of invariability with respect to changes in the shell structure and especially with
respect to changes in incorporated modules. This implies that the shell itself can be
treated as a module when new functionality is incorporated.

Figure 4.6 schematically shows the operation of an algorithm incorporated in
the shell. A part of this scheme can be recognized in Figure 4.3. Relations between
the incorporated algorithm, shell interpreter, interpreter function that provides an
interface between the shell and the algorithm, and library functions which facilitate
implementation of this interpreter function, are shown in more detail.

The implementation interface facilitates incorporation of new utilities in
compliance with the shell conventions, but does not impose these rules a priori.
Designers of new modules are given freedom to introduce individual rules for use of
specific utilities. Interaction with the shell structure, function and philosophy is
possible on different levels. For example, it is not necessary to use shell functions for
interpretation of command arguments of specific types. Low level library functions
enable more basic interaction with the file interpreter, such as direct access to the
command file and position of the argument block. For specific commands individual
rules can be set for interpretation of their arguments. Such low level interaction
enables the introduction of additional concepts in the shell if they are necessary for a
given functionality. For example, a new data type can be introduced together with
complete support as offered for existing data types. Rules for passing objects of that
type through command arguments can be imposed through functions that interpret
arguments of that type and are added to the shell library.

                                                
1 The term open library is used because functions in this library are designed for broader use. Many
functions of modules which constitute the shell have global linkage, but only functions of the open
library are designed for use outside the shell development team. These functions are designed with
special emphasis on simplicity of use and invariability with respect to changes in the structure of the
shell and its constitutive modules.
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The design of the implementation interface with the properties described
requires some effort, especially careful planning, which sometimes includes
formulation of ideas in a rather abstract way. The effort required for ensuring
openness and flexibility can be justified if the shell is viewed as a general system
designed for use and development by a broader community. Application to practical
problems gives rise to many subproblems of a heterogeneous nature. Implementation
of appropriate optimisation tools therefore by far exceeds merely the scope of
implementation of effective optimisation algorithms. It requires an integrated
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approach to the development of an optimisation system, which facilitates
incorporation of expertise from different fields. Support to distributed development
with sufficient implementation freedom and ability of introducing new concepts in
the shell is essential from this point of view.

4.3.3 Incorporation of Optimisation Algorithms

Optimisation algorithms are the principal constituent of the shell
functionality. Their incorporation in the shell follows similar rules as incorporation
of other utilities, which was described in the final part of the previous section. There
are some specifics, some of which are supported by functions in the shell open
library, which are used specifically for incorporation of optimisation algorithms.

Each incorporated optimisation algorithm has a corresponding file interpreter
function, which is installed on the function stack (field functions) of the
interpretation object at the initialisation of the optimisation shell. Installation is
performed by calling the open library function instfintfunc in a special portion of
code, which is compiled and linked with the shell. Function instfintfunc takes the
name of the installed file interpreter command and the address of the installed file
interpreter function as arguments.

The interpreter function is an interface between the shell and the incorporated
algorithm. This function is executed by the shell interpreter whenever it encounters
the command installed together with the function (Figure 4.6). It reads command
arguments and passes them to the optimisation algorithm which it calls. Reading of
command arguments is performed by the appropriate open library functions.

The interpreter functions that correspond to optimisation algorithms normally
provide a few additional things. It is a shell convention that the results of an
optimisation algorithm are stored in specific pre-defined variables1 (section 4.2.3).
For example, optimal parameters are stored in the vector variable paramopt and
optimal value of the objective function is stored in the vector variable objectiveopt.
These values are normally output argument of the function which represents a given
optimisation algorithm. It is the job of the appropriate file interpreter function to
store these values in the appropriate places. This is performed by using the shell open
library functions, which are designed for setting specific pre-defined variables.

Support to the above mentioned convention provides an evident example of
what is needed for incorporation of a given functionality in the shell. The open

                                                
1 This is a non-obligatory rule, which makes use of algorithm results by other utilities possible. A
general rule is that if an algorithm does not follow this convention, this must be indicated in the
appropriate manual.
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library should in principle provide all necessary utilities, therefore a specific
knowledge regarding the open library is a prerequisite. This requires some
knowledge about the shell function, which however does not exceed the knowledge
required for using the shell. In some particular cases additional knowledge is needed
in order to incorporate the functionality in compliance with standard conventions.
This knowledge does also not exceed the user level. The shell open library as an
implementation interface complies with the requirements for interaction with the
shell on a modular basis. The functions through which the shell functionality is
accessed hide the implementation details and provide an interface which is invariant
with respect to changes in the shell.

The above considerations are also instructive from the point of view of the
implementation freedom. The shell and its implementation interface does not strictly
imply the convention regarding storing algorithm results to specific pre-defined
variables. Besides, implementation of the algorithm allows introduction of new rules
that concern use of the incorporated functionality. For example, the optimisation
algorithm might return the number of performed iterations in addition other results.
The appropriate interpreter function could be implemented so that it would
automatically store this result to some specific shell variable. This would introduce a
new rule and would actually assign a meaning to that particular variable. The
example is not characteristic because it would be much more elegant to assign the
number of iterations to a variable specified by a command argument. However, it is
possible that incorporation of some important sets of functionality (e.g. shape
parametrisation) will be most conveniently implemented by introducing some
additional general rules and new groups of pre-defined variables. This is fully
supported by the shell implementation interface.

Optimisation algorithms iteratively require performance of the direct analysis,
which include evaluation of the objective function and other quantities. Algorithms
are usually implemented as functions, which take the function that performs a direct
analysis as an argument. The file interpreter function that correspond to an
optimisation algorithm must call such a function and provide the analysis function
(i.e. its address) as an argument. Figure 4.3 and the surrounding discussion indicate
how the optimisation algorithm in connection with the shell internal analysis function
operates in practice, while section 4.3.2 and especially the discussion around Figure
4.6 explain how the algorithm is invoked through the shell interpreter command. An
open question remains how different analysis functions with different sets of
arguments are provided. It is clear that an open library can not contain all possible
analysis functions, since the range of possible variants is practically unlimited.

Solution of this problem follows from the general arrangement regarding
transfer of current optimisation parameters and results of the direct analysis between
an optimisation algorithm and the direct analysis (section 4.1.3). There is a common
function which performs a direct analysis for any kind of algorithm. It performs
interpretation of the analysis block of the command file, which contains user
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definition of the direct analysis. The common analysis function takes no arguments.
A specific analysis function must be defined for each optimisation algorithm. This
function is actually called by the algorithm and is specified as an argument at
algorithm call in the corresponding file interpreter function. It calls the common
analysis function and besides writes optimisation parameters and reads analysis
output data from the appropriate pre-defined shell variables. The common analysis
function is provided by the open shell library as well as functions for setting and
reading the pre-defined variables.

The shell library includes some most common analysis functions with
different argument lists. These functions can sometimes be used directly in a call to
an algorithm or are called in another intermediate function which covers
particularities of the algorithm. Particularities arise in various ways. Some algorithms
require derivatives and others do not. Some algorithms solve unconstrained problems
and therefore do not require values of constraint functions. Different algorithms
require analysis data in different form. Some of them use derived structures for
representation of matrices and vectors, while some of them use arrays of numbers
with separate arguments for specification of array dimensions. Algorithms are also
programmed in different languages with different calling and argument passing
conventions, which must be accommodated by using intermediate functions.

The most difficult example is when an algorithm uses two or more separate
direct analysis functions, e.g. one for evaluation of the objective function and its
derivatives and the other for evaluation of constraint functions and their derivatives.
Such example is the FSQP algorithm, which is currently the principal optimisation
algorithm of the shell. The shell typically calls one common analysis function for a
given set of optimisation parameters. The algorithm calls first the function for
evaluation of the objective function and its derivatives and then the function for
evaluation of constraint functions and their derivatives. The first function must
execute the common analysis function, store the constraints related quantities to a
temporary location and return the objective function and its derivatives to the
algorithm. The second function must simply pick the values and derivatives of
constraint functions from the temporary location and return these quantities to the
algorithm.

For a general optimisation system it is essential that it includes various types
of optimisation algorithms, since any algorithm can handle effectively only a given
set of problems. Various mathematical fields relevant for the development of
optimisation algorithms are still developing. It is therefore important that different
algorithms developed in different environments can be easily incorporated in the
system.

On the other hand such distributed development is not economic because it
leads to unnecessary replication of work. In practice this also means replication of
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code and therefore a large executable programme. Another consequence is rigidity of
code where individual solutions can not be easily combined and applied in more
complex algorithms because of obstacles related to different programming
methodologies.

In the shell development several negative effects of disconnected
development of algorithms have already appeared. By now several algorithms have
been implemented such as the simplex method, Powell’s direction set method, the
Fletcher-Reeves conjugate direction method, and some variants of the penalty
methods (refer to chapter 3). These algorithms were programmed in a disconnected
way and were many times incorporated in the shell in a nonmodular way. The
disadvantage which soon showed was that changes in the shell affected interface
between the shell and algorithms. It was difficult to follow permanent changes with a
selection of algorithms, which showed the need for a more modular approach.

Unsystematic approach to development has usually a direct impact on code
flexibility. In a rigid code it is difficult to change particular details and experiment
with different variants of algorithms, which plays an important role in development
of efficient algorithms. An evident example in this respect is offered by use of
different line search algorithms, especially with respect to termination criteria.
Exactness of line searches effects the overall efficiency of different methods in
different ways, therefore it is important to allow different termination criteria. The
basic idea of the line search algorithm is however independent of this and the
algorithm can be programmed in such a way that its core is not affected much by
application of different termination criteria. From the view of preventing code
replication a good idea would be to implement line search algorithms in two levels.
The first level function would contain actual implementation of a line search and
would permit choosing between different termination criteria. Two or more higher
level functions would be just interfaces for use of the first level function with one or
another termination criterion. Algorithms would use these functions with respect to
criteria which are better for a specific algorithm. Implementation of higher level
functions contributes to clarity of code because their declarations are terse and do not
show functionality which is not used in a given place. Implementing common
operations only once on a lower level makes it easier to maintain the system and to
introduce improvements. In the present example the interpolation can be improved
only in the common low level line search function. The improvement affects all
derived higher level functions without affecting the way how these functions are
used in algorithms. Such a hierarchical system of functions must however be
implemented with care. It causes some excess in function calls, therefore it must be
checked if this has a significant effect on code efficiency.

Because of the reasons specified above, a more systematic approach to
development of a modular optimisation library for the shell has been initiated. Stress
is placed on the hierarchical structure of algorithms and utilities for the solution of
various sub-problems, on invariant and easy to use implementation interfaces for
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these utilities and on exploitation of commonality on the lower level as much as
possible. This should enable easier derivation and testing of different variants of
algorithms while keeping complexity under control and preventing unnecessary code
replication.

Generality of such a library was also taken into consideration as an important
design aspect. In this respect it is important to accept some compromises with taking
into account the purpose for which the library will be used. For example, it seems
unlikely that in problems to which the shell will be applied, any special structure of
linear algebra sub-problems that arise could play a crucial role. When the outline of
the module for matrix operations was set, dealing with matrices of a special structure
was not taken into account. Much stress was placed on the design of a clear and easy
to use implementation interface and on dealing with characteristics which often play
an important role in optimisation algorithms (e.g. testing positive definiteness of
matrices). The basic design of the module for matrix operations is outlined in [29].

For an optimisation library designed for incorporation in the shell, many
aspects which are not directly related to algorithms are relevant. This includes some
general aspects of synchronous function within a broader system, such as error
handling and output control. The library will provide flexible access to these
functions with possibility of their adjustment to the system in which the library
functions will be used. Considering straightforward incorporation of developed
algorithms in the shell is important also from the point of view that the shell can
provide a good testing environment.

4.3.3.1 Example: Incorporation of an Optimisation Algorithm

A complete procedure of incorporating an optimisation algorithm in the shell
is shown in an example. This should more evidently illustrate the properties of the
shell implementation interface described above. The Nelder-Mead simplex algorithm
was chosen to illustrate the procedure. It is implemented by a C function declared as

void minsimp(matrix simp, vector val, double tol, int *it, int
maxit, vector *paropt, double *valopt, double func(vector x),
FILE *fp)

Matrix argument simp is the matrix of simplex apices (input and output),
vector argument val is the vector of function values in the simplex apices, tol is the
tolerance in function value (convergence criterion – input), it is the number of
iterations (output), maxit is the maximum allowed number of iterations (input),
paropt is the vector of optimal parameters (output), valopt is the optimal value of the
objective function (output), func is the address of the function that performs the
direct analysis, and file argument fp is the file in which results are written. matrix and
vector are derived types which represent matrices and vectors. Similarly as there
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exists a module for manipulating stack objects described in section 4.3.1.1,
corresponding modules exist for manipulation of objects of these two types.

First the analysis function, which will be passed as argument func of the
algorithm function, must be defined. The function must take a vector argument
(optimisation parameter) and return a floating point number (value of the objective
function). It can be defined in the following way:

double ansimp(vector x)
{
setparammom(x);
analysegen( );
return getobjectivemom(0);
}

The function first sets the shell vector variable parammom (the current
parameter values by convention) to its argument x, which is passed by the calling
algorithm. This is done by the open library function setparammom. Then the
common analysis function analysegen is called, which performs interpretation of the
analysis block of the command file, which is the user definition of the direct analysis.
The function then returns the value of the scalar variable objectivemom (value of the
objective function by convention), which is obtained by the library function
getobjectivemom. This value is set at interpretation of the analysis block.

The interpreter function which will run the algorithm can now be defined. It
is assumed that the algorithm will be run by the interpreter command optsimp with
the following argument list:

optsimp(simp val tol maxit)

where simp is a matrix argument (initial simplex), val is a vector argument (function
values in the initial simplex), and tol (tolerance) and maxit (maximum number of
iterations) are scalar arguments. It is assumed that the initial simplex and function
values in its apices are provided by the user and passed as command arguments. The
interpreter function can be defined as follows:

double fi_optsimp(ficom fcom)
{
matrix simp=NULL;
vector val=NULL, paropt=NULL;
double valopt, tol, maxit;
int it;
/* Extract interpreter command argumetns: */
readmatarg(fcom,&simp);
readvecarg(fcom,&val);
readscalarg(fcom,&tol);
readscalarg(fcom,&maxit);
/* Run the algorithm: */
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minsimp(simp,val,tol,&it,maxit,&paropt,&valopt,ansimp,fcom-
>out)
/* Set pre-defined shell variables paramopt and objectiveopt,
which represent optimal parameters and optimal value of the
objective function, respectively: */
setparamopt(paropt);
setobjectiveopt(valopt);
/* release local variables: */
dispmatrix(&simp);
dispvector(&val);
dispvector(&paropt);
}

Comments in the above code explain its function to a large extent. The
function takes a single argument, which is the interpretation object described in
section 4.3.2 and through which all information regarding command file
interpretation can be accessed. The function first extracts arguments which are
passed through the argument block of the corresponding interpreter commands. Open
library functions of extraction of different types of command arguments are used.
These functions take the interpretation object as the first argument, since the
command argument block is accessed through it. Each of these functions sets the
field fcom->argpos to the position after the last extracted argument, so that the next
function can begin argument extraction on the right place. The second argument of
these functions is always the address of the variable in which the argument value is
stored. All interpreter command arguments are in this case input arguments of the
algorithm. In general there could also be other types of arguments, for example
specifications of the shell variables where specific algorithm data should be stored.

The simplex algorithm is then called. The last argument of the call but one is
the direct analysis function ansimp, which was defined above. The last argument is
the file interpreter output file, which in the shell coincides with the shell output file.

The algorithm performs minimisation of the objective function and returns
optimal parameters in the vector paropt and optimal value of the objective function
in the number valopt (both are local variables). These values are then copied to the
appropriate pre-defined shell variables, so that they are accessible for further use by
other algorithms and utilities. This is done by the appropriate library functions.
Finally, the dynamic storage which was allocated within the function is released.

After the file interpreter function is defined, the appropriate command can be
installed in the file interpreter system. This is done by the following line of code:

instfintfunc ( “optsimp”, fi_ optsimp );

instfintfunc is another function of the shell open library, which installs a file
interpreter command on its function definition stack. Its first argument is the name of
the command, which will be used in the shell command file. The second argument is
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the address of the function which is run by the file interpreter when the
corresponding command is encountered. The above code must be added in the
specific source file, which is compiled and linked with the optimisation shell. This
code is executed at shell initialisation.

4.3.4 Parallelisation

Parallel execution of code represents an attempt at exceeding practical limits
imposed by the capability of available computers, which are often very restrictive for
demanding numerical applications. Parallelisation of the optimisation shell[8],[9] is the
final implementation issue discussed in this text. It is instructive because
parallelisation usually requires considerable rearrangement in the code structure. In
the shell a different philosophy of parallel execution is transferred to the algorithmic
level, which enables continuity of the described shell concepts and coexistence of the
parallel and sequential schemes. The shell provides support for straightforward
incorporation of parallel algorithms in a similar way as sequential algorithms.

The parallel interface has been built using the MPI (Message Passing
Interface)[32] library and the LAM (Local Area Multicomputer)[33] environment. This
enables a system to be implemented on a wide range of architectures, including
shared and distributed memory multiprocessors as well as arbitrarily heterogeneous
clusters of computers connected in a LAN (Local Area Network).

Direct analyses are treated as basic operations that can be executed
simultaneously. The parallel scheme is implemented as a master-slave architecture
(Figure 4.7). The master process controls execution of optimisation algorithms while
slave processes perform simulations. Several slave processes run simultaneously on
different processing units performing simulations for different sets of optimisation
parameters. Both master and slave processes are actually optimisation shells with
complete functionality, but their execution differs due to different functions.

The master process is responsible for the process management and keeps
track of the slave processes status. All actions of the slave processes are triggered by
the master, so every change of the slave status is conditional on the master request.
The master process also registers the execution times of direct analyses. This
information is used for the so-called load balancing in the case when the master can
choose between several slaves that are available for execution of a new task.
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Figure 4.7: Parallel optimisation scheme[9]. The main optimisation
shell controls the optimisation process while the slave shells interact with
simulation programs and execute direct analyses.

The direct analysis is performed in three parts. The first part is executed by
the master process, which sends the analysis request and appropriate data (e.g.
parameter values) to a slave. The second part is executed by a slave process, which
runs the simulation, collects results and evaluates appropriate quantities, which are
then sent back to the master. The third part is executed by the master process. The
quantities sent by the slave process are received and transferred to the calling
optimisation algorithm.

Each part of the function evaluation is performed by its own function, which
interprets a specific pre-defined block in the master or slave command file. This
enables not only automatic exchange of parameter values and analysis results, but
also arbitrary data exchange between the master and slave processes. The parallel
interface provides file interpreter commands for this task.

Optimisation algorithms can use the first and third functions, which transfer
data between algorithms and function definition in the appropriate command files.
These two functions are an equivalent to the common analysis function in the
sequential scheme. In order to enable proper task distribution, the first function must
not only accept the parameter values, but also return to the algorithm identification of
the slave process to which the analysis request has been sent. Similarly, the third
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function must return the identification of the process that performed the task. The
first function must check whether there is any slave process ready to accept the task.
The third one must check if slave processes have finished any task and, if necessary,
wait for the next available results.

The master process interprets a command file in the same way as a sequential
scheme. Every action is a consequence of a function call in the command file. The
behaviour of slave processes is different since these processes only respond to master
requests. When a slave process is spawned, it interprets its command file without
exiting and then waits for the master process requests. The interpretation of the
command file is a part of initialisation, while later on every action is triggered by a
master process request. The communication between the master and slave processes
is synchronised[8],[9]. To make the described functionality more clear, the course of a
direct analysis is desctibed below.

Figure 4.8 shows how a direct analysis is executed on the master (the left-
hand side of the figure) and a slave (the right-hand side) process. Times of
characteristic events are marked by t0 through t26 in the order in which these events
follow each other. The time scale is not proportional.

When the algorithm requires execution of a direct analysis and a slave
process which is ready to accept a task exists, the master process sends a task request
to that process (t1 to t9). The slave is in the waiting state at that time, which is known
to the master because it keeps track of slave processes status. The slave reestablishes
such a state every time after it completes an action requested by the master (t0 and t25

in the figure).

The master notifies the slave of the request by sending it the
“BEGIN_DATA” message. After the receipt of this message the slave accepts the
data sent by the master and stores it to the appropriate location. The master is
sending the contents of its variables to the slave. The slave stores these contents in
the variables of the same names (note that both master and slave are actually
complete optimisation shells). Data packages carry complete information regarding
the position of the data in the system of shell variables. Interpretation of the
“analysis” block of the master command file (t3 to t4) is a part of sending a task
request to the slave. In this block the user can send arbitrary data from the master
system of user defined variables by using appropriate file interpreter commands.
After that, standard data, i.e. the vector of parameter values parammom, is sent
automatically (t5 to t6). The “END_DATA” message is then sent to the slave. After
its receipt (t7) the slave stops accepting data from the master and expects the
“START_AN” message. Its receipt invokes the slave process analysis function (t8 to
t14), which includes interpretation of the “analysis” block of the slave command file
(t10 to t12). Normally this part corresponds to the actual performance of the direct
analysis, while other parts simply take care of the proper data transfer between the
master and the slave.
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Figure 4.8: Course of a direct analysis in the parallel scheme[9].

After sending the task, the master can continue to perform the algorithm with
available data, send parallel tasks to other slaves and accept results from them. The
slave sends the “BEGIN_RES” message to the master after it finishes the analysis
(t14). The message is buffered until the master is ready to accept results (t11).
Depending on the state of the algorithm this can happen in two ways. The master can
just check if such message has been sent by any of the slaves. If this is the case, it
accepts the results (t16 to t24); otherwise it continues to do other operations and
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repeats the check later. The other situation occurs when the master can not do
anything until it obtains results of at least one direct analysis. This typically happens
when all available slaves are busy and the master has already treated all results which
have arrived. In this case the master blocks its execution until the message
“BEGIN_RES” is received from any of the slaves.

Receipt of results is somehow a reversed process to that of sending a task.
After a receipt of the “BEGIN_RES” message the master accepts data sent by the
slave until the receipt of the “END_RES” message. The slave sends this message
after sending the standard data (t17 to t18), e.g. the value of the objective and
constraint functions and their gradients. After that, the master interprets the
“completion” block of its command file (t21 to t22) where the user can send requests
for additional data to the slave. The slave waits for such requests and sends back the
requested data (t20 to t23) until it receives the “GOT_RES” message. The master
sends this message after interpretation of the “completion” block. For the slave its
receipt means that it has finishes the task. It reestablishes the waiting state (t25) and is
able to accept further task requests.

The shell provides various mechanisms for process management and load
balancing. Processes can be controlled, enabled and disabled by the user during the
runtime[34]. This enables better performance to be achieved for a given kind of
algorithm and controlled use of computational resources.

The parallel scheme does not significantly affect the concepts of the shell,
neither from the user point of view nor from the view of the implementation interface
for incorporation of new tools.

Parallel algorithms are incorporated in the shell in a similar way as sequential
algorithms. There are two fundamental differences. The direct analysis now consists
of two parts, executed at different times while other analyses can be run in between.
A special function executes each part. These functions are called by the algorithm
and must be provided as arguments at the call to the algorithm in the appropriate file
interpreter function. They are referred to as the calling analysis function and the
returning analysis function. They are specific for each algorithm, while each of them
calls the appropriate common analysis function (calling or returning, respectively).
The second difference is that calling and returning analysis functions return the
identification number of the process which performs the appropriate analysis. This is
necessary for the algorithm in order to connect specific analysis results (which are
received in unpredictable order) with the corresponding optimisation parameters.
Both differences are fundamentally conditioned by the nature of parallel execution
and therefore do not represent an unnecessary excess in complexity.
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