
3. Numerical Optimisation 3.1. Introduction

19

3 NUMERICAL OPTIMISATION

3.1 Introduction

3.1.1 Preliminaries

In general, optimisation problems can be stated as problems of minimisation
of some function of the design parameters x, subjected to certain constraints, i.e.:

minimise () nf RI, ∈xx
subject to () Eici ∈= ,0x (3.1)

and () Ijc j ∈≥ ,0x ,

where f(x) is the objective function and ci(x) and cj(x) are constraint functions1.
Design parameters are also referred to as optimisation variables. The second line of
(3.1) represents the equality constraints of the problem and the third line represents
the inequality constraints. We have introduced two index sets, set E of the equality
constraint indices and set I of the inequality constraint indices. The above problem is
also referred to as the general nonlinear problem. Most of optimisation problems can
be expressed in this form, eventually having multiple objective functions in the case
of several conflicting design objectives.

Points x’, which satisfy all constraints, are called feasible points and the set of
all such points is called the feasible region. A point x* is called a constrained local
minimiser (or local solution of the above problem) if there exists some
neighbourhood Ω of x* such that () ()’* xx ff ≤ for all feasible points *’,’ xxx ≠Ω∈ .
Such a point is called a strict local minimiser if the < sign is applied in place of ≤ ; a

1 Number of optimisation variables will be denoted by n throughout chapter 3.

3. Numerical Optimisation 3.1. Introduction

20

slightly stronger definition of isolated local minimiser, which requires the minimiser
to be the only local minimiser in some neighbourhood. Furthermore, x* is called the
global solution or global constrained minimiser if () ()’* xx ff ≤ for all feasible
points x’. This means that a global minimiser is the local solution with the least value
of f.

Since the objective and constraint functions are in general nonlinear, the
optimisation problem can have several constrained local minimisers x*. The goal of
optimisation is of course to comply with the objective as much as possible, therefore
the identification of the global solution is the most desirable. However, this problem
is in general extremely difficult to handle. Actually there is no general way to prove
that some point is a global minimiser. At best some algorithms are able to locate
several local solutions and one can then take the best one of these. These methods are
mostly based on some stochastic search strategy. Location of problem solutions is of
a statistical nature, which inevitably leads to an enormous number of function
evaluations needed to locate individual solutions with satisfactory accuracy and
certainty. These methods are therefore usually not feasible for use with costly
numerical simulations and are not included in the scope of this work. Currently the
most popular types of algorithms for identifying multiple local solutions are the
simulated annealing algorithms and genetic algorithms, briefly described in [9].

The optimisation problem can appear in several special forms dependent on
whether the inequality or equality constraints are present or not, and whether the
objective and constraint functions have some simple form (e.g. are linear or quadratic
in the optimisation parameters). These special cases are interesting for mathematical
treatment because it is usually possible to construct efficient solution algorithms that
take advantage of the special structure.

In the cases related to this work, the objective and constraint functions are
typically evaluated implicitly through a system response evaluated with complex
numerical simulation. Here it can not be assumed that these functions will have any
advantageous structure. At most there are cases with linear constraints or constraints
that can be reduced to the form of simple bounds on variables, and in some cases it is
possible to manage the problem without setting any constraints. Treatment of
optimisation algorithms in this chapter will correspond to this fact. Some problems
with special structure will however be considered since they appear as sub-problems
in general algorithms. Example of this is the problem (3.1) with a quadratic objective
function and linear constraint functions (the so called quadratic programming or QP
problem), which often appears in algorithms for general constrained and
unconstrained minimsation.

It proves that solution of the constrained problem is essentially more complex
than solution of the unconstrained problem. Also theoretical treatment of the latter is
in many aspects a natural extension of unconstrained minimisation, therefore the first

3. Numerical Optimisation 3.1. Introduction

21

part of this section is dedicated to the general unconstrained minimisation in
multivariable space. Some attention is drawn to show parallels with solution of
systems of nonlinear equations, which is the core problem in numerical simulations
related to this work. The source of additional complexity that arises in practical
unconstrained minimisation, as compared to the solution of nonlinear equations that
appear in simulations, will be addressed. The aim of this section is to represent the
theoretical background used in treatment of this complexity in order to assure
satisfactory local and global convergence properties. Basic treatment of the one
dimensional line search, a typical property of most practical algorithms, is also given
in this context.

In the second part a more general constrained problem will be addressed. The
additional mathematical background such as necessary and sufficient conditions will
be given first. The two most commonly used approaches to constrained optimisation
will then be described: sequential unconstrained minimisation and sequential
quadratic programming.

The section is concluded with some practical considerations with regard to
the present work. Some practical problems that can give rise to inadequacy of the
described theory will be indicated. A problem strongly related to this work is
optimisation in the presence of substantial amounts of numerical noise, which can
cause serious difficulties to algorithms based on certain continuity assumptions
regarding the objective and constraint functions.

3.1.2 Heuristic Minimisation Methods and Related
Practical Problems

In the subsequent text the unconstrained problem is considered, namely

minimise () nf RI, ∈xx (3.2)

Throughout this chapter it is assumed that f is at least a 2CI function, i.e. twice
continuously differentiable with respect to x. Every local minimum is a stationary
point of f, i.e. a point with zero gradient[1]:

() () 0*** ===∇ gxgxf . (3.3)

Minimisation can therefore be considered as a solution of the above equation, which
is essentially a system of nonlinear equations for gradient components

3. Numerical Optimisation 3.1. Introduction

22

() ()
ni

x

f
g

i
i ...,1,0 ==

∂
∂= x

x . (3.4)

This is essentially the same system that arises in finite element simulation[34] and can
be solved by the standard Newton method, for which the iteration is

() () ()() ()kkkk xgxx
11 −+ ∇−= . (3.5)

The notation () ()()kk xgg = is adopted throughout this work.

The method is derived from the Taylor series[30],[32] for g about the current
estimate x(k):

()() () () ()2δδδ Okkk +∇+=+ ggxg (3.6)

Considering this as the first order approximation for g and equating it to zero we
obtain the expression for step δ which should bring the next estimate close to the
solution of (3.4)1:

() ()kk gg −=∇ δ .

By setting () () δ+=+ kk xx 1 we obtain the above Newton Iteration.

The Newton method is known to be rapidly convergent[2], but suffers for a
lack of global convergence properties, i.e. the iteration converges to the solution only
in some limited neighbourhood, but not from any starting point. This is the
fundamental reason that it is usually not applicable to optimisation without
modifications. The problem can usually be elegantly avoided in simulations, either
because of some nice physical properties of the analysed system that guarantee
global convergence, or by the ability of making the starting guess arbitrarily close to
the equilibrium point where the equations are satisfied. This is, for example,
exploited in the solution of path dependent problems where the starting guess of the
current iterate is the equilibrium of the previous, and this can be set arbitrarily close
to the solution because of the continuous nature of the governing equations. Global
convergence can be ensured simply by cutting down the step size, if necessary.

In practice, this is usually not at all case in optimisation. The choice of a good
starting point typically depends only on a subjective judgment where the solution
should be, and the knowledge used for this is usually not sufficient to choose the

1 Notation () ()xxg f∇= , () ()()kk ff x= , () ()()kk xgg = , etc. will be generally adopted throughout this

text.

3. Numerical Optimisation 3.1. Introduction

23

starting point within the convergence radius of Newton’s method, especially due to
the complex non-linear behaviour of f and consequently g. Modifications to the
method must therefore be made in order to induce global convergence1, i.e.
convergence from any starting guess.

One such modification arises from considering what properties the method
must have in order to induce convergence to the solution. The solution x* must be a
limiting point of the sequence of iterations. This means that the distance between the
iterates and the solution tends towards zero, i.e.

0lim * =−
∞→

xxk
k

. (3.7)

This is satisfied if the above norm is monotonically decreasing and if the sequence
has no accumulation point other than x*. When considering the minimisation
problem and assuming that the problem has a unique solution, the requirements for a
decreasing norm can be replaced (because of continuity of f) by the requirement that

()kf are monotonically decreasing. By such consideration, a basic property any
minimisation algorithm should have, is the generation of descent iterates so that

() () kff kk ∀<+1 . (3.8)

This is closely related to the idea of line search, which is one of the
elementary ideas in construction of minimisation algorithms. The idea is to minimise
f along some straight line starting from the current iterate. Many algorithms are
centered on this idea, trying to generate a sequence of directions along which line
searches are performed, such that a substantial reduction of f is achieved in each line
search and such that, in the limit, the rapid convergence properties of Newton’s
method are inherited.

An additional complication which limits the applicability of Newton’s
method is that the second derivatives of the objective function (i.e. first derivatives of
its gradient) are required. These are not always directly available since double
differentiation of numerical models is usually a much harder problem than single
differentiation. Alternatively the derivatives can be obtained by straight numerical
differentiation using small perturbation of parameters, but in many cases this is not
applicable because numerical differentiation is very sensitive to errors in function
evaluation[31],[33], and these can often not be avoided sufficiently when numerical
models with many degrees of freedom are used. Furthermore, even if the Newton
method converges, the limiting point is only guaranteed to be a stationary point of f,

1 Herein the expression global convergence is used to denote convergence to a local solution from any
given starting point. In some of the literature this expression is used to denote convergence to a global
solution.

3. Numerical Optimisation 3.1. Introduction

24

but this is not a sufficient condition for a local minimum, since it includes saddle
points, which are stationary points but are not local minimisers.

The most simple algorithm that incorporates the idea of line search is
sequential minimisation of the objective function in some fixed set of n independent
directions in each iterate, most elementarily parallel to the coordinate axes. The
requirement for n independent directions is obvious since otherwise the algorithm
could not reach any point in nRI . The method is called the alternating variables
method and it seems to be adequate at a first glance, but turns out to be very
inefficient and unreliable in practice. A simple illustration of the reasons for this is
that the algorithm ignores the possibility of correlation between the variables. This
causes the search parallel to the current search direction to destroy completely the
property that the current point is the minimiser in previously used directions. This
leads to oscillatory behaviour of the algorithm as illustrated in Figure 3.1.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 3.1: Oscillatory behaviour, which is likely to occur when using
sequential minimisation in a fixed set of directions.

Another readily available algorithm is sequential minimisation along the
current direction of the gradient of f. Again this seems to be a good choice, since the
gradient is the direction of the steepest descent, i.e. the direction in which f decreases
most rapidly in the vicinity of the starting point. With respect to this, the method is
called the steepest descent method. In practice, however, the method suffers for
similar problems to the alternating variables method, and the oscillating behaviour of
this method is illustrated in Figure 3.2. The theoretical proof of convergence exists,
but it can also be shown that locally the method can achieve an arbitrarily slow rate
of linear convergence[1].

The above discussion clearly indicates the necessity for a more rigorous
mathematical treatment of algorithms. Indeed the majority of the up-to-date
algorithms have a solid mathematical background[1]-[7], [26] and partially the aim of

3. Numerical Optimisation 3.2. Simplex Method

25

this section is to point which are the most important features in the design of fast and
reliable algorithms.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 3.2: Oscillatory behaviour, which can occur when performing
sequential line searches along the steepest descent directions.

3.2 Simplex Method

One minimisation method that does not belong within the context of the
subsequent text is the simplex method[12], [26],[1]. It has been known since the early
sixties and could be classed as another heuristic method since it is not based on a
substantial theoretical background.

The simplex method neither uses line searches nor is based on minimisation
of some simplified model of the objective function, and therefore belongs to the class
of direct search methods. Because of this the method does not compare well with
other described methods with respect to local convergence properties. On the other
hand, for the same reason it has some other strong features. The method is relatively
insensitive to numerical noise and does not depend on some other properties of the
objective function (e.g. convexity) since no specific continuity or other assumptions
are incorporated in its design. It merely requires the evaluation of function values. Its
performance in practice can be as satisfactory as any other non-derivative method,
especially when high accuracy of the solution is not required and the local

3. Numerical Optimisation 3.2. Simplex Method

26

convergence properties of more sophisticated methods do not play so important role.
In many cases it does not make sense to require highly accurate solutions of
optimisation problems, because the obtained results are inevitably inaccurate with
respect to real system behaviour due to numerical modeling of the system (e.g.
discretisation and round-off errors or inaccurate physical models). These are
definitely good arguments for considering practical use of the method in spite of the
lack of good local convergence results with respect to some other methods.

The simplex method is based on construction of an evolving pattern of n+1
points in nRI (vertices of a simplex). The points are systematically moved according
to some strategy such that they tend towards the function minimum. Different
strategies give rise to different variants of the algorithm. The most commonly used is
the Nelder-Mead algorithm described below. The algorithm begins by choice of n+1
vertices of the initial simplex (() ()1

1
1

1 ,..., +nxx) so that it has non-zero volume. This

means that all vectors connecting a chosen vertex to the reminding vertices must be
linearly independent, e.g.

() ()()∑
=

+ ≠−⇒≠∃
n

i
iii

1

1
1

1
1 00 xxλλ .

If we have chosen ()1
1x , we can for example obtain other vertices by moving,

for some distance, along all coordinate directions. If it is possible to predict several
points that should be good according to experience, it might be better to set vertices
to these points, but the condition regarding independence must then be checked.

Once the initial simplex is constructed, the function is evaluated at its
vertices. Then one or more points of the simplex are moved in each iteration, so that
each subsequent simplex consists of a better set of points:

Algorithm 3.1: The Nelder-Mead simplex method.

After the initial simplex is chosen, function values in its vertices are evaluated:
() ()() 1...,,1,11 +== niff ii x .

Iteration k is then as follows:
1. Ordering step: Simplex vertices are first reordered so that () () ()k

n
kk fff 121 ... +≤≤≤ ,

where () ()()k
i

k
i ff x= .

2. Reflection step: The worst vertex is reflected over the centre point of the best n

vertices (() ()∑
=

=
n

i

k
i

k

n 1

1
xx), so that the reflected point ()k

rx is

3. Numerical Optimisation 3.2. Simplex Method

27

() () () ()()k
n

kkk
r 1+−+= xxxx

Evaluate () ()()k
r

k
r ff x= . If () () ()r

n
k

r
k fff <≤1 , accept the reflected point and go to

6.
3. Expansion step: If () ()kk

r ff 1< , calculate the expansion

() () () ()()kk
r

kk
e xxxx −+= 2

and evaluate () ()()k
e

k
e ff x= . If () ()k

r
k

e ff < , accept ()k
ex and go to 6. Otherwise

accept ()k
rx and go to 6.

4. Contraction step: If () ()k
n

k
r ff ≥ , perform contraction between ()kx and the better

of ()k
n 1+x and ()k

rx . If () ()k
n

k
r ff 1+< , set

() () () ()()kk
r

kk
c xxxx −+=

2

1

(this is called the outside contraction) and evaluate () ()()k
c

k
c ff x= . If () ()k

r
k

c ff ≤ ,

accept ()k
cx and go to 6.

If in contrary () ()k
n

k
r ff 1+≥ , set

() () () ()()k
n

kkk
c 12

1
+−−= xxxx

(inside contraction) and evaluate ()k
cf . If () ()k

n
k

c ff 1+< , accept ()k
cx and go to 6.

5. Shrink step: Move all vertices except the best towards the best vertex, i.e.

() () () ()() 1...,,2,
2

1
11 +=−+= nikk

i
kk

i xxxv ,

and evaluate () ()() 1...,,2,’ +== niff k
i

k
i v . Accept ()k

iv as new vertices.

6. Convergence check: Check if the convergence criterion is satisfied. If so,
terminate the algorithm, otherwise start the next iteration.

Figure 3.3 illustrates possible steps of the algorithm. A possible situation of
two iterations when the algorithm is applied is shown in Figure 3.4. The steps allow
the shape of the simplex to be changed in every iteration, so the simplex can adapt to
the surface of f. Far from the minimum the expansion step allows the simplex to

3. Numerical Optimisation 3.2. Simplex Method

28

move rapidly in the descent direction. When the minimum is inside the simplex,
contraction and shrink steps allow vertices to be moved closer to it.

x1

xe

x3

xr

xr

x3 x3

xr

xc

xc

x3

Figure 3.3: Possible steps of the simplex algorithm in two dimensions
(from left to right): reflection, expansion, outside and inside contraction,
and shrink.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

[�
���

[�
���
 [�

���

[U
���

[�
���
 [�

���

[H
���

[H
���
 [�

���

[U
���

Figure 3.4: Example of evolution of the simplex.

3. Numerical Optimisation 3.2. Simplex Method

29

There are basically two possibilities for the convergence criterion. Either that
function values at vertices must become close enough or the simplex must becomes
small enough. It is usually best to impose both criteria, because either of them alone
can be misleading.

It must be mentioned that convergence to a local minimum has not been
proved for the Nelder-Mead algorithm. Examples have been constructed for which
the method does not converge[12]. However, the situations for which this was shown
are quite special and unlikely to occur in practice. Another theoretical argument
against the algorithm is that it can fail because the simplex collapses into a subspace,
so that vectors connecting its vertices become nearly linearly dependent.
Investigation of this phenomenon indicates that such behaviour is related to cases
when the function to be minimised has highly elongated contours (i.e. ill conditioned
Hessian). This is also a problematic situation for other algorithms.

The Nelder-Mead algorithm can be easily adapted for constrained
optimisation. One possibility is to add a special penalty term to the objective
function, e.g.

() () () () ()∑∑
∈∈

+ +−+=
Ii

j
Ii

in ccfff xxxx 1
1

’ , (3.9)

where ()1
1+nf is the highest value of f in the vertices of the initial simplex. Since

subsequent iterates generate simplices with lower values of the function at vertices,
the presence of this term guarantees that whenever a trial point in some iteration
violates any constraints, its value is greater than the currently best vertex. The last
two sums give a bias towards the feasible region when all vertices are infeasible. The
derivative discontinuity of the terms with absolute value should not be problematic
since the method is not based on any model, but merely on comparison of function
values. A practical implementation is similar to the original algorithm. f is first
evaluated at the vertices of the initial simplex and the highest value is stored. Then
the additional terms in (3.9) are added to these values, and in subsequent iterates f is
replaced by f’.

Another variant of the simplex method is the multidirectional search
algorithm. Its iteration consists of similar steps to the Nelder-Mead algorithm, except
that all vertices but the best one are involved in all operations. There is no shrink step
and the contraction step is identical to the shrink step of the Nelder-Mead algorithm.
Possible steps are shown in Figure 3.5. The convergence proof exists for this
method[12], but in practice it performs much worse than the Nelder-Mead algorithm.
This is due to the fact that more function evaluations are performed at each iteration
and that the simplex can not be adapted to the local function properties as well as the
former algorithm. The shape of the simplex can not change, i.e. angles between it
edges remain constant (see Figure 3.5). The multidirectional search algorithm is

3. Numerical Optimisation 3.3. Basic Mathematical Background

30

better suited to parallel processing because n function evaluations can always be
performed simultaneously.

x1

x3

x2

xr
(3)

xr
(2)

x1

x3

x2

xr
(3)

xr
(2)

x1 xc
(2)

xc
(3)

x3

x2

Figure 3.5: possible steps in the multidirectional search algorithm:
reflection, expansion, and contraction.

3.3 Basic Mathematical Background

Construction of optimisation methods described further in this section is
based on some model of the objective function and constraints. Such treatment of the
problem arises to a large extent from the fact that locally every function can be
developed into a Taylor series[30] about any point ’x :

() ()()∑
∞

=

=+
0

’’

!n

n
n

xf
n

h
hxf , (3.10)

where ()() ()xf
x

xf
n

n
n

∂
∂= and nn ⋅⋅⋅⋅= ...321! . This expression itself does not have a

significant practical value. A more important fact is that

() 0lim =
∞→

hRn
n

(3.11)

and

3. Numerical Optimisation 3.3. Basic Mathematical Background

31

() 0lim
0

=
→

hRn
h

, (3.12)

where

() () ()hShxfhR nn −+= ’ (3.13)

and

() ()()∑
=

=
n

i

n
n

n xf
n

h
hS

0

’

!
. (3.14)

This means that if we use only a few terms in the Taylor series, the error that we
make tends to zero both when we increase the number of terms without limit for
some fixed h, and when we take a fixed number of terms and decrease the step h
towards zero. This follows from the result[30]

() ()
()() 10,

!1
’1

1

<<+
+

= +
+

θθhxf
n

h
hR n

n

n . (3.15)

The above equation also holds if function f is only 1CI +n . This means that
every sufficiently smooth function can be locally approximated by a simple
polynomial function, which is sometimes more convenient for theoretical treatment
than the original function.

A similar development is possible for a function of n variables[30]:

() ()
()

()nim

m

i
n

i

n
n

nnni

hhhR

xxxf
x

h
x

h
x

h
i

xxxfhxhxhxf

...,,,

,...,,...
!

1

...,,,...,,,

2

1
21

2
2

1
1

’’
2

’
1

’
2

’
2

’
1

∑
=

+





∂
∂++

∂
∂+

∂
∂

+=+++

, (3.16)

where

() ()
() nihxhxf

x
h

x
h

n
hhR

innn

m

n
nnm

...,,1,10,...,,

...
!1

1
...,,

111

1

1
11

=<<++







∂
∂++

∂
∂

+
=

+

θθθ

. (3.17)

3. Numerical Optimisation 3.3. Basic Mathematical Background

32

In view of the beginning of this discussion, we can consider numerical
optimisation as the estimation of a good approximation of the optimisation problem
solution on the basis of limited information about the function, usually objective and
constraint function values and their derivatives in some discrete set of points. The
goal is to achieve satisfactory estimation with as little function and derivative
evaluations as possible. Now we can use the fact that general functions can be locally
approximated by simpler functions. Besides, functions of simple and known form
(e.g. linear or quadratic) are completely described by a finite number of parameters.
If we know these parameters, we know (in principle) all about the function, including
minimising points.

There exists a clear correspondence between the above considerations and the
design of optimisation algorithms. One thing to look at when constructing algorithms
is how they perform on simple model functions, and proofs of local convergence
properties based to a large extent on properties of the algorithms when applied to
such functions[1]-[7].

Heuristically this can be explained by considering a construction of a
minimisation algorithm in the following way. Use function values and derivatives in
a set of points to build a simple approximation model (e.g. quadratic), which will be
updated when new information is obtained. Consider applying an effective
minimisation technique adequate for the model function. Since the model
approximates the function locally, some information obtained in this way should be
applicable to making decision where to set the next iterate when minimising the
original function. In the limit, when the iterates approach the minimum, the model
function should be increasingly better approximation and minima of the successively
built models should be good guesses for the subsequent iterates.

In fact many algorithms perform in a similar manner. The difference is
usually that models are not built directly, but the iterates are rather constructed in
such a way that the algorithm has certain properties when applied to simple
functions, e.g. termination in a finite number of steps. This ensures good local
convergence properties. In addition some strategy must be incorporated which
ensures global convergence properties of the algorithm. The remainder of this section
will consider some mathematical concepts related to this. First, some basic notions
will be introduced, and then some important algorithmic properties will be discussed.

3.3.1 Basic Notions

Quadratic model functions are the most important in the study of
unconstrained minimisation. This is because the Taylor series up to quadratic terms
is the simplest Taylor approximation that can have an unconstrained local minimum.

3. Numerical Optimisation 3.3. Basic Mathematical Background

33

Keeping the terms up to the second order in (3.16) gives the following expression for
a second order Taylor approximation:

() () () ()[]hxhxhxhx ’2’’’

2

1
ffff TT ∇+∇+≈+ , (3.18)

where

() ()
T

nx

f

x

f

x

f
f

x

xgx 







∂
∂

∂
∂

∂
∂==∇ ...,,,

21

is the function gradient and

() () () ()xxGx ff T∇∇==∇ 2

is the Hessian matrix1 of the function, i.e. matrix of function second derivatives,

()[] () ()xxGx
ji

ijij xx

f
f

∂∂
∂==∇

2
2 . (3.19)

Notation () ()xxg f∇= and () ()xxG f2∇= will be used throughout this text.

The idea of a line in nRI is important. This is a set of points

() sxxx αα +== ’ , (3.20)

where RI∈α is a scalar parameter, x’ is any point on the line and s is the
direction of the line. s can be normalised, e.g. with respect to the Euclidian norm, i.e.

∑
=

=
n

i
is

1

2 1.

It is often useful to study how a function defined in nRI behaves on a line.
For this purpose, we can write

1 In standard notation Operator ∑

= ∂
∂=∇∇=Λ=∇

n

i i

T

x1
2

2
2 _ is the Laplace operator. However, in most

optimisation literature this notation is used for the Hessian operator, and so is also used in this text.

3. Numerical Optimisation 3.3. Basic Mathematical Background

34

() ()() ()sxx ααα +== ’fff . (3.21)

From this expression we can derive direction derivative of f, i.e. derivative of the
function along the line:

() ()()() sx T

i i
i

i i

i f
x

f
s

x

f

d

dx

d

df α
αα

α ∇=
∂
∂=

∂
∂= ∑∑ .

This can be written as

s
s

Tf
d

df

d

df ∇==
α

. (3.22)

In a similar way the curvature along the line is obtained:

()

∑ ∑∑∑

∑

= = ==

=

∂∂
∂=

∂∂
∂

=
∂
∂==

n

i

n

i

n

j ji
ji

n

j ji

j
i

n

i i
i

xx

f
ss

xx

f

d

dx
s

x

f
s

d

d

d

df

d

d

d

fd

1 1 1

2

1

2

1
2

2

α

αααα
α

and so

()ss
s

f
d

fd

d

fd T 2
2

2

2

2

∇==
α

. (3.23)

A general quadratic function can be written in the form

() cq TT ++= xbGxxx
2

1
, (3.24)

where G is a symmetric constant matrix, bT a constant vector and c a constant scalar.
The gradient of this function is

() bGxx +=∇ q (3.25)

and the Hessian matrix is

() Gx =∇ q2 , (3.26)

3. Numerical Optimisation 3.3. Basic Mathematical Background

35

where the rule for gradient of a vector product

() () () () ()xvvxuuuvvuvu ==∇+∇=∇ ,;TTT

was applied.

We see that a quadratic function has a constant Hessian and its gradient is an
affine function of x. As a consequence, for any two points the following equation
relating the gradient in these points is valid:

() () ()’"’" xxGxx −=∇−∇ qq . (3.27)

If G is nonsingular, a quadratic function has a unique stationary point
(() 0’ =∇ xq):

bGx 1’ −−= , (3.28)

which is also a minimiser if G is positive definite (see section 3.3.2). Taylor
development about the stationary point gives another form for a quadratic function

() () () ’’’

2

1
cq

T +−−= xxGxxx , (3.29)

where ’’’

2

1
Gxx Tcc −= .

In this text a term linear function1 will be used for functions of the form

() bl T += xax , (3.30)

where aT is a constant vector and b a constant scalar. Such functions have a constant
gradient

1 Mathematically this is an affine function. Linear functions are those[30] for which

() () ()yxyx bfafbaf +=+ for arbitrary x and y in the definition domain and for arbitrary constants a

and b. Affine functions are those for which () cf −x is a linear function, where c is some constant.

However, in the optimisation literature affine functions are often referred to simply as linear and this
is also adopted in this text.

3. Numerical Optimisation 3.3. Basic Mathematical Background

36

() ax =∇ l (3.31)

and zero Hessian

() 02 =∇ xl . (3.32)

3.3.2 Conditions for Unconstrained Local Minima

Consider first a line through some point x*, i.e. () sxx αα += * . Let us define a
scalar function of parameter α using values of function f on this line as

() ()()αα xff = . If x* is a local minimiser of ()xf , then 0 is clearly a local minimiser

of ()αf . From the Taylor expansion for a function of one variable about 0 then it
follows[1] that f has zero slope and non-negative curvature at 0=α . This must be
true for any line through x*, and therefore for any s. From (3.22) and (3.23) it then
follows

0* =g (3.33)

and

ssGs ∀≥ 0*T , (3.34)

where the following notation is used: ()** xff = , () ()xxg f∇= , ()** xgg = ,

() ()xxG f2∇= , and ()** xGG = . This notation will be used through this text, and

similarly ()() ()kk ff =x , etc.

Since (3.33) and (3.34) are implied by assumption that x* is a local minimiser
of f, these are necessary conditions for x* being a local minimiser. (3.33) is referred
to a first order necessary condition and (3.34) as a second order necessary condition.
This condition states that the Hessian matrix is positive semi-definite in a local
minimum.

The above necessary conditions are not at the same time sufficient, i.e. these
conditions do not imply x* to be a local minimiser. Sufficient conditions can be stated
in the following way[1]:

Theorem 3.1:

Sufficient conditions for a strict and isolated local minimiser x* of f are that f has
a zero gradient and a positive definite Hessian matrix in x*:

3. Numerical Optimisation 3.3. Basic Mathematical Background

37

0* =g (3.35)

and

00* ≠∀> ssGsT (3.36)

There are various ways how to check the condition (3.36). The most
important for practical purposes are that[27],[29] G is positive definite, the Choleski
factors of the LLT decomposition exist and all diagonal elements iil are greater than

zero, and the same applies for diagonal elements iid of the LDLT decomposition.

This can be readily verified on those algorithms which solve a system of equation
with the system matrix G in each iteration, since one of these decompositions is
usually applied to solve the system.

Some algorithms do not evaluate the Hessian matrix. These can not verify the
sufficient conditions directly. Sometimes these algorithms check only the first order
condition or some condition based on the progress during the last few iterations. It
can usually be proved that under certain assumptions iterates still converges to a
local minimum. Algorithms should definitely have the possibility of termination in a
stationary point, which is not a minimum (usually in a saddle point with indefinite
Hessian matrix). Some algorithms generate subsequent approximations of the
Hessian matrix, which converge to the Hessian in the limit when iterates approach a
stationary point. The condition can then be checked indirectly on the approximate
Hessian. More details concerning this will be outlined in the description of individual
algorithms.

3.3.3 Desirable Properties of Algorithms

A desired behaviour of an optimisation algorithm is that iterates move
steadily towards the neighbourhood of a local minimser, then converge rapidly to this
point and finally that it identifies when the minimiser is determined with a
satisfactory accuracy and terminates.

Optimisation algorithms are usually based on some model and on some
prototype algorithm. A model is some approximation (not necessarily explicit) of the
objective function, which enables a prediction of a local minimiser to be made.

A prototype algorithm refers to the broad strategy of the algorithm. Two basic
types are the restricted step approach and the line search approach, described in

3. Numerical Optimisation 3.3. Basic Mathematical Background

38

detail in the subsequent sections. There it will be also pointed out that the ideas of
prototype algorithms are usually closely associated with global convergence.

Local convergence properties of an algorithm describe its performance in the
neighbourhood of a minimum. If we define the error of the k-th iterate

() () *xxh −= kk , (3.37)

it may be possible to state some limit results for h(k). An algorithm is of course
convergent if () 0→kh . If a limit

()

()
apk

k

k
=

+

∞→ h

h 1

lim (3.38)

exists where 0>a is some constant, then we say that the order of convergence is p.
This definition can also be stated in terms of bounds if the limit does not exist: the
order of convergence is p if

()

()
apk

k

≤
+

h

h 1

(3.39)

for some constant 0>a and for each k greater than some klim. An important cases are
linear or first order convergence

()

() a
k

k

≤
+

h

h 1

(3.40)

and quadratic or second order convergence

()

()
a

k

k

≤
+

2

1

h

h
. (3.41)

The constant a is called the rate of convergence and must be less than 1 for
linear convergence. Linear convergence is only acceptable if the rate of convergence
is small. If the order and rate are 1, the convergence is sublinear (slower than all

linear convergence). This would be the case if kk 1=h .

When the order is 1, but the rate constant is 0, the convergence is superlinear
(faster than all linear convergence), i.e.

3. Numerical Optimisation 3.3. Basic Mathematical Background

39

()

() 0lim
1

=
+

∞→ k

k

k h

h
. (3.42)

Successful methods for unconstrained minimisation converge superlinearly.

Many methods for unconstrained minimisation are derived from
quadratic models. They are designed so that they work well or exactly on a quadratic
function. This is partially associated with the discussion of section 3.3.1: since a
general function is well approximated by a quadratic function, the quadratic model
should imply good local convergence properties. Because the Taylor series about an
arbitrary point taken to quadratic terms will agree to a given accuracy with the
original function on a greater neighbourhood than the series taken to linear terms, it
is preferable to use quadratic information even remote from the minimum.

The quadratic model is most directly used in the Newton method (3.5), which
requires the second derivatives. A similar quadratic model is used in restricted step
methods. When second derivatives are not available, they can be estimated in various
ways. Such quadratic models are used in the quasi-Newton methods.

Newton-like methods (Newton or quasi-Newton) use the Hessian matrix or
its approximation in Newton’s iteration (3.5). A motivation for this lies in the
Dennis-Moré theorem, which states that superlinear convergence can be obtained if
and only if the step is asymptotically equal to that of the Newton-Raphson method[1].

The quadratic model is also used by the conjugate direction methods, but in a
less direct way. Nonzero vectors () () ()nsss ...,,, 21 are conjugate with respect to a
positive definite matrix G, when

() () jis jTi ≠∀= 0Gs . (3.43)

Optimisation methods, which generate such directions when applied to a
quadratic function with Hessian G, are called conjugate direction methods. Such
methods have the following important property[1]:

Theorem 3.2:

A conjugate direction method terminates for a quadratic function in at most n
exact line searches, and each ()kx is a minimiser of that function in the set

() ()









∈+= ∑
=

k

j
j

j
j

1

1 RI,; αα sxxx (3.44)

3. Numerical Optimisation 3.3. Basic Mathematical Background

40

The above theorem states that conjugate direction methods have the property
of quadratic termination, i.e. they can locate the minimising point of a quadratic
function in a known finite number of steps. Many good minimisation algorithms can
generate the set of conjugate directions, although it is not possible to state that
superlinear convergence implies quadratic termination or vice versa. For example,
some successful superlinearly convergent Newton-like methods do not possess this
property.

It is useful to further develop the idea of conjugacy in order to gain a better
insight in what it implies. We can easily see that ()is are linearly independent. If for
example ()js was a linear combination of some other vectors ()ks , e.g.

() ()∑
≠

=
jk

k
k

j ss β ,

multiplying this with () Gs Tj would give

() () 0=jTj Gss ,

which contradicts the positive definiteness of G.

We can use vectors ()js as basis vectors and write any point as

() ()∑
=

+=
n

i

i
i

1

1 sxx α . (3.45)

Taking into account this equation,(3.29) and conjugacy, the quadratic function from
the theorem can be written as1

() () () () ()****

2

1

2

1 ααααα −−=−−= GSSxxGxx TT
q . (3.46)

We have ignored a constant term in (3.29), which has no influence on further
discussion, and written the minimiser *x of q as

() () ()∑+= i
i sxx *1* α ,

1 Notation []T

nαααα ...,,, 21= is used. Vectors denoted by Greek letters are not typed in bold, but it

should be clear from the context when some quantity is vector and when scalar.

3. Numerical Optimisation 3.3. Basic Mathematical Background

41

and S is a matrix whose columns are vectors ()is . Since ()is are conjugate with
respect to G, the product STGS is a diagonal matrix with diagonal elements id , say,

and therefore

() ()∑
=

−=
n

i
iii dq

1

2*

2

1 ααα . (3.47)

We see that conjugacy implies a coordinate transformation from x-space to
α -space in which G is diagonal. Variables in the new system are decoupled from the
point of view that ()αq can be minimised by applying successive minimisations in

coordinate directions, which results in a minimiser *α corresponding to *x in the x
space. A conjugate direction method therefore corresponds to the alternating variable
method applied in the new coordinate system. Enforcing conjugacy overcomes the
basic problem associated with the alternating variable method, i.e. the fact that
minimisation along one coordinate direction usually spoils earlier minimisations in
other directions, which is the reason for oscillating behaviour of the method shown in
Figure 3.1. Since a similar problem is associated with the steepest descent method,
conjugacy can be successfully combined with derivative methods.

A side observation is that eigenvectors of G are orthogonal vectors conjugate
to G. A quadratic function is therefore minimised by exact minimisation along all
eigenvectors of its Hessian. Construction of the conjugate direction methods will
show that there is no need to know eigenvectors of G in order to take advantage of
conjugacy, but it is possible to construct conjugate directions starting with an
arbitrary direction.

Another important issue in optimisation algorithms is when to terminate the
algorithm. Since we can not check directly how close to the minimiser the current
iterate is, the test can be based on conditions for a local minimum, for example

() ε≤kg , (3.48)

where ε is some tolerance. Sometimes it is not easy to decide what magnitude to
choose for ε , since a good decision would require some clue about the curvature in
the minimum. The above test is also dependent on the scaling of variables. Another
difficulty is that it can terminate in a stationary point that is not a minimum. When
second derivative information is available, it should be used to exclude this
possibility.

When the algorithm converges rapidly, tests based on differences between
iterates can be used, e.g.

3. Numerical Optimisation 3.4. Line Search Subproblem

42

() () ixx i
kk

ii
∀≤− + ε1 (3.49)

or

() () ε≤− +1kk ff . (3.50)

These tests rely on a prediction how much at most f can be further reduced or
x approached to the minimum.

The test

() ()kkTk gHg
2

1
, (3.51)

where H is the inverse Hessian or its approximation, is also based on predicted
change of f.

Finally, the possibility of termination when the number of iterations exceeds
some user supplied limit is a useful property of every algorithm. Even when good
local convergence results exist for a specific algorithm, this is not necessarily a
guarantee for good performance in practice. Function evaluation is always subjected
to numerical errors and this can especially affect algorithmic performance near the
solution where local convergence properties should take effect.

3.4 Line Search Subproblem

3.4.1 Features Relevant for Minimisation
Algorithms

The line search prototype algorithm sequentially minimises the objective
function along straight lines. The structure of the k-th iteration is the following:

Algorithm 3.2: Iteration of a line search prototype algorithm.

1. Determine a search direction ()ks according to some model.
2. Find ()kα , which minimises () ()()kkf sx α+ and set () () () ()kkkk sxx α+=+1 .

3. Numerical Optimisation 3.4. Line Search Subproblem

43

Finding a minimum of f on a line is referred to as the line search subproblem.

In the minimum, slope αddf must be zero, which from (3.22) gives

() () 01 =∇ + kTkf s . (3.52)

If ()ks satisfies the descent property

() () 0<kTk gs , (3.53)

then the function can be reduced in the line search for some () 0>kα unless ()kx is a
stationary point. A line search method in which search directions satisfy the descent
property is called the descent method.

The descent property is closely associated with global convergence and by
suitable choice of a line search condition it is possible to incorporate it within a
global convergence proof. Merely requiring that f is decreased in each iteration
certainly does not ensure global convergence. On the other hand, expensive high
accuracy line searches do not make sense, especially when the algorithm is far from
the solution. Therefore conditions for line search termination must be defined so that
they allow low accuracy line searches, but still enforce global convergence.

Let us write () () ()()kkff sx αα += and let ()kα denote the least positive α
for which () ()0ff =α (Figure 3.6). Negligible reductions can occur if we allow the

line search to be terminated in points close to 0 or ()kα . Line search conditions must
exclude such points, impose significant reductions of f, guarantee that acceptable
points always exist and can be determined in a finite number of steps, and should not
exclude the minimising point *a when ()αf is quadratic with positive curvature.

These requirements are satisfied by the Goldstein conditions

() () ()00 ’fff αρα +≤ (3.54)

and

() () () ()010 ’fff ραα −+≥ , (3.55)

where 




∈

2

1
,0ρ is some fixed parameter. (3.54) implies

3. Numerical Optimisation 3.4. Line Search Subproblem

44

() () () ()kTkkk ff δρ g−≥− +1 , (3.56)

where () () ()kkk xx −= +1δ . The condition 5.0<ρ ensures that when ()αf is quadratic,
the minimiser is an acceptable point, but this is not true for a general function (Figure
3.6 also shows the case where the minimiser is not an acceptable point). This
deficiency is dismissed with the Wolfe-Powell conditions

() () ()00 ’fff αρα +≤ (3.57)

and

() ()0’’ ff σα ≥ , (3.58)

where 




∈

2

1
,0ρ and ()1,ρσ ∈ . This implies

() () () ()kTkkTk δσδ gg ≥+1 . (3.59)

Let 0ˆ >α be the least positive value for which the graph ()αf intersects the line

() ()00 ff ′+ ρα (point b in Figure 3.6). If such a point exists, then an interval of

acceptable points for the Wolfe-Powell conditions exists in ()α̂,0 .

-4 -2 0 2 4 6

0

10

20

30

40

50

 f ’(0)

 f (α)

ρ f ’(0)

(1−ρ) f ’(0)

 a b
 _
 α

 σf ’(0)

 a’

Figure 3.6: Line search conditions. [a,b] is the interval of acceptable
points for Goldstein conditions, while [a’,b] is an interval of acceptable
points for the Wolfe-Powell conditions. Slopes of auxiliary lines are
denoted in the figure.

3. Numerical Optimisation 3.4. Line Search Subproblem

45

A two-sided test on the slope of f can also be used, i.e.

() ()0ff ′−≤′ σα (3.60)

together with (3.57). An interval of acceptable points exists in ()α̂,0 for this test, too,
if α̂ exists.

To ensure global convergence, line searches must generate sufficient
reduction of f in each iteration since otherwise non-minimising accumulation points
of the sequence of iterates can exist. Fulfillment of this requirement depends on the
applied line search criterion, but also on the line search directions. If these become
orthogonal to the gradient, than no reduction of f can be made. It is advantageous to
introduce some criterion to bound directions away from orthogonality to the gradient
direction.

The angle criterion is defined as

() kk ∀−≤ µπθ
2

, (3.61)

where 0
2

>> µπ
 is a fixed constant and ()kθ is the angle between the gradient of f

and the search direction, i.e.

()
() ()

() () 











= −

22

1cos
kk

kTk

k

sg

sg
θ . (3.62)

The following global convergence theorem then holds[1]:

Theorem 3.3:

For a descent method with Wolfe-Powell line search conditions, if f∇ is

uniformly continuous on the level set () (){ }1; ff <xx and if the angle criterion

(3.61) holds, then either () −∞→kf or () 0→kg .

Considering practical algorithms, the steepest descent method satisfies the
angle criterion. Newton-like algorithms (section 3.5) define the search direction as

() () ()kkk gHs −= . (3.63)

3. Numerical Optimisation 3.4. Line Search Subproblem

46

If ()kH is positive definite, then ()ks is a descent direction. In this case a sufficient
condition is that the spectral condition number ()kκ of ()kH is bounded above for
every k. The spectral condition number of a matrix is the ratio between its largest and
smallest eigenvalues (nλλ1). The relations[29],[33]

212
gHg λ≤ and ggHGg T

n
T λ≥

hold for any matrix H and vector g, and this implies an estimation

()
()k

k

κ
πθ 1

2
−≤ ,

which implies the above statement.

A much weaker criterion can be used in place of the angle criterion in
Theorem 3.3, namely

()∑ ∞=
k

kθ2cos . (3.64)

in this case () 0inflim =kg , which means that () 0→kg on a subsequence[1].

3.4.2 Derivative Based Line Search Algorithms

Line search algorithms[1],[4] ,[13] consist of two parts. The first one is the
bracketing stage, which finds a bracket, that is an interval known to contain
acceptable points. The second part is the sectioning stage, in which a sequence of
brackets whose length tends to zero is generated. It is advantageous to use some
interpolation of ()αf in this stage in order to find an acceptable point which is close
to the minimiser.

If f is not bounded below, it can happen that an interval of acceptable points
does not exist. It is therefore advisable to supply a lower bound (f , say) so that all

points for which () faf ≤ are considered acceptable. The line search can then be
restricted to the interval],0(µ , where µ is the point at which the ρ -line reaches the

level f , i.e.

()
()0

0

f

ff
′

−=
ρ

µ . (3.65)

3. Numerical Optimisation 3.4. Line Search Subproblem

47

In the bracketing stage iα is set in increasingly large jumps until a bracket

[]ii ba , on an interval of acceptable points is located. An algorithm suitable when

objective function derivatives are available is given below.

Algorithm 3.3: Bracketing stage of line search.

Initially 00 =α and 1α is given so that µα ≤< 10 . For each i the following

iteration is repeated:
1. Evaluate ()if α and ()if α′ .

2. If () ff i ≤α then terminate line search.

3. If () () ()00 fff ii ′+> ραα or () ()1−≥ ii ff αα then

set 1−= ii αα and iib α= , terminate bracketing.

4. If () ()0ff i ′−≤′ σα then terminate line search.

5. If () 0≥′ if α then

set iia α= and 1−= iib α , terminate bracketing.

6. If ()11 2 −− −+≤ iii αααµ then set µα =+1i , else

choose () ()()[]11111 ,min,2 −−−+ −+−+∈ iiiiiii ααταµαααα

1τ is a pre-set factor for which size of the jumps is increased, e.g. 10. Lines 2
to 5 terminate the bracketing stage, if a suitable bracket is located, or the whole line
search, if an acceptable point or point for which () ff i ≤α is found. If neither of

these situations take place in the current iteration, the search interval is extended
(line 6). In this case it is convenient to choose 1+iα as a minimiser of some

interpolation of ()αf , e.g. a cubic polynomial constructed using ()1−if α , ()1−′ if α ,

()if α and ()if α′ .

If an acceptable point is not found in the bracketing stage, then a bracket
[]ii ba , is located, which contains an interval of acceptable points with respect to

conditions (3.54) and (3.60). The bracket satisfies the following properties:

a. ia is the current best trial point that satisfies (3.54) (it is possible that ii ab < , i.e.

the bracket is not necessarily written with ordered extreme points).
b. () () 0<′− iii afab , but ()iaf ′ does not satisfy (3.60).

c. either () () ()00 fbfbf ii ′+> ρ or () ()ii afbf ≥ or both.

3. Numerical Optimisation 3.4. Line Search Subproblem

48

The sectioning stage is then performed in which the bracket is sectioned so
that the length of subsequently generated brackets []jj ba , tend to zero. In each

iteration a new trial point jα is chosen and the next bracket is either []jja α, ,

[]jj a,α , or []jj b,α or, so that the above described properties remain valid. The

algorithm terminates when the current trial point jα is acceptable with respect to

(3.54) and (3.60).

Algorithm 3.4: Sectioning stage of the line search

A bracket []00 ,ba is first available from the bracketing stage. The j-th iteration is

then:
1. Choose () ()[]jjjjjjj abbaba −−−+∈ 32 , ττα ,

evaluate ()jf α and ()jf α′ .

2. If () () ()00 fff jj ′+> αρα or () ()jj aff ≥α , then

set jj aa =+1 and jjb α=+1 , begin the next iteration.

3. If () ()0ff j ′−≤′ σα , then terminate the line search.

4. Set jja α=+1

If () () 0≥′− jjj fab α then set jj ab =+1 , else set jj bb =+1 .

1τ and 2τ are prescribed constants (2
1

310 ≤≤≤ ττ , στ ≤2), which prevent

jα being arbitrarily close to ja or jb . Then

() jjjj abab −−≤− ++ 211 1 τ (3.66)

holds and the interval length therefore tends to zero. Their values can be for example

10
1

2 =τ and 2
1

3 =τ . The choice of jα in line 1 can again be made by minimisation of

some interpolation of ()αf .

If ρσ > then the algorithm terminates in a finite number of steps with jα which is

an acceptable point with respect to (3.54) and (3.60) [1].

In practice it can happen that the algorithm does not terminate because of
numerical errors in the function and its derivatives. It is therefore advisable to

3. Numerical Optimisation 3.4. Line Search Subproblem

49

terminate if () () εα ≤′− jjj afa , where ε is some tolerance on f, with indication that

no further progress can be made in the line search.

It is advantageous if a good initial choice 1α (i.e. close to the line minimiser)
can be made before the beginning of the bracketing stage. Some algorithms can give
an estimation of likely reduction in the objective function in the line search f∆ . This
can be used in the quadratic interpolation of f, giving

()0
21 f

f
′
∆−=α . (3.67)

A suitably safeguarded reduction in the previous iterate can be used as estimation of
f∆ , e.g. () ()()ε10,max 1 kk fff −=∆ − , where ε is the same tolerance as above. In the

Newton-like methods (section 3.5) the choice 11 =α is significant in giving rapid
convergence. Therefore the choice

()





′
∆−=

0
2,1min1 f

fα (3.68)

is usually made. The choice 11 =α is always made when iterates come close to the
minimiser, if the method is superlinearly convergent.

3.4.3 Non-derivative Line Search Algorithms

If the line search is performed in an algorithm where derivatives are
evaluated numerically by finite difference approximation, then ()αf ′ can also be
approximated numerically and the line search strategy described in the previous
section can be used. There also exist methods, which perform line searches, but do
not use derivative information (e.g. direction set methods). In these methods non-
derivative line search algorithms are used.

In the absence of derivative information, the criteria for acceptable points
described in the previous section can not be applied. None-derivative line search
methods rely on the fact that if we have three points a, b and c such that

() () () ()cfbfafbfcba <∧<∧<< , (3.69)

3. Numerical Optimisation 3.4. Line Search Subproblem

50

then f has at least one local minimum in the interval []ca, . It is then possible to
section this interval, keeping three points, which satisfy the above relation through
iterates.

The non-derivative line search also consists of a bracketing and sectioning
stage. In the bracketing stage a triple of points { }111 ,, cba that satisfy (3.69) is found
in the following way:

Algorithm 3.5: Sectioning stage of a non-derivative line search.

Given 00 =α , ()00 αff = , 1α and ()11 αff = such that 01 ff < , the i-th

iteration is as follows:
1. Set ()111 −− −+= iiii ααζαα , evaluate ()ii ff α= .

2. If ffi < , accept iα and terminate the line search.

3. If 1−> ii ff , set 21 −= ia α , 11 −= ib α and ic α=1 , terminate bracketing.

Again f is some user defined value, so that the point with value of f lesser

than f is automatically accepted as the line minimum. 11 >ζ is some factor which

ensures that trial intervals are progressively enlarged, e.g. 22 =ζ .

The algorithm assumes that initially 01 ff < . If 01 ff > , the algorithm can

simply change 0α and 1α before the first iteration begins. The other possibility is to

try with 1αα −=′ . If () 0fff >′=′ α , we can immediately terminate bracketing with

α ′=1a , 001 ==αb and 10 α=c , otherwise we change 0α and 1α and set αα ′=3 .

The sectioning stage (Figure 3.7) is described below.

Algorithm 3.6: Sectioning stage of a non-derivative line search.

Given a triple of points { }111 ,, cba , which satisfy (3.69), the j-th iteration is as
follows:

1. Choose
() ()[]
() ()[] 











−−−+

−−−+
∈

jjjjjj

jjjjjj
j

bccbcb

abbaba

22

22

,

,,

ζζ
ζζ

α , evaluate () ()j
jf α= .

2. If ff j < , then accept jα and terminate the line search.

3. If []11, −−∈ jjj cbα , interchange ja and jc .

3. Numerical Optimisation 3.4. Line Search Subproblem

51

4. If jj b<α , set jj aa =+1 , jjb α=+1 and jj bc =+1 , go to line 6.

5. If jj b≥α , set jja α=+1 , jj bb =+1 and jj cc =+1 , go to line 6.

6. Check convergence criterion. If the criterion is satisfied, then terminate with jb

as the line minimum.

A triple of points { }jjj cba ,, satisfies the condition (3.69) through all

iterations. Parameter 2ζ (2
1

20 <<ζ) ensures that the lengths of successive brackets

[]jj ca , tend to zero. 1.02 =ζ is a reasonable choice.

-4 -2 0 2 4 6

0

10

20

30

40

50
f(x)

a1 b1 c1�1 �2a2 b2 c2
b3a3 c3

�*

Figure 3.7: Sectioning stage of the non-derivative line search in the
case when interpolation is not applied.

jα can be chosen as the minimiser of a quadratic interpolation of f, i.e. a

parabola through the points ()()jj afa , , ()()jj bfb , and ()()jj cfc , . The formula of

such parabola is

() () ()()
()() () ()()

()() () ()()
()()bcac

bxax
cf

cbab

cxax
bf

caba

cxbx
afp

−−
−−+

−−
−−+

−−
−−=α

and its minimiser is

3. Numerical Optimisation 3.4. Line Search Subproblem

52

() () ()[] () () ()[]
() () ()[] () () ()[]afbfcbcfbfab

afbfcbcfbfab
b

−−−−−
−−−−−+=

22

min 2

1α , (3.70)

where indices j have been omitted.

If mina is an element of the acceptable interval in line 1 of the above

algorithm, then minαα =j is set. Otherwise the longer jα is obtained by sectioning

the longer of both intervals. If the longer interval is []jj ba , , then

()jjjj aba −
+

+=
τ

τα
1

, (3.71)

where τ is some fixed parameter such that 215.0 ζτ −<< .

A common choice is the golden section ratio () 618.1251 ≈+=τ . It follows

from the request that when a new point jα is inserted in []jj ba , , both potentially

new brackets have the same interval length ratio
11

11

++

++

−
−

jj

jj

ab

bc
 (i.e. τ1), which then

gives () 251+=τ . This request can be applied when pure bracketing takes place
and also the initial triple has the same interval length ratio.

The convergence can be checked either on function values, e.g.

() ()() () ()(){ } ε<−− jjjj bfcfbfaf ,max (3.72)

or on interval length, i.e.

ε<− jj ac . (3.73)

3. Numerical Optimisation 3.5. Newton-like Methods

53

3.5 Newton-like Methods

Newton-like methods are based on a quadratic model, more exactly on the
second-order Taylor approximation (equation) of ()xf about x(k). The basic ideas
around this were explained in sections 3.1.2 and 3.3 and will be further developed in
this section.

In section 3.1.2 Newton’s method was derived from the solution of the
system of equations

() 0=∇ xg ,

where the iteration formula was derived from the first order Taylor’s approximation
of g(x), giving iteration formula (3.5). Two problems related with direct application
of the method were mentioned there, i.e. lack of global convergence properties and
explicit use of the second order derivative information regarding the objective
functions. Some general ideas on how to overcome these problems were outlined in
section 3.3 and will be further developed in this section for algorithms, which in
principle stick with the basic idea of Newton’s method.

In order to take over and develop the ideas given in section 3.3, let us start
from the second order Taylor approximation of f itself, developed around the current
iterate:

()() ()() () () ()δδδδδ kTTkkkk fqf Ggx
2

1++=≈+ . (3.74)

Using the results of section 3.3, the stationary point of this approximation is a
solution of a linear system of equations

() ()kk gG −=δ . (3.75)

It is unique if G(k) is non-singular and corresponds to a minimiser if G(k) is positive
definite. Newton’s method is obtained by considering ()kδ as solution of the above
equation and setting the next guess to () ()kk δ+x . The k-th iteration of Newton’s
method is then

1. Solve (3.75) for ()kδ ,
2. Set () () ()kkk δ+=+ xx 1 .

3. Numerical Optimisation 3.5. Newton-like Methods

54

This is well defined as a minimisation method only if G(k) is positive definite
in each iteration, and this can be readily checked if for example LDLT
decomposition is used for solution of (3.75). However, even if G(k) is positive
definite, the method may not converge from any initial guess, and it can happen that

(){ }kf do not even decrease.

Line search can be used to eliminate this problem. The solution of (3.75) then
defines merely the search direction, rather than correction ()kδ . The correction is
then obtained by line minimisation using algorithms described in section 3.4.2, and
such a method is called Newton’s method with line search. The direction of search is

() () ()kkk gGs
1−−= . (3.76)

If G(k) and hence its inverse are positive definite, this defines a descent
direction. If G(k) is not positive definite, it may be possible to make a line search in

()ks± , but the relevance of searching in ()ks− is questionable because this is not a
direction towards a stationary point of ()δq . Furthermore, the method fails if any

()kx is a saddle point of f. This gives () 0=ks , although ()kx is not a minimiser of f.

One possibility of how to overcome this problem is to switch to the steepest
descent direction whenever G(k) is not positive definite. This can be done in
conjunction with the angle criterion (3.61) to achieve global convergence.

Minimising in the steepest descent directions can lead to undesired oscillatory
behaviour where small reductions of f are achieved in each iteration. This happens
because second order model information is ignored, as shown in section 3.3.3. The
alternative approach is to switch between the Newton and steepest descent direction
in a continuous way, controlling the influence of both through some adaptive
weighting parameter. This can be achieved by adding a multiple of the unit matrix to
G(k) so that the search direction is defined as

()() () ()kkk gsG −=Ι+ν . (3.77)

Parameter ν is chosen so that () Ι+νkG is positive definite. If G(k) is close to
positive definite, a small ν is sufficient and the method therefore uses the curvature
information to a large extent. When large values of ν are necessary, the search
directions becomes similar to the steepest descent direction ()kg− .

This method still fails when some ()kx is a saddle point, and the second order
information is not used in the best possible way. Further modification of the method
incorporates the restricted step approach in which minimisation of the model

3. Numerical Optimisation 3.5. Newton-like Methods

55

quadratic function subjected to length restriction is minimised. This is a subject of
section 3.7.

3.5.1 Quasi-Newton Methods

In the Newton-like methods discussed so far the second derivatives of f are
necessary and substantial problems arise when the Hessian matrix of the function is
not positive definite. The second derivatives of ()kG can be evaluated by numerical
differentiation of the gradient vector. In most cases it is advisable that after this
operation G is made symmetric by ()TGGG += 2

1 , where G is the finite difference

approximation of the Hessian matrix. However, evaluation of G can be unstable in
the presence of numerical noise, and it is also expensive, because quadratic model
information built in the previous iterates is disregarded.

The above mentioned problems are avoided in so called quasi-Newton

methods. In these methods () 1−kG are approximated by symmetric matrices ()kH ,
which are updated from iteration to iteration using the most recently obtained
information. Analogous to Newton’s method with line search, line minimisations are
performed in each iteration in the direction

() () ()kkk gHs −= . (3.78)

By updating approximate 1−G rather than G, a system of equations is avoided and
the search direction is obtained simply by multiplication of the gradient vector by a
matrix. An outline of the algorithm is given below:

Algorithm 3.7: General quasi-Newton algorithm.

Given a positive definite matrix ()1H , the k-th iteration is:
1. Calculate ()ks according to (3.78).
2. Minimise f along ()ks , set () () () ()kkkk sxx α+=+1 , where ()kα is a line minimum.
3. Update ()kH to obtain ()1+kH .

If no second derivative information is available at the beginning, ()1H can be any
positive definite matrix, e.g. () IH =1 . The line search strategy described in section
3.4.2 can be used in line 2. If ()kH is positive definite, the search directions are
descent. This is desirable and the most important are those quasi-Newton methods,
which maintain positive definiteness of H(k).

3. Numerical Optimisation 3.5. Newton-like Methods

56

The updating formula should explicitly use only first derivative information.

Repeated updating should change arbitrary ()1H to a close approximation of () 1−kG
The updating formula is therefore an attempt to augment the current ()kH with
second derivative information gained in the current iteration, i.e. by evaluation of f
and f∇ at two distinct points. In this context equation (3.27), which relates the
Hessian matrix of a quadratic function with its gradient in two distinct points,
requires attention.

Let us write

() () ()kkk xx −= +1δ (3.79)

and

() () ()kkk gg −= +1γ . (3.80)

Using the Taylor series of g about ()kx gives a relationship similar to (3.27), i.e.

() () () ()()kkkk o δδγ += G . (3.81)

The updating formula should therefore correct ()1+kH so that the above relation

would hold approximately with () 11 −+kH in place of ()kG . This gives the so called
quasi-Newton condition, in which the updating formula must satisfy

() () ()kkk δγ =+1H . (3.82)

Since this condition gives only one equation, it does not uniquely define the
updating formula and permits various ways of updating H. One possibility is to add a
symmetric rank one matrix to ()kH , i.e.

() () Tkk uuHH +=+1 . (3.83)

Substituting this into (3.82) gives

() () () ()kkTkk δγγ =+uuH . (3.84)

Since () ()kT γu is a scalar, matrix multiplication is associative and multiplication with

a scalar is commutative, u must be proportional to () () ()kkk γδ H− . Writing

3. Numerical Optimisation 3.5. Newton-like Methods

57

() () ()()kkka γδ Hu −=

and inserting this into (3.84) gives () () ()() ()kTkkka γγδ H−=1 and therefore

() ()
() () ()() () () ()()()

() () ()()() ()kTkkk

Tkkkkkk
kk

γγδ
γδγδ

H

HH
HH

−
−−+=+1 . (3.85)

This formula is called the rank one updating formula according to the above
derivation.

For a quadratic function with positive definite Hessian the rank one method
terminates in at most n+1 steps with () 11 −+ = GH n , provided that () ()nδδ ...,,1 are
independent and that the method is well defined[1]. The proof does not require exact
line searches. Also the so called hereditary property can be established, i.e.

() () () 1...,,2,1,i −== ijjj δγH . (3.86)

A disadvantage is that in general the formula does not maintain positive definiteness
of ()kH and the dominator in (3.85) can become zero.

Better formulas can be obtained by allowing the correction to be of rank two.
This can always be written[29],[31] as

() () TTkk vvuuHH ++=+1 . (3.87)

Using this in the quasi-Newton condition gives

() () () () ()kTkTkkk γγγδ vvuuH ++= . (3.88)

u and v can not be determined uniquely. A straightforward way of satisfying the
above equation is to set u proportional to ()kδ and v proportional to () ()kk γH . By
solution of the equation separately for both groups of proportional vectors the
Davidon – Fletcher - Powell or DFP updating formula is obtained:

()
γγ

γγ
γδ

δδ
H

HH
HH

T

T

T

T
k

DFP −+=+1 . (3.89)

Indices k have been omitted for the sake of simplicity (this approach will be adopted
through this section) and the symmetry of H is used.

3. Numerical Optimisation 3.5. Newton-like Methods

58

Another rank two updating formula can be obtained by considering updating

and approximating G instead of 1−G . Let us write () () 1−= kk HB and consider
updating ()kB in a similar way as ()kH was updated according to the DFP formula.
We require that the quasi-Newton condition (3.82) is preserved. This was true for the
DFP formula, but now we are updating inverse of ()kH , therefore, according to
(3.82), ()kγ and ()kδ must be interchanged. This gives the formula

()
δδ

δδ
δγ

γγ
B

BB
BB

T

T

T

T
k

BFGS −+=+1 . (3.90)

We however still want to update ()kH rather than ()kB , because a solution of system
of equations is in this way avoided in the quasi-Newton iteration. The following
updating formula satisfies () () IHB =++ 11 k

BFGS
k

BFGS :

()





 +−





++=+

γδ
γδδγ

γδ
δδ

γδ
γγ

T

TT

T

T

T

T
k

BFGS

HHH
HH 11 . (3.91)

This is called the Broyden – Fletcher – Goldfarb – Shanno or BFGS updating
formula.

The BFGS and the DFP formula are said to be dual or complementary
because the expressions for ()1+kB and ()1+kH in one are obtained by interchanging

HB ↔ and δγ ↔ in the other. Such duality transformation preserves the quasi-
Newton condition. The rank one formula is self-dual.

The DFP and BFGS updating formula can be combined to obtain the so
called Broyden one-parameter family of rank two formulae:

() () ()111 1 +++ +−= k
BFGS

k
DFP

k HHH φφφ . (3.92)

This family includes the DFP and BFGS and also rank 1 formula. The quasi-Newton
method with a Broyden family updating formula has the following properties[1]:

1. For a quadratic function with exact line searches:
• The method terminates in at most n iterations with () 11 −+ = GH n .
• Previous quasi-Newton conditions are preserved (hereditary property (3. 86)).
• Conjugate directions are generated, and conjugate gradients when () IH =0 .
2. For general functions:
• The method has superlinear order of convergence.
• The method is globally convergent for strictly convex functions if exact line

searches are performed.

3. Numerical Optimisation 3.5. Newton-like Methods

59

The Broyden family updates maintain positive definiteness of ()1+k
φH for

0≥φ .

Global convergence has also been proved for the BFGS method with inexact
line searches subject to conditions (3.56) and (3.59), applied to a convex objective
function[1]. The BFGS method with inexact line searches converges superlinearly if

()*G is positive definite.

The BFGS method also shows good performance in numerical experiments.
The method is not sensitive to exactness of line searches, in fact it is a generally
accepted opinion that inexact line searches are more efficient with the BFGS method
than near exact line searches. The contemporary optimisation literature[1],[4] suggests
the BFGS method as preferable choice for general unconstrained optimisation based
on a line search prototype algorithm.

3.5.2 Invariance Properties

It is important to study how optimisation algorithms perform when affine
transformation of variables is made, i.e.

aAxy += , (3.93)

where A is nonsingular. This is a one-to-one mapping with inverse transformation

()ayAx −= −1 .

f can be evaluated either in x space (denoted by ()xxf) or in y space (denoted by

() ()()ayAy −= −1
xy ff).

Applying the chain rule for derivation in x space gives

()∑∑
== ∂

∂=
∂
∂

∂
∂=

∂
∂ n

k k
ik

T
n

k ki

k

i yyx

y

x 11

A , (3.94)

therefore y
T

x ∇=∇ A and so

y
T

x gAg = . (3.95)

3. Numerical Optimisation 3.5. Newton-like Methods

60

Applying the gradient operator to the above equation then gives

AgAg T
yy

TT
xx ∇=∇ , i.e.

AGAG y
T

x = . (3.96)

The notation yyy f∇=g , etc. was used, so that for example

[]
ji

y

ijy yy

f

∂∂
∂

=
2

G .

The following theorem[1] applies to Newton-like methods:

Theorem 3.4:

If ()kH transforms under transformation (3.93) as

() () kTk
y

k
x ∀= −− AHAH 1 , (3.97)

then a Newton-like method with fixed step ()kα is invariant under the
transformation (3.93). A method is also invariant if ()kα is determined by tests

on ()kf , () ()kTk sg or other invariant scalars.

Transformation (3.97) in the above theorem is obtained by inverting (3.96),
since ()kH approximate ()kG in the quasi-Newton methods.

We see that the steepest descent method (treated as quasi-Newton method
with () IH =k) is not invariant under transformation (3.93) because I does not
transform correctly. Modified Newton methods are also not invariant because

IG ν+ does not transform correctly when 0>ν .

For a quasi-Newton method to be invariant, ()1H must be chosen so as to
transform correctly (as (3.97)) and the updating formula must preserve the
transformation property (3.97). Therefore, if () IH =1 is chosen, then invariance does

not hold. () ()() 111 −= xGH transforms correctly and therefore this choice does not
affect invariance.

3. Numerical Optimisation 3.5. Newton-like Methods

61

In order to show that a specific updating formula preserves the transformation
property (3.97), we must show that () ()k

y
Tk

x HAAH = (which is (3.97) pre-multiplied

by A and post-multiplied by AT) which implies () ()11 ++ = k
y

Tk
x HAAH . Let us do this for

the DFP formula

()

xx
T

x

x
T

xxx

x
T

x

T
xx

x
k

x γγ
γγ

γδ
δδ

H

HH
HH −+=+1 . (3.98)

We will pre-multiply the above equation by A and post-multiply it by AT and
use relations yx δδ =A following from (3.93) and y

T
x γγ A= following from (3.95).

We will consider individual terms in equation (3.98).

The first term on the right-hand side of (3.98) gives, after multiplication, ()k
yH

by assumption. Consider then the denominator of the second term:

() y
T

yy
T

xx
TTT

xx
T

x γδγδγδγδ === − AAA ,

the denominator is invariant. The numerator after multiplication gives

T
yy

TT
xx δδδδ =AA ,

so the second term transforms correctly. Consider the denominator of the third term:

()
yy

T
y

x
T

y

T

x
T

x
TT

x
T

xxx
T

x

γγ

γγγγγγ

H

AHAAAAHAH === −−−−1

,

the denominator is invariant under transformation. The numerator after
multiplication is

()
y

T
yyy

y

T

x
T

yy
T

x
T

xx
TT

x
T

x
T

xxx

HH

HAHAAHAAAAHAHAH

γγ

γγγγγγ === −−− 1

,

so the third term is also transformed correctly. () ()11 ++ = k
y

Tk
x HAAH is valid since

()

yy
T

y

y
T

yyy

y
T

y

T
yy

y
Tk

x γγ
γγ

γδ
δδ

H

HH
HAAH −+=+1

3. Numerical Optimisation 3.5. Newton-like Methods

62

and this is the DFP formula in the y space.

Similarly the preservation of (3.97) can be proved for all updating formulas in
which the correction is a sum of rank one terms constructed from vectors δ and γH ,
multiplied by invariant scalars. Such versions are the BFGS formula and hence all
Broyden family formulas.

The Broyden family (including BFGS and DFP) algorithms are therefore
invariant under the affine transformation of variables (3.93), provided that ()1H is
chosen so as to transform correctly, i.e. as (3.97). However, even if ()1H is not

chosen correctly, after n iterations we have () () 111 −++ ≈ nn GH , which is transforms
correctly. The method therefore becomes close to the one in which invariance is
preserved.

Invariance to an affine transformation of variables is a very important
algorithmic property. Algorithms which have this property, are less sensitive to
situations in which G is ill-conditioned, since an implicit transformation which
transforms G to the unity matrix I can be introduced, which does not change the
method. Algorithms that are not invariant, i.e. the steepest descent or the alternating
variables method, can perform very badly when the Hessian is ill-conditioned.

When using methods which are not invariant, it can be advantageous to find a
linear transformation which improves the conditioning of the problem[14].

If columns of A are eigenvectors of G, then G is diagonalised when
transformation (3.96) is applied. Conditioning can be achieved by additional scaling
of variables, i.e. by multiplication with a diagonal matrix. This approach is however
not applicable in practice because it is usually difficult to calculate eigenvectors of
G. For positive definite G the same effect is achieved by using Choleski factors of G
as the transformation matrix. AAG T

x = gives

IAAAAAGAG === −−−− 11 TT
x

T
y .

It is often possible to improve conditioning just by scaling the variables. In
this case A is chosen to be a diagonal matrix so that 2A estimates xG in some sense.

1−−= AGAG x
T

y (from (3.96)) is required to be close to the unity matrix in some

sense. It can be required, for example, that [] i
ii

y ∀=1G . It is usually not necessary

to explicitly perform the scaling, but I can be replaced in the methods by a suitable
diagonal matrix. For example, the modified Newton method can be improved by
using 2−+ AG ν in place of Ι+νG .

3. Numerical Optimisation 3.6. Conjugate Direction Methods

63

3.6 Conjugate Direction Methods

Optimisation algorithms described in this section are based on the result
given in Theorem 3.2, which associates conjugacy and exact line searches with
quadratic termination. These algorithms rely on an idealized assumption that exact
line searches are performed as in Algorithm 3.2. This is possible for a quadratic
function, but not in general. By using interpolation in the line search algorithm, it is
still possible to locate a local minimum up to a certain accuracy, and this approach is
used in practice with the conjugate direction methods. An argument which justifies
this is that in the close neighbourhood of a minimum, quadratic interpolations of the
objective functions will enable the line minimum to be located almost exactly, so that
the inexact nature of the line search algorithm will not spoil local convergence
properties, which are theoretically based on the assumption of exact line search.

In section 3.6.1 derivative based conjugate direction methods are described.
In section 3.6.2 algorithms based on the idea of conjugacy, but in the absence of
derivative information are treated. All the described methods generate conjugate
directions when they are applied to a quadratic function.

3.6.1 Conjugate Gradient Methods

Conjugate gradient methods begin with line search along

() ()11 gs −= (3.99)

and then generate search directions () 1,1 ≥+ kks from ()1+− kg , so that they are

conjugate to () ()kss ...,,1 with respect to the Hessian matrix G when a method is
applied to a quadratic function.

For a quadratic function it follows from (3.27) that

() () kkk ∀= δγ G , (3.100)

where () () ()kkk gg −= +1γ and () () ()kkk xx −= +1δ , as usual. Conjugacy conditions (3.43)
can therefore be written as

3. Numerical Optimisation 3.6. Conjugate Direction Methods

64

() () ijjTi ≠= 0γs (3.101)

since () () ()jjjj sGG αδγ == . The last expression is a consequence of the fact that
()1+jx is obtained by a line search performed from ()jx along ()js .

The above equation can be used to prove an important property. First we can
see that

() iiTi ∀=+ 01gs , (3.102)

because exact line searches are used. By using the above equation and (3.101) we
obtain

() ()

()() () () () () () ()()
()() () () () ()() ikiiikkTi

iikkkkTi

kTi

>∀=+++

=+−+−+−

=

++

++−+

+

,0...

...
11

1111

1

gs

ggggggs

gs

γγγ

, (3.103)

This means that ()1+kg is orthogonal to all search directions of previous steps:

() () kikkTi ≤∀=+ ,01gs . (3.104)

This is actually the result of Theorem 3.2.

In the Fletcher-Reeves method ()1+ks is obtained from ()1+− kg by the extended

Gramm-Schmidt orthogonalisation[27],[29] with respect to () kji ≤,γ , in order to
satisfy conjugacy conditions (3.101). We can write1

() () () ()∑
=

++ +−=
k

j

jjkk

1

11 sgs β . (3.105)

Multiplying the transpose of the above equation by ()iγ gives

() () () () () () ()iTiiiTkiTk γβγγ sgs +−== ++ 11 0 , (3.106)

1 The derivation of the Fletcher-Reeves method was found to be not completely clear in some
optimisation literature and is therefore included herein.

3. Numerical Optimisation 3.6. Conjugate Direction Methods

65

where (3.101) was taken into account. It follows that

()
() ()

() ()

() () ()()
() () ()()iiTi

iiTk

iTi

iTk
i

ggs

ggg

s

g

−
−==

+

+++

1

111

γ
γβ . (3.107)

It follows from construction of ()ks ((3.99) and (3.105)) that vectors () ()kgg ...,,1 and
() ()kss ...,,1 span the same subspace. Therefore, since ()1+kg is orthogonal to the

subspace spanned by () ()kss ...,,1 due to (3.104), it is also orthogonal to vectors
() ()kgg ...,,1 , i.e.

() () kikkTi ≤∀=+ ,01gg (3.108)

We see that only () 0≠kβ and that

()
() () ()()
() () ()()

() ()

() ()kTk

kTk

kkTk

kkTk
k

gs

gg

ggs

ggg 11

1

11 ++

+

++

−=
−
−=β (3.109)

The denominator of the above equation can be obtained by substituting ()ks by
(3.105) with decreased indices and taking into account that only ()1−kβ is non-zero,
together with the established orthogonality properties:

() () () () ()() () () ()kTkkTkkkkTk gggsggs −=+−= −− 11β .

Now we have

()
() ()

() ()kTk

kTk
k

gg

gg 11 ++

=β . (3.110)

The obtained results can be summarized in the following way:

Theorem 3.5:

The Fletcher-Reeves method with exact line searches terminates for a quadratic
function at a stationary point 1+mx after nm ≤ iterations. In addition, the
following results hold for mi ≤≤1 :

() () 1...,,2,1;0 −== ijjTi Gss (conjugate directions), (3.111)

3. Numerical Optimisation 3.6. Conjugate Direction Methods

66

() () 1...,,2,1;0 −== ijjTi gg (orthogonal gradients) (3.112)
and

() () () ()iTiiTi gggs −= (descent conditions). (3.113)

The termination must occur in at least n iterations because in the opposite
case () 01 ≠+ng would contradict the result that gradients are orthogonal.

When applied to a quadratic function with positive definite G, the Fletcher-
Reeves method turns to be equivalent to the Broyden family of methods if () IH =1 ,
the starting point is the same and exact line searches are performed in both
methods[1],[4]. For non-quadratic functions line search Algorithm 3.4 is recommended
with 1.0=σ . Resetting the search direction to the steepest descent direction
periodically after every n iterations is generally an accepted strategy in practice.
When compared with quasi-Newton methods, conjugate gradient methods are less
efficient and less robust and they are more sensitive to the accuracy of the line search
algorithm. Methods with resetting are globally convergent and exhibit n-step
superlinear convergence, i.e.

()

() 0lim
*

*

=
−

−+

∞→ xx

xx
k

nk

k
(3.114)

Some other formulas may be used instead of (3.110). Examples are the
conjugate descent formula

()
() ()

() ()kTk

kTk
k

sg

gg 11 ++

=β (3.115)

and the Polak-Ribiere formula

()
() ()() ()

() ()kTk

kTkk
k

gg

ggg 11 ++ −=β . (3.116)

Considering the derivation of the Fletcher-Reeves method, it can be seen that these
formulas are equivalent to the Fletcher-Reeves formula when applied to quadratic
functions with exact line searches. The conjugate descent formula has a strong

3. Numerical Optimisation 3.6. Conjugate Direction Methods

67

descent property that () () 0<kTk gs if () 0≠kg . The Polak-Ribiere formula is
recommended when solving large problems[1].

Another possibility for conjugate gradient methods is to use symmetric
projection matrices in the calculation of ()1+ks , which annihilate vectors () ()kk γγ ...,, :

() () () nkkkk ...,,2,1, =−= gPs . (3.117)

Initially

() IP =1 (3.118)

and subsequent ()kP are updated as

() ()
() () () ()

() () ()kkTk

kTkkk
kk

γγ
γγ
P

PP
PP −=+1 . (3.119)

Again this method is equivalent to other described methods for quadratic functions.
When applied to general functions, ()iP must be reset to I every n iterations since

() 01 =+nP . The method has the descent property () () 0≤kTk gs , but has a disadvantage
that matrix calculations are required in each iteration.

3.6.2 Direction Set Methods

Direction set methods[1],[26] generate conjugate directions with respect to the
Hessian matrix G, when they are applied to a quadratic function, without use of
derivative information. Construction of the conjugate direction is based on the
following theorem[1]:

Theorem 3.6: Parallel subspace property

Let us have a quadratic function ()xq with a positive definite Hessian matrix G .

Consider two parallel subspaces 1S and 2S , generated by independent directions
() ()kss ...,,1 (nk <) from the points ()1v and ()2v , such that 21 SS ≠ , i.e.

() ()







 ∀+== ∑

=

k

i
i

i
iS

1

1
1 ; αα svxx

3. Numerical Optimisation 3.6. Conjugate Direction Methods

68

and similarly 2S . Let ()1z be the point which minimises q on 1S and ()2z the

point which minimises q on 2S Then () ()12 zz − is conjugate to () ()kss ...,,1 with

respect to G , i.e. () ()() () kiiT
...,,1,012 ==− sGzz .

The above theorem is outlined for two dimensions in Figure 3.8. Although
instructive, a two-dimensional representation is not completely satisfactory because
the complement of the vector space spanned by ()1s is one dimensional and therefore
the line () () ()()121 zzz −+α contains a minimum of ()2, xxq i . Also the parallel

subspaces are only one dimensional.

-2 -1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

2

v(1)

v(2)

z(2)

z(1)

s(1)

s(1)

min q(x)

z(2)+α (z(2)-z(1))

Figure 3.8: The parallel subspace property in two dimensions.

In the direction set methods, conjugate directions ()is are generated one by
one by minimising the function in a subspace spanned by previously constructed

() ()11 ...,, −iss (giving ()ix , say), a parallel subspace is created by displacing the

obtained minimum by a vector that is independent on () ()11 ...,, −iss (()id , say),

followed by minimising in that subspace (giving ()iz , say), and setting a new
conjugate direction to () () ()iii xzs −= . Since the directions () ()iss ...,,1 are conjugate,

previously performed minimisation in directions () ()11 ...,, −iss is not affected by

moving along the line () () ()()iii xzz −+α . Minimisation in the subspace

3. Numerical Optimisation 3.6. Conjugate Direction Methods

69

() () ()









∀+== ∑
=

i

j
j

j
j

iiS
1

1 ; αα szxx

is therefore achieved by line minimisation along that line (this is well illustrated in
Figure 3.8). This is of course valid only for quadratic functions, but the construction
of an algorithm for general functions is based on the same arguments and is similar.

From the above construction it is clear that the direction ()is is a linear
combination of vectors () () ()iddd ...,,, 21 , but is not contained in the subspace spanned

by () () ()nii ddd ...,,, 21 ++

The above described procedure is followed in Smith’s method. The cycle is
repeated when the function is not quadratic. The method requires independent
vectors () () ()nddd ...,,, 21 to be supplied, which are used for the successive generation
of parallel subspaces after minimisation in the current subspace. This is however not
the most effective approach because directions are not treated equally. Line
minimisations are performed more frequently in the directions that are constructed
earlier.

This deficiency is abolished in Powell’s method. Its cycle is as described
above, except that a point of the parallel subspace is obtained by line minimisations
along () () ()nii ddd ...,,, 1+ from ()ix rather by just adding ()id to ()ix . Powell’s method is
also such that cycles can be continued when the function is not quadratic, while in
Smith’s method directions are restarted after each cycle. The algorithm is sketched
below.

Algorithm 3.8: Powell’s direction set algorithm.

Given independent directions () () ()nsss ...,,, 21 , the minimum point ()1x along ()1s
is found by a line search. Then the following iteration is repeated for ...,2,1=i :
1. Find

() () ()∑
=

+=
n

j

j
j

ii

1

sxz α

by sequentially minimising f along ()1s , ()2s , …, ()ns . If ni ≤ then the last i
directions have already been replaced by conjugate directions.
2. For 1...,,2,1 −= nj replace ()js by ()1+js .

3. Numerical Optimisation 3.7. Restricted Step Methods

70

3. Set () () ()iin xzs −= , which is a new conjugate direction. Find the minimum
point () () ()nii szx α+=+1 along ()ns by a line search. For a quadratic function,

when ni ≤ , ()1+ix is a minimum point of the subspace

() ()







 +== ∑

−=

k
n

ink
k

iS szxx α; .

since the last 1+i directions are conjugate.

The first n-i line searches in line 1 locate a point in a parallel subspace. The
last i line searches can be thought of as minimisation of that subspace spanned by the
last i directions (which are conjugate).

The algorithm terminates in about 2n line searches when applied to quadratic
functions. This is about twice as much as Smith’s method (()12

1 +nn), but the

directions are now treated equally. Pseudo-conjugate directions are retained for a
general function after the n-th iteration and are updated from iteration to iteration.
The method is therefore more effective for general functions as Smith’s method. One
of the problems with this method is that in some problems directions ()js tend to
become linearly dependent. It is possible to introduce modifications which deal with
this problem. One possibility is to reset the direction set every certain numbers of the
cycles.

3.7 Restricted Step Methods

The restricted step prototype algorithm is an alternative to the line search
strategy, in an attempt to ensure global convergence of minimisation algorithms.

There is one fundamental difference between the line search and restricted
step approach. As can be seen from precedent sections, the line search based
algorithms rely to a great extent on a quadratic model. Directions of line searches are
essentially constructed in such a way that when an algorithm is applied to a quadratic
function with a positive definite Hessian matrix, termination occurs in a finite
number of exact line searches. Then, using the argument that every sufficiently
smooth function can be locally (i.e. in the neighbourhood of the current guess)
approximated by a quadratic function, the strategy designed on a quadratic model is
more or less directly transferred to algorithms for handling general functions.

3. Numerical Optimisation 3.7. Restricted Step Methods

71

The fact that even within a single line search the minimised function can
deviate far from its quadratic approximation is ignored by the line search approach.
On the contrary, the main idea of the restricted step approach is to make direct use of
the quadratic model, but only in the limited region where this is an adequate
approximation to the original function. This leads to a sub-problem of minimsation
of a quadratic approximation, limited to a certain region. One of the benefits is that
difficulties with a non-positive definite Hessian matrix are avoided. It is clear at first
sight that among the important concerns of restricted step methods is how to define a
so called trust region ()kΩ , i.e. the neighbourhood of a current guess in which the use
of a quadratic approximation is adequate.

In the view of the above discussion, consider the problem

minimise ()()δkq
(3.120)

subject to ()kh≤δ ,

where ()()δkq is a second order Taylor approximation of f about ()kx and
()kxx −=δ , i.e.

() () () () ()δδδδ kTTkkk fq Gg 2
1++= . (3.121)

The second part of equation (3.120) defines the trust region as

() () (){ }kkk h≤−=Ω xxx; . (3.122)

Restricted step methods aim at keeping the step restriction ()kh as large as
possible, subject to the restriction that a certain agreement between () ()()kkq δ and

() ()()kkf δ+x must be retained, where ()kδ is the solution of (3.120). Some measure
of agreement must be defined for this purpose. Let us define the actual reduction of f
in the step k as

() () () ()()kkkk fff δ+−=∆ x (3.123)

and the corresponding predicted reduction as

() () () () ()() () () ()()kkkkkkk qfqqq δδ −=−=∆ 0 . (3.124)

Then the ratio

3. Numerical Optimisation 3.7. Restricted Step Methods

72

()
()

()k

k
k

q

f
r

∆
∆= (3.125)

is a suitable measure of the agreement, where good agreement is indicated by ()kr
being close to 1. In restricted step algorithms it is attempted to maintain a certain
degree of agreement by adaptively changing ()kh . Such a prototype algorithm is
defined below.

Algorithm 3.9: Iteration of the restricted step prototype algorithm.

1. Given ()kx and ()kh , evaluate ()kf , ()kg and ()kG to define ()()δkq in (3.121).

2. Solve (3.120) for ()kδ .
3. Evaluate () ()()kkf δ+x and ()kr .

4. If ()
1τ<kr set () ()kkh δρ1

1 =+ ,

if ()
2τ>kr and () ()kk h=δ set () ()kk hh 2

1 ρ=+ ,

else set () ()kk hh =+1 .
5. If () 0≤kr set () ()kk xx =+1 else set () () ()kkk δ+=+ xx 1 .

Constants used in the above algorithm must be chosen so that 10 21 <<< ττ ,

10 1 << ρ and 21 ρ< . A suitable choice is 25.01 =τ , 75.02 =τ , 25.01 =ρ and

22 =ρ , but the algorithm is not very sensitive to the choice[1]. In line 4 of the

algorithm the step restriction is tightened if agreement between ()kf∆ and ()kq∆ is
bad, and relaxed if the agreement is good and at the same time the minimum of q lies
on the edge of the trust region. If the minimum of ()kq lies inside the trust region,
then there is no need to further relax the step restriction because that constraint will
become inactive anyway, and the algorithm will reduce to the basic Newton method
with rapid convergence. In line 5 ()kx is preserved if () ()() ()kkk ff >+δx , which

guarantees the descent property () ()kk ff ≤+1 .

The following strong convergence result holds for restricted step methods[1]:

Theorem 3.7:

For Algorithm 3.9, if () kB nk ∀⊂∈ RIx , where B is bounded, and if 2CI∈f

on B , then there exists an accumulation point ∞x which satisfies the first and
the second order necessary conditions for a local minimum. If G also satisfies

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

73

the Lipshitz condition () () yxyGxG −≤− λ in some neighbourhood of ∞x

and if ∞G is positive definite, then for the main sequence () 1→kr , () 0inf >kh ,
the constraint ()kh≤δ is inactive for sufficiently large k , and convergence is

second order.

The existence of B in the above theorem is not a strong requirement. It is
implied if any level set ()(){ }kff ≤xx; is bounded because ()kx are descent.

If the ∞L norm is used in the step restriction, then the subproblem (3.120)
becomes a quadratic programming problem with simple bounds, for which good
algorithms for local solutions exist. It is however difficult to find global solutions,
but in practice it is adequate to calculate only local solutions.

Slow progress of the method can arise if the norm is not scaled. Ideally the
natural metric norm δδδ GT

G
= would be chosen when G is positive definite, but

the scaling of variables can also be an adequate approach.

The Hessian matrix in the restricted step methods can be replaced by the
approximate Hessian ()kB or its inverse ()kH , updated according to a quasi-Newton
scheme. In such a case similar global convergence result holds as for the original
method.

3.8 Basics of Constrained Optimisation

The remainder of chapter 3 is devoted to the case in which constraints on the
optimisation variables are defined (Figure 3.10). The presence of constraints
introduces additional complexity in the treatment of local solutions in view of the
definition of necessary and sufficient conditions, which is discussed in the present
section.

Constrained optimisation problems are much more difficult to treat
numerically than unconstrained problems. Many algorithms for their solution are
based on transformation of the constrained problem to a sequence of unconstrained
optimisation subproblems whose solutions converge to the solution of the
constrained problem. A commonly used approach is the penalty function approach
based on addition of weighted penalty terms to the objective function which cause
high values where constraints are violated or close to be violated. In the limit when

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

74

weights tend to infinity, the solutions of the unconstrained problems tend to the
solution of the constrained problem. This approach is described in section 3.10.

The next important approach is the elimination of variables. Equality
constraints are used to define implicit dependence (through solution of a nonlinear
systems of equations defined by equality constraints) of a subset of optimisation
variables on the remaining variables. The constrained problem is in this way
transformed to an unconstrained problem defined on a reduced set of variables, but
each evaluation requires a system of nonlinear equations to be solved for the
dependent variables. When inequality constraints are involved, the active constraints
are treated as equality constraints. Since it is not known in advance which constraints
are active in the solution, the set of active constraints is iteratively updated. This
leads to the active set type of methods, the principle of which are described in
sections 3.9 and 3.11.

Algorithms for solution of constrained optimisation problems are based on
quadratic models to a large extent. Some algorithms for general functions explicitly
generate quadratic programming subproblems (quadratic objective function and
linear constraints). These algorithms represent an alternative to the more traditional
penalty function approach and seem to be superior from the point of view of
efficiency. Section 3.9 covers some basic aspects of quadratic programming.

There are also solution algorithms which linearise both the objective
functions and constraints about the current iterate and therefore generate a sequence
of linear programming problems[14][9]. This approach seems to be popular in some
fields, however only problems with some special structure can be successfully solved
in this way (e.g. with the objective function close to linear), therefore attention is not
devoted to the approach in this work. Linear programming (linear objective function
and constraints) is also not treated in this work for the same reason.

3.8.1 Langrange Multipliers and First Order
Conditions for Unconstrained Local Minima

Consider the problem (3.19) where constraints are present. For any point x′
active or binding constraints are those for which the corresponding constraint
function is zero at that point. A set of their indices will be denoted by

() (){ }0; =′=′=′ xx ici�� (3.126)

Any constraint is active at x′ if that point is on the boundary of its feasible
region. The set of active constraints at the solution *

� is of particular importance.

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

75

Constraints which are not active at the solution can be perturbed by small amounts
without affecting the problem solution.

The gradient of the i-th constraint function ic∇ will be denoted by ia and

referred to as the normal vector of the constraint ic . These vectors can be arranged in

a Jacobian matrix A, whose columns are constraint gradients.

Consider a problem with only equality constraints and a feasible incremental
step δ taken from a local minimiser. By a Taylor series we have

() ()δδδ occ i
T

ii ++=+ *** ax .

Since δ is a feasible step we have () 0** ==+ ii cc δx and where the length of

the step length is small, we have by neglecting higher order terms 0* =i
Taδ . By

taking into account all constraints, we can define a feasible direction as a direction
which satisfies

Eii
T ∈∀= 0*as . (3.127)

Clearly if s is a feasible direction then –s is also a feasible direction. Since *x
is a constrained local minimiser, there is no feasible descent direction, because
otherwise f could be reduced by an arbitrarily small step in that direction. It follows
that 0* =gsT for any feasible direction s. Due to (3.127) this is satisfied if *g is a
linear combination of constraint gradients, i.e.

∑
∈

==
Ei

ii
***** λλ Aag . (3.128)

Multipliers *
iλ are referred to as Lagrange multipliers and can be arranged in the

Lagrange multiplier vector (denoted by *λ without a subscript). The above equation
is also a necessary condition for a local minimiser. If (3.128) would not hold, then *g
could be expressed as

µλ += *** Ag (3.129)

where µ is a component of *g orthogonal to all *
ia . Then µ−=s would be a

feasible descent direction (i.e. would satisfy both (3.128) and 0* <gsT). A feasible

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

76

incremental stepδ along s would reduce f, which contradicts the fact that *x is a
local minimiser. This is illustrated in Figure 3.9 for a single constraint.

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x’

a’
g’

g*

a*

x*

 δ

 µ

 f (x)

 c1(x)

Figure 3.9: Illustration of necessary conditions for a constrained local
minimum.

The necessary conditions are a basis of the method of Lagrange multipliers
for equality constraint problems. The method searches for vectors *x and *λ , which
solve the equations

() ()∑
∈

=
Ei

ii xaxg λ

and (3.130)
() Eici ∈= ,0x .

This approach has a similar disadvantage to the Newton method for unconstrained
minimisation: the above equations are satisfied in a constrained saddle point or
maximiser, since no second order information is taken into account.

The above equations can be written in a simpler form if we define the
Lagrangian function

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

77

() () ()∑−=
i

iicf, xxx λλ� . (3.131)

Equations (3.130) them become

() 0, =∇ λx� , (3.132)

where









∇
∇

=∇
λ

x (3.133)

is the gradient operator in the n+m dimensional variable space (m will denote the
number of constraints). We see that a necessary condition for a local minimiser is

that ()T**,λx is a stationary point of the Lagrangian function.

Lagrange multipliers have a clear practical interpretation. If the Jacobian matrix of
constraints has rank m (linearly independent ia) then the multipliers in (3.128) are

uniquely defined by

gA += **λ , (3.134)

where () TT AAAA
1*** −+ = is a generalised inverse[2] of *A . Consider in such case

perturbations of the right-hand sides of the constraint

() Eic ii ∈= ,εx (3.135)

and let ()εf and ()ελ denote how the solution and multipliers change with respect
to perturbations. The lagrangian function for the perturbed problems is

() () ()()∑
∈

−−=
Ei

iii cf,, ελελ xxx� (3.136)

In the perturbed solution new constraints are satisfied, therefore

()() () ()()εελεε ,,xx �=f .

Derivation of this equation with respect to iε gives

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

78

ii

T

x
i

T

ii d

d

d

fd

εε
λ

εεε λ ∂
∂+∇

∂
∂+∇

∂
∂== �

��
� x

By (3.132), (3.135) and (3.136) it follows that

i
id

df λ
ε

= . (3.137)

Lagrange multipliers therefore indicate how sensitive the value of the objective
function at the solution is to changes in the corresponding constraints.

Consider now a case where inequality constraints are present. Only active
constraints at the solution *

� influence conditions for the solution. A set of active
inequality constraints at the solution will be denoted by)(* II * ∩= � . Any feasible
direction s must satisfy (in addition to (3.127)) the condition

** 0 Iii
T ∈∀≥as . (3.138)

Conditions for a local minimiser are

∑
∈

=
*i

ii
A

*** ag λ (3.139)

and

** 0 Iii ∈∀≥λ . (3.140)

Condition (3.139) can be deduced in a similar way to (3.130). Condition (3.140),
which is an extra condition with respect to the case of equality constraints, can be
deduced using the result (3.137). A small perturbation of the i- th active inequality
constraint by positive iε induces a change ()εx that is feasible with respect to the

unperturbed problem. Therefore f must not decrease, which implies 0* ≥iddf ε and

hence 0* ≥iλ .

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

79

-1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

2

 Unconstrained min.

 Constrained min. (x*)

al
 *

a2
*

g*

 c2(x)

 c1(x) f(x)

 λ2
*a2

*

 λ1
*a1

*

Figure 3.10: Constrained optimisation problem with two inequality
constraints. Contours of constraint functions are drawn only in the
infeasible region where their values are less or equal to zero. Since both
constraints are active in the solution, the solution would remain
unchanged if one or both constraints were replaced by equality
constraints.

Lagrange multipliers have another important interpretation in the case of
inequality constraints. Consider a point at which (3.139) is satisfied and (3.140)
holds for all i except for pi = , i.e. 0* <pλ , and let all *

ia be linearly independent.

Then it is possible to find a direction s for which 1* =p
Tas and 0* =i

Tas for all other

active constraints. Such is given for example by p
TeAs += * , where pe is the p-th

coordinate vector. Then s is a feasible direction and at the same time a descent
direction since

.0*** <= pp
TT λasgs (3.141)

This first contradicts the fact that *x is a local minimiser and is another proof that
conditions (3.140) are necessary. Besides, it indicates that ()xf can be reduced by

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

80

moving away from the boundary of constraint p for which the corresponding
Lagrange multiplier is negative. This is important in the active set methods for
handling inequality constraints, where constraints index p with 0* <pλ can be

removed from the active set (section 3.9.2).

In the derivation of the first order conditions the regularity assumption that
*
ia are independent was made. This is not necessarily the case and an exact statement

of the conditions requires more careful treatment1.

First the notion of feasible direction must be defined more exactly. Consider a
feasible point x′ and any infinite sequence of feasible points convergent to this point

(){ } xx ′→k where in addition () xx ′≠k for all k. It is possible to write

() () () kkkk ∀=′− sxx δ (3.142)

where () 0>kδ are scalars and ()ks are vectors of any fixed length 0>σ . A
directional sequence is defined as any such sequence for which vectors ()ks converge
to some direction, i.e. () ss →k . The limiting vector s is then referred to as the
feasible direction. () �� ′=′x will be used to denote the set of all feasible directions
at x′ .

It can be seen from the previous discussion that the set of feasible directions
for the linearised constraint set is

()












′∈∀≥′
∈∀=′

∧≠=′=′
Ii

Ei
FF

i
T

i
T

0

0
0;

as

as
ssx , (3.143)

where I ′ is a set of active inequality constraints at x′ .

The relation F ′⊆′� holds in general. F ′=′� either if the constraints �′∈i

are linear or vectors �′∈′ ii ,a are linearly independent. The assumption F ′=′� is

referred to as a constraint qualification at x′ .

The set of descent directions at x′ is defined as

() { }0; <′=′=′ gssx T
�� . (3.144)

1 In some optimisation literature the possibility that gradients of active constraints in the solution can
be linearly dependent is ignored, sometimes with an argument that this is an extremely unlikely
situation.

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

81

If *x is a local minimiser, then /0=∩ **
�� , i.e. no feasible descent

directions exist.

Let the following regularity assumption be made:

***F ��� ∩=∩* . (3.145)

This is weaker assumption than F ′⊆′� . Under this assumption the
following more general statement of the first order necessary conditions can be
made[1],[4],[7]:

Theorem 3.8: Kuhn-Tucker (or KT) conditins.

If *x is a local constrained minimiser and if regularity assumption(3.145) holds,
then there exist Lagrange multipliers *λ such that *x and *λ satisfy the
following system:

() 0, =∇ λx�x

() Eici ∈= ,0x

() Iici ∈≥ ,0x (3.146)

Iii ∈≥ ,0λ

() icii ∀= 0xλ .

A point that satisfies the above conditions is referred to as a KT point. The

condition 0** =ii cλ is referred to as the complementarity condition. It states that both
*
iλ and *

ic can not be non-zero, which means that inactive constraints are regarded

as having zero Lagrange multipliers. If there is no i such that 0** == ii cλ then strict

complementarity is said to hold. The case 0** == ii cλ appears for example if an

unconstrained minimiser lies on the boundary of the feasible region, which is an
intermediate state between a constraint being strongly active and inactive.

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

82

3.8.2 Second Order Conditions

Consider first the case with only equality constraints. The second order
conditions can be derived from the second order Taylor series of the Lagrangian
function about the local solution. It is assumed that *

ia are independent so that unique

Lagrange multipliers exist. Let a feasible incremental step δ be made along any
feasible direction s. By feasibility it follows that () ()λδδ ,f +=+ xx � . We also take

into account that � is stationary at *x and *λ to eliminate the first derivatives. The
second order Taylor expansion then gives (after neglecting higher than second order
terms)

() ()
() ()

δδ

δδλδλδ
λδδ

W

Wxx

xx

T

T
x

T

f

f

2
1*

2
1

0

,,

,

+

=+∇++

≈+=+

=
�����

��

�

. (3.147)

W denotes the Hessian matrix of the Lagrangian function with respect to variables x:

() () ()∑ ∇−∇=∇=
i

iix cf, *2**2**2* xxxW λλ� . (3.148)

Since *x is a local minimiser, the function value taken in any feasible infinitesimal
incremental step in any direction must be greater than or equal to *f . It follows that

0* ≥WssT (3.149)

for any feasible direction, i.e. for any s that satisfies

EiT
i ∈∀= 0* sa . (3.150)

This is a second order necessary condition for a local minimiser, which can also be
stated as a requirement that the Lagrangian function must have a non-negative
curvature along any feasible direction.

A sufficient condition is that *x satisfies (3.128) and

0* >sWsT (3.151)

for all feasible directions s that satisfy (3.150) (a zero vector is not considered to be a
feasible direction).

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

83

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 a*=g*

x*
s

 -g*

 c1(x)=0

 f (x)

 c2(x)=0

 c3(x)=0

Figure 3.11: Illustration of the second order conditions. A problem
with three different equality constraints is shown. In all three cases

** ga = and 1* =λ . The problem with constraint function 3c does not

match the necessary conditions for *x to be a local minimiser because

()() ()()sxssxs *
3

2*2 cf TT ∇<∇ λ and thus 0*
3 <sWsT . The second

constraint satisfies necessary but not sufficient second order conditions
and therefore higher order terms of the Taylor series become significant.

When inequality constraints are present, again only active constraints affect
matters. We can also realize that the second order conditions are important only
along feasible stationary directions (0* =gsT with respect to constraints), but not
along ascent directions where first order information is sufficient. If an inequality
constraint () 0≥xic is present with 0* >iλ , then directions for which 0* >i

Tas are

ascent directions (according to the discussion regarding (3.141)). Stationary
directions satisfy

*
i

T i �∈∀= 0*as (3.152)

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

84

The second order necessary conditions are then that (3.149) holds for all s
that satisfy (3.152). Sufficient conditions for a strict local minimiser are that the
Kuhn-Tucker conditions with strict complementarity (** 0 Iii ∈∀>λ) hold and

*** ,0:0 �∈=∀> ii
TT asssWs . (3.153)

Exact statement of these conditions[1] again relies on some regularity
assumption. Let us define a set of strictly active constraints

{ }0; ** >∨∈=+ iEii λ� . (3.154)

Consider feasible directional sequences for which () *xx →k for which

()() *0 +∈∀= �ic k
i x . (3.155)

and define *
� as a set of all resulting feasible directions. A corresponding set where

constraints which determine *
� are linearised can then be defined as













∈≥
∈=∧≠=

+

+
**

**
*

\,0

,0
0;

��

�

i

i
G T*

i

T

i

sa

sa
ss . (3.156)

G ⊆� holds and in order to state the second order necessary conditions, the
regularity assumption

G =� (3.157)

is made. The second order necessary and sufficient conditions can then be stated as
below[1],[4]:

Theorem 3.9 (second order necessary conditions):

If *x is a constrained local minimiser and if the regularity assumption (3.145)
holds, then there exist multipliers *λ such that Theorem 3.8 is valid (i.e. *x is a
KT point). For any such *λ , if also the regularity assumption (3.157) holds, it
follows that

** 0 GssWs ∈∀≥T . (3.158)

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

85

Theorem 3.10 (second order sufficient conditions):

If at *x there exist multipliers *λ such that conditions (3.146) hold, and if

** 0 GT ∈∀> ssWs , (3.159)

then *x is a strict local minimiser.

3.8.3 Convex Programming Results

Some strong theoretical results hold when the objective function is a convex
function and when the feasible region is a convex set. Within the scope of this work
these results are not important because of direct applicability to specific problems,
but are important for treatment of subproblems that arise in some optimisation
algorithms. Convex programming result are also important for statement of the
duality principles, which are employed in the reasoning of some general optimisation
algorithms.

By definition, a set K in nRI is convex if for each pair of points K∈10 , xx

and for each []1,0∈θ also K∈θx , where

() 101 xxx θθθ +−= . (3.160)

An equivalent definition is that for any set of points Km ∈xxx ...,, 10 K∈θx where

iand i

m

i
i

m

i
ii ∀≥∧== ∑∑

==

01
00

θθθθ xx . (3.161)

A convex function on a convex set K is a function for which the epigraph is a
convex set. The epigraph of a function is the set of points in nRIRI × that lies on or
above the graph of the function. The equivalent definition of a convex function ()xf

is that for any K∈10 , xx it follows that

() []1,01 10 ∈∀+−≤ θθθθ fff . (3.162)

The definition of a strictly convex function is similar but with strict inequality in the
above equation. If ()xf− is convex then ()xf is said to be concave.

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

86

If f is convex and 1CI on an open convex set K, then[1] for each pair

K∈10 , xx

() 00101 fff T ∇−+≥ xx . (3.163)

This means that a graph of f must lie above or along its linearisation about any point.
It immediately follows (by interchanging 0x and 1x) that

() () 00101101 ffff TT ∇−≥−≥∇− xxxx . (3.164)

This corresponds to a statement that the slope of a convex function f is non-
decreasing along any line. If f is 2CI , this result implies (by taking the limit

001 →− xx) that ()xf2∇ is positive semi-definite at each K∈x .

A convex programming problem is a problem of minimisation of a convex
function on a convex set. Such a problem is

minimise ()xf
(3.165)

subject to (){ }micKK i,,2,1,0;, =≥=∈ xxx ,

where ()xf is convex on K and constraint functions ()xic that define K are concave

on nRI . Convexity of K defined as above follows from the fact that an epigraph of
any concave function is a convex set, and from a known theorem that intersection of
convex sets is a convex set.

The following important results hold for convex programming problems[1]:

Theorem 3.11:

Every local solution to a convex programming problem is also a global solution,
and the set of global solutions S is convex. If ()xf is also strictly convex on
K , then the solution is unique.

3. Numerical Optimisation 3.8. Basics of Constrained Optimisation

87

Theorem 3.12:

In the convex programming problem (3.165), if ()xf and ()xic are 1CI on K

and if the Kuhn-Tucker conditions (3.146) hold at *x , then *x is a global
solution to the problem.

3.8.4 Duality in Nonlinear Programming

The concept of duality provides a set of rules for transformation of one
problem to another. By applying these rules alternative formulation of the problem is
obtained, which is sometimes more convenient computationally or has some
theoretical significance. The original problem is referred to as the primal and the
transformed problem as the dual. Some duality transformations have a symmetry
property that the dual of the dual is the primal (i.e. that the transformation applied
twice gives the original problem).

Usually some of the variables in the dual correspond to Lagrange multipliers
of the primal and take the value *λ at the dual solution. The dual and the primal
should be related in the way that the dual has a solution from which the solution of
the primal can be derived. Duality transformations of this kind are associated with
the convex programming problem as the primal. A set of such duality
transformations can be derived from the Wolfe dual whose statement is given in the
theorem below[1].

Theorem 3.13:

If *x solves the primal convex programming problem (3.165), if f and ic are
1CI functions, and if the regularity assumption (3.145) holds, then **,λx solve

the dual problem

λ,x
maximise ()λ,x�

(3.166)
subject to () 0,0, ≥=∇ λλx� x .

The minimum primal and maximum dual function values are equal, i.e.
()*** ,λx�=f

3. Numerical Optimisation 3.9. Quadratic Programming

88

The Wolfe dual is not symmetric. The dual is not necessarily even a convex
programming problem. An advantageous property is that if the primal is unbounded
then the dual has inconsistent constraints and therefore does not have a solution. It is
possible that the primal has inconsistent constraints, but the dual still has a solution.
However if the constraints are linear, then infeasible constraints in the primal imply
that the dual is unbounded.

An example of application is the quadratic programming problem

minimise xgGxx TT +2
1

(3.167)
subject to bxA ≥T

where G is positive definite. The Wolfe dual is

λ,x
maximise ()bxAxgGxx −−+ TTTT λ2

1

(3.168)
subject to 0,0 ≥=−+ λλAgGx .

The first set of constraints can be used to eliminate x (i.e. ()gAGx −= − λ1), which
gives the problem

λ
maximise () () gGggGAbAGA 1

2
111

2
1 −−− −++− TTTTT λλλ

(3.169)
subject to 0≥λ .

This is again a quadratic programming problem, but subject only to simple bounds.
When the solution *λ is found, *x is obtained by solving the equation used for
elimination of x from (3.168).

3.9 Quadratic Programming

A quadratic programming (QP) problem is an optimisation problem with
quadratic objective function and linear constraint functions, i.e.

minimise () xgGxxx TTq += 2
1

3. Numerical Optimisation 3.9. Quadratic Programming

89

(3.170)
subject to Eibi

T
i ∈= ,xa

and Iibi
T
i ∈≥ ,xa .

where G is symmetric. If G is positive semi-definite, a local solution *x is also
global, and if G is positive definite, it is also unique. This follows from Theorem
3.13 since such a problem is a convex programming problem. Only if G is indefinite
can a local solution which is not global occur.

3.9.1 Equality Constraints Problem

The quadratic programming problem with only equality constraints can be
stated as

minimise () xgGxxx TTq += 2
1

(3.171)
subject to bxA =T .

It will be assumed that there are nm ≤ constraints and that A has rank m, which
ensures that unique multipliers *λ exist. A is a mn× matrix whose columns are
vectors Eii ∈,a from (3.170), and mRI∈b .

The problem can be transformed to an unconstrained minimisation problem
by direct elimination of variables using constraints. Let partitions









=

2

1

x

x
x , 








=

2

1

A

A
A , 








=

2

1

g

g
g , 








=

2221

1211

GG

GG
G (3.172)

be defined, where mRI1 ∈x and mn −∈ RI2x , so that 1A is mm× , 11G is mm× , etc.

Then m variables in the vector 1x can be expressed in terms of 2x as

()2211 xAbAx TT −= − . (3.173)

Substituting this into ()xq gives

3. Numerical Optimisation 3.9. Quadratic Programming

90

() ()()
()

()
() bAggAAgx

bAGAbbAGAAGx

xAAGAAGAAAAGGx

xxxx

TT

TTTT

TTTTT

T

q

−−

−−−−

−−−−

+−

++−

++−−

==

111
1

1222

111
1

12
1

111
1

12212

22111
1

1212
1

1221212222
1

2212 ,ψ

. (3.174)

The problem is so transformed to unconstrained minimisation of ()2xψ . If the
Hessian (the matrix in the round brackets in the second line) is positive definite, then
a unique minimiser *

2x exists and is obtained by solving the linear system of

equations () 02 =∇ xψ . *
1x is obtained by substitution in (3.173). The Lagrange

multiplier vector is defined by ** λAg = where () *** Gxgxg +=∇= q , and can be

calculated by solving the first partition *
1

*
1 λAg = .

The described approach is not the only possibility. First of all, it is possible to
rearrange variables and choose some other set of variables to be independent. More
generally a linear transformation of variables can be made. Such a general approach
is the generalised elimination method.

Let Y and Z be mn× and ()mnn −× matrices such that []ZY : is non-
singular and

mm
T

×= IYA ,

(3.175)

mnm
T

−×= 0ZA .

TY can be regarded as the left generalised inverse of A since a solution of the
system bxA =T is given by Ybx = . The solution is not unique and other solutions
are given by δ+= Ybx where δ is in the mn − - dimensional null column space of
A, i.e.

0=δTA (3.176)

If the matrix Z has linearly independent columns mnzzz −....,,, 21 , then these
vectors form a basis of the null space of A[29]. At any feasible point x (i.e. solution of

bAx =) any feasible correction δ (which gives another solution) can be written as

∑
−

=

=
mn

i
iiy

1

zδ , (3.177)

3. Numerical Optimisation 3.9. Quadratic Programming

91

where mnyyy −...,,, 21 are the components in the null space of A, referred to also as

reduced variables in this space. Any feasible point can be written as

ZyYbx += . (3.178)

The above equation provides a way of eliminating constraints bAx = by
transformation to the mn − - dimensional space of reduced variables in which
constraints are always satisfied, and is therefore a generalisation of (3.173).
Substituting the equation into (3.171) gives the reduced quadratic function

() () () YbGYbgZyGYbgGZyZyx TTTT ++++= 2
1

2
1ψ . (3.179)

If the reduced Hessian matrix GZZT is positive definite then a unique
solution exists and can be obtained by solution of the system () 0=∇ yψ , i.e.

() ()GYbgZyGZZ +−= TT . (3.180)

It is convenient to solve this system by Choleski factorisation[30],[33], which also
enables positive definiteness to be checked. *x is then obtained from *y by using

(3.178). Lagrangian multipliers are obtained from ** λAg = , which after pre-

multiplying by TY gives

()gGxYgY +== *** TTλ . (3.181)

Note that g in this equation does not refer to the gradient vector, but is a constant

vector in the definition of ()xq . The reduced gradient vector is ()GYbgZ +T . This

shows that the reduced derivatives can be obtained by pre-multiplication by TZ ,
since ()YbGYbg q∇=+ is the gradient of ()xq at Ybx = .

Different methods arise from different choice of Y and Z. It is convenient to
use any orthogonal (QR) factorization[26]-[28] of A:

[] RQ
0

R
QQ

0

R
QA 121 =








=








= , (3.182)

where Q is a nn× orthogonal matrix, R is a mm× upper triangular matrix, and 1Q
and 2Q are mn× and ()mnn −× partitions of Q. Then we can choose

21 , QZRQY == −T . (3.183)

3. Numerical Optimisation 3.9. Quadratic Programming

92

This implies that the vector Yb from (3.178) is orthogonal to any feasible change δ
and the reduced coordinate directions iz are mutually orthogonal.

The reduced system (3.180) is first solved to obtain *y , and then *x is
calculated by substitution into (3.178). Numerically it is most convenient to evaluate
vector Yb , which appears in these equations, by forward substitution in buR =T

(since R is upper triangular) followed by multiplication uQYb 1= . Multipliers *λ
are then calculated by backward substitution in *

1
* gQR T=λ . Such a scheme is

referred to as the orthogonal factorization method. Its advantage is that because of
using orthogonal transformations, the method is less sensitive to round-off errors[27].

In general, Y and Z can be obtained by completion of the matrix A to a full-
rank nn× matrix and partitioning of the inverse of that matrix. For example, we can
choose any ()mnn −× matrix V such that the matrix []VA : is non-singular. Y and
Z are then obtained by

[]











=−

T

T

Z

Y
VA 1: , (3.184)

where Y and Z are mn× and ()mnn −× partitions respectively. They satisfy
conditions (3.175) and are therefore suitable for use in the generalised elimination
method. The resulting method can be interpreted as a method which makes linear
transformation with the matrix []VA : .

Different methods arise from specific choices of V. Choosing









=

I

0
V (3.185)

results in the direct elimination method. The identity









=








−

=







−

−−

T

T

Z

Y

IAA

0A

IA

0A
1

12

1
1

1

2

1 (3.186)

gives expressions for Y and Z. It can then be verified by substitution into (3.180) and
taking into account the appropriate partitioning that the resulting method is identical
to the direct elimination method.

The orthogonal factorization method is obtained by setting

3. Numerical Optimisation 3.9. Quadratic Programming

93

2QV = , (3.187)

where 2Q is defined by (3.182). By using the identity

[] [] 







=








==

−
−−

T

T

T

T

Z

Y

Q

QR
QRQVA

2

1
1

1
21

1 :: (3.188)

(3.183) is obtained, which confirms that the orthogonal factorization method was
obtained. The above equation can be expressed as

[] 







= +

+
−

V

A
VA 1: (3.189)

where () TT AAAA
1−+ = is the full rank generalised inverse, therefore

T+= AY from
(3.183).

3.9.2 Active Set Methods

Inequality constraints can not be simply used to eliminate variables or reduce
the dimension of the problem. Only those inequality constraints that are active in the
solution actually affect matters. If it would be known in advance which constraints
are active in the solution, these constraints could be used as equality constraints and
all other constraints could be ignored. Active set methods gradually update the set of
active constraints and solve the resulting equality constrained problems where
constraints regarded as inactive are temporarily ignored. It is assumed that the
Hessian matrix of the problem is positive definite. The basic idea is illustrated in
Figure 3.12 and described below .

On the k-th iteration a feasible point ()kx is known which satisfies active
constraints as equalities, i.e. ()

�∈∀= ibi
kT

i xa where � is the index set of

constraints currently regarded as active and treated as equality constraints. All
equality constraints are in this set. ()kx also satisfies ()

�∉∀> ibi
kT

i xa , so that the

current active set � is equivalent to the set of active constraints ()k
� .

3. Numerical Optimisation 3.9. Quadratic Programming

94

-2 -1 0 1 2 3

-2

-1

0

1

2

x(4)

x(2)

x(3)

x(1)

Figure 3.12: Progress of the active set method in a problem with three
inequality constraints.

The iteration attempts to solve the equality problem where only active
constraints occur. By shifting the origin to ()kx and looking for a correction ()kδ this
problem is

minimise ()kTT gG δδδ +2
1

(3.190)
subject to �∈∀= iT 0δa ,

where () ()() ()kkk q Gxgxg +=∇= .

If δ is feasible with respect to constraints not in � , then () () δ+=+ kk xx 1 is
taken. If not a line search is made in the direction () ()kk δ=s to find the best feasible
point. ()kα is found which solves

()

()

()

() 











 −=
<

∧∉ kT
i

kT
ii

i

k b

kT
i

sa
xa

sa 0

min,1min
A

α (3.191)

3. Numerical Optimisation 3.9. Quadratic Programming

95

and () () () ()kkkk sxx α+=+1 is set.

If () 1<kα then a new constraint (with index p, say) which achieves the
minimum in the above equation becomes active and its index p is added to the active
set � .

If ()kx solves the current equality problem, then it is possible to compute
multipliers ()kλ as described in the previous section. Vectors ()kx and ()kλ satisfy all
the first order conditions for the original inequality constrained problem except
possibly the conditions Iii ∈≥ ,0λ . The test is therefore made if these conditions are

satisfied for all inequality constraints in � . If so, the first order conditions are
satisfied and since the problem is convex (because G is positive definite), this is
sufficient for ()kx to be a global solution. Otherwise there exists an index q such that

() 0<k
qλ . In this case it is possible to reduce ()xq by allowing constraint q to become

inactive (according to discussion around equation (3.141)). Constraint q is therefore
removed from � and the algorithm continues as before. It is possible that there are
more than one indices with () 0<k

jλ . Then q is selected so that it solves

()k
i

Ii
λ

∩∈ A
min . (3.192)

The complete algorithm is outlined below.

Algorithm 3.10: The active set method.

A feasible point ()1x must be given. ()1
�� = is set where ()1

� contains indices of
all constraints for which ()() 01 =xic . The k-th iteration is then as follows:

1. If 0=δ does not solve (3.190) then go to 3.
2. Compute Lagrange multipliers ()kλ and solve (3.192). If () 0≥k

qλ then

terminate with ()kxx =* , otherwise remove q from � .

3. Solve (3.190) for ()ks .
4. Solve (3.191) to find ()kα and set () () () ()kkkk sxx α+=+1 .
5. If () 1<kα , add p to � .
6. Set 1+= kk and go to 1.

The initial feasible point can be obtained from any given point ()0x by
iteratively solving the problem

3. Numerical Optimisation 3.10. Penalty Methods

96

minimise ()
()

∑
∈

−
kVi

T
iib xa

(3.193)
subject to ()k

i
T
i Vib ∉∀≥xa ,

where ()kV is the set of infeasible constraints at ()kx . Iteration is repeated until ()kx
becomes a feasible point. Minimisations are performed as line searches along edges

() ()k
q

k as = where ()kq is the index with the least Lagrange multiplier in iteration k.

Each search terminates with a new constraint becoming active[1].

So far it was assumed that the Hessian matrix G is positive definite. If G is
indefinite then local solutions exist which are not global. For any local solution the
reduced Hessian matrix GZZT is positive semi-definite and this matrix is actually
used when the equality problem is solved. However, when the algorithm proceeds,
not necessarily all constraints that are active in the solution are in the active set.
Therefore problem (3.190) with indefinite reduced Hessian can arise. In this case a
solution of (3.190) ()kδ is no longer a minimiser. Any feasible descent direction can
be chosen for ()ks , for example the negative reduced gradient vector. ()kα is then
obtained from

()

()

()

()k
i

kT
ii

i

k
T

kT
i

b

sa

xa

sa

−=
<

∉
0

,
min
A

α (3.194)

rather than from (3.191). If the above equation does not have a solution (i.e. the
infimum of the right-hand side is ∞−), this indicates that the original QP problem is
unbounded.

3.10 Penalty Methods

Penalty methods[6] are a traditional and commonly used approach to
constrained minimisation. The idea of penalty methods is to control constraint
violations by penalizing them. The original objective function is modified by
addition of penalty terms, which monotonically increase as constraint violations
increase. The sum of the objective function and penalty terms is called the penalty
function. Some parameter is usually associated with penalty terms to control the
amount of the penalty. The minimiser of the objective function is approximated by

3. Numerical Optimisation 3.10. Penalty Methods

97

unconstrained minimisers of the penalty function, which should converge to the
constrained minimiser as the control parameter is increased (Figure 3.13).

c1(x)=0

f (x)

min. f (x)

constrained
minimiser

σ =1

σ =10

σ =100

Figure 3.13: Use of penalty functions. The problem with one equality
constraint is sketched in the first picture. The subsequent pictures show
penalty function contours with increasing parameter σ . The minimiser
of the penalty functions approaches the problem solution as σ increases,
but also ill-conditioning increases.

The following penalty function can be used for equality constraints:

() () () () () ()∑∑
∈∈

+=+=
Ei

T

Ei
i fcf xcxcxxx σσσφ

2

1

2

1
, 2 . (3.195)

Parameter σ determines the amount of the penalty. A simple penalty algorithm is
outlined below.

3. Numerical Optimisation 3.10. Penalty Methods

98

Algorithm 3.11: The penalty algorithm.

1. Choose a fixed sequence (){ } ∞→kσ , e.g. { }...,1000,100,10,1 .

2. Find a local minimiser ()()kσx of ()()kσφ ,x , using a minimiser of the
previous iteration as a starting guess.

3. Terminate if ()()()kσxc is sufficiently small, otherwise go to 2.

The quantities associated with ()kσ will be denoted by upper index k, e.g.
()() ()kk xx =σ , ()()() ()kk ff =σx , etc. The following convergence result holds for such

an algorithm[6]:

Theorem 3.14 (penalty function convergence):

Let ()xf be bounded below on a non-empty feasible region and let global

minimisers be evaluated in step 2 of the above algorithm. If () ∞→kσ
monotonically, then () () ()(){ }kkk σφ ,x , () (){ }kTk cc and (){ }kf are non-decreasing,

() 0→kc and any accumulation point *x of (){ }kx solves the equality
constrained problem.

The algorithm has some other limiting properties, which enable useful
estimations to be made and are gathered in the theorem below.

Theorem 3.15 (penalty function convergence):

If () ∞→kσ , () *xx →k and mrank =*A (m is the number of constraints), then
*x is a KT point and the following hold:

() () () ()1* okkk +=−= λσλ c , (3.196)

() () () () () ()σσφφ 12
1** of kTkkk ++== cc , (3.197)

()
() ()σ

σ
λ

1
**

o
k

k +−= T
h , (3.198)

where T is defined by

3. Numerical Optimisation 3.10. Penalty Methods

99









−

−
=








−

−
−

**

**1

*

**

UT

TH

0A

AW
TT , (3.199)

W is the Hessian matrix of the Lagrangian function and A is the Jacobian matrix of
constraints. Notation () 0→⇔= hahoa has been used.

These results enable some enhancements of the algorithm to be made. (3.196)
gives an estimation of the Lagrange multipliers and (3.197) can be used as a better
estimation to *f than ()kφ itself. (3.199) can be used to terminate the iteration and to

provide better initial approximations when minimising ()()kσφ ,x .

For inequality constraint problems the following penalty function can be
used:

() () ()()()∑
∈

+=
Ii

icf 2,0min
2

1
, xxx σσφ . (3.200)

A disadvantage of this penalty function is the jump discontinuity in second
derivatives where () 0=xic . ()kx approaches *x from the infeasible side of the

inequality constraints, therefore algorithms that use such a penalty function are called
exterior point algorithms.

Another class of algorithms for inequality constraints are barrier function
methods. Barrier terms, which are infinite on the constraint boundaries are added to
the penalty function. These algorithms preserve strict constraint feasibility in all
iterations and are therefore called interior point algorithms. Their use is
advantageous when the objective function is not defined in the infeasible region.

Two commonly used barrier functions are the inverse barrier function

() () ()∑
∈

+=
Ii ic

rfr
x

xx
1

,φ (3.201)

and the logarithmic barrier function

() () ()()∑
∈

−=
Ii

icrfr xxx ln,φ . (3.202)

3. Numerical Optimisation 3.10. Penalty Methods

100

A sequence (){ } 0→kr is chosen, which ensures that the barrier terms become more
and more negligible as compared to the objective function, except close to the
constraint boundary. Sequential minimisation of the penalty functions is performed
as in Algorithm 3.11.

Penalty and barrier approaches have a simple extension for problems with
mixed equality and inequality constraints. Mixed penalty terms for equality
constraints and penalty or barrier terms for inequality constraints are added to the
objective function for corresponding constraints[6],[14].

The described algorithms are linearly convergent. A difficulty associated with
the penalty and barrier approach is that when the control parameter σ is increased
(or r decreased, respectively), the Hessian of the penalty (or barrier) function
becomes increasingly ill-posed, which is evidently illustrated in Figure 3.13. It is
therefore difficult to find accurate solutions of the subsequent unconstrained
minimisation problems. The additional problem with barrier functions is that they are
not defined in the infeasible region, which can be difficult to handle for minimisation
algorithms.

3.10.1 Multiplier Penalty Functions

The multiplier penalty functions represent an attempt to use penalty functions
adequately by keeping the control parameter σ finite and thus to avoid ill-
conditioning of the penalty function when σ is large. The approach follows from the
idea that the constrained minimiser *x can be made an unconstrained minimiser of

()σφ ,x by changing the origin of the penalty terms. This leads to the penalty
function

() () ()()

() ()() ()()θθ

θσσθφ

−−+

=−+= ∑
∈

xcSxcx

xxx

T

Ei
iii

f

cf,

2
1

2
2
1,

, (3.203)

where nRI, ∈σθ and ()idiag σ=S is a diagonal matrix with iiiS σ= , and the

equality constrained problem is considered. The aim of the algorithm is to find the
optimal shift of the origin θ such that a minimiser of ()σθφ ,,x with respect to

variables x will correspond to the constrained minimiser *x .

Let us introduce different parameters

3. Numerical Optimisation 3.10. Penalty Methods

101

miiii ...,,2,1, == σθλ . (3.204)

If we ignore the term ∑ 2
2
1

iiθσ , which is independent of x and therefore does not

affect the minimiser, φ becomes

() () () () ()xcSxcxcxx TTf 2
1,, +−= λσλφ . (3.205)

Because the above function is obtained from (3.195) by adding a multiplier term
cTλ− , it is referred to as the multiplier penalty function1. There exists optimum

values of multipliers λ , for which *x minimises ()σλφ ,,x . It turns out that these

values are the Lagrange multipliers *λ at the solution, provided that parameters iσ
are large enough. An exact formulation of this is given in the theorem below[1].

Theorem 3.16:

If second order sufficient conditions for a constrained local minimum hold at *x ,
*λ , then there exists 0≥′σ (i.e. ii ∀≥′ 0σ) such that for any σσ ′> *x is an

isolated local minimiser of ()σλφ ,, *x , i.e. ()** λxx = .

Illustration of the multiplier penalty function is shown in Figure 3.14. This is
done for the same problem as in Figure 3.13, so that the multiplier penalty function
can be compared to the standard penalty function. The optimal value *λ was used in
the figure and both values of 1σ were sufficiently large, so that the minimum of the
penalty function corresponds to the solution of the original equality constrained
problem.

The Lagrange multipliers at the solution of the original problem are not
known in advance, therefore a method for generating a sequence () *λλ →k must be
incorporated in the algorithm.

1 The term augmented Lagrangian function is also used, since the function can be considered as the
Lagrangian function where f is augmented by the term () ()xcSxc T

2
1 .

3. Numerical Optimisation 3.10. Penalty Methods

102

σ =1
 σ =10

Figure 3.14: Multiplier penalty functions for problem illustrated in
Figure 3.13. Minimiser of the multiplier penalty functions corresponds to
the constrained minimiser even for a smaller value 11 =σ .

To construct such a method it is assumed that the second order sufficient
conditions hold at *x and that components of vector σ are sufficiently large.
Consider x being implicitly dependent on λ in a way that ()λx is a minimiser of

()λφ ,x . Since ()** λxx = is by Theorem 3.16 an isolated local minimiser of ()*,λφ x ,

()λx is defined uniquely in some neighbourhood λΩ of *λ . ()λx can be determined

by solving the equations

() 0, =∇ λφ x . (3.206)

Consider the function

() ()()λλφλψ ,x= . (3.207)

Since ()λx is a local minimum of ()λφ ,x , it follows that

() ()() () () ()**** ,,, λψλφλφλλφλψ ==≤= xxx , (3.208)

where () ()*** ,, λφλφ xx = is obtained by using 0* =c (feasibility) in (3.205). We

have () ()*λψλψ ≤ , therefore *λ is a local unconstrained maximiser of ()λψ , and

this is true globally if ()λx is a global minimiser of ()λφ ,x . A sequence () *λλ →k

3. Numerical Optimisation 3.10. Penalty Methods

103

can be generated by applying an unconstrained minimisation method to ()λψ− , for
which derivatives of ψ with respect to λ are needed.

Derivatives of φ with respect to x are obtained from (3.205):

() AScAgx +−=∇ λσλφ ,, (3.209)

and

() () T
i

Ei
iii ccf ASAxW +∇−−∇=∇= ∑

∈

222 ,, σλσλφσ . (3.210)

By the chain rule we have

λ
φ

λ
ψ

λ
ψ

∂
∂+

∂
∂

∂
∂= x

xd

d
,

and since 0x =∂∂φ from (3.206) and ii c−=∂∂ λφ from (3.205), it follows that

()()λψλλ xc−=∇ . (3.211)

By the chain rule we then have

λλλ ∂
∂=

∂
∂

∂
∂= x

A
x

x
cc T

d

d
.

Applying λdd to (3.206) gives

() () ()
0

x
x

=
∂
∇∂+

∂
∂

∂
∇∂=∇

λ
φ

λ
φ

λ
φ

d

d
.

() σφφ Wx =∇=∂∇∂ 2 and () A−=∂∇∂ λφ from (3.209), therefore AW
x 1−=

∂
∂

σλ
 and

()
()λσλ λ

λψ
x

AWA
c 12 −−=−=∇ T

d

d
. (3.212)

The sequence () *λλ →k can be obtained by applying Newton’s method from
some initial estimate ()1λ , which gives

3. Numerical Optimisation 3.10. Penalty Methods

104

() () ()()
()()k

Tkk

λ
σλλ

x
cAWA

111 −−+ −= , (3.213)

which requires second derivatives of f and c. When only first derivatives are
available, a quasi-Newton method can be used to find ()()kλx and the resulting H

matrix can be used to approximate 1−
σW in the above equation, i.e.

() () ()()
()()k

Tkk

λ
λλ

x
cHAA

11 −+ −= , (3.214)

An algorithm that uses the derived results is described below.

Algorithm 3.12: The Multiplier penalty algorithm.

1. Set ()1λλ = , ()1σσ = , 0=k and () ∞=
∞

0c .

2. Find the minimiser ()σλ ,x of ()σλφ ,,x and evaluate ()()σλ ,xcc = .

3. If ()
∞∞

> kcc 4
1 then set

∞
>∀= c4

1:10 iii ciσσ and go to 2.

4. Set 1+= kk , () λλ =k , () σσ =k and () cc =k .
5. Evaluate ()kλ according to (3.214) (where H and A are known from step 2)

and go to 2..

The aim of line 3 in the above algorithm is to achieve linear convergence at
rate 41 or better. The required rate of convergence is obtained when parameters σ
are sufficiently large. σ remains constant then and only the parameters λ are
changed.

The multiplier penalty function for the inequality constrained case can be
derived and used in a similar way[1],[2].

The use of multiplier penalty methods is a significant improvement as
compared with the traditional penalty methods. High accuracy of the constrained
minimum can be achieved at low values of penalty parameters σ . Ill-conditioning of
the minimised penalty function, which is a serious obstacle when using the
traditional penalty approach, is avoided to a great extent. An advantage inherited
from the penalty approach is that any type of existing unconstrained minimisation
techniques can be directly employed in the algorithm. However, the sequential nature
of the penalty approach is less efficient than the more direct approach of the
sequential quadratic programming approach described in the next section.

3. Numerical Optimisation 3.11. Sequential Quadratic Programming

105

3.11 Sequential Quadratic Programming

The penalty approach to constrained optimisation is based on definition of a
sequence of unconstrained problems whose solutions converge to the solution of the
original problem. A more direct approach is based on approximations of the
objective and constraint functions. This seems to be a more efficient approach and
many recent developments in optimisation algorithms are related to this approach[15]-

[22].

Consider first the equality constrained problem. A system (3.132) is a
stationary point condition for a local solution *x and Lagrange multipliers in the
solution *λ . By applying Newton’s method to solve this stationary point problem the
following iteration is obtained:

()[] ()kk
�� ∇−=








∇

δλ
δx2 , (3.215)

where �
2∇ is the matrix of second derivatives of the Lagrangian functions with

respect to variables λ,x and �∇ is defined by (3.133). The resulting method is
referred to as the Lagrange-Newton method when applied to the solution of an
equality constrained problem.

Expressions for the first and second order derivatives are obtained from
(3.131). By taking into account these expressions, (3.215) becomes

() ()

()

() () ()

() 






 +−
=
















−

−
k

kkk

Tk

kk

c

Agx

0A

AW λ
δλ
δ

(3.216)

()kA is the Jacobian matrix of constraints evaluated at ()kx and () () ()()kk
x

k λ,2 xW ∇=
is the Hessian matrix of the Lagrangian function with respect to variables x , i.e.

() ()() () ()()k
i

Ei
i

kk cf
k

xxW 22 ∇−∇= ∑
∈

λ . (3.217)

The system (3.216) can be rearranged to be solved for () () δλλλ +=+ k1k

instead of δλ . If we write () xδδ =k , the system becomes

3. Numerical Optimisation 3.11. Sequential Quadratic Programming

106

() ()

()

()

() 






 −
=
















−

−
k

k

Tk

kk

c

g

0A

AW
λ
δ

. (3.218)

Solution of the system gives ()1+kλ and ()kδ , while ()1+kx is obtained by

() () ()kkk δ+=+ xx 1 . (3.219)

Similarly as in the case of the Newton Method for unconstrained problems,
the system of equations in the Lagrange-Newton iteration can be considered as a
solution of a minimisation problem. Consider the problem

δ
minimize () () () () ()kTkkTk fq ++= δδδδ gW

2

1

(3.220)

subject to ()() () () 0=+= kTkk cAl δδ .

This can be considered as an approximation of the original problem where the
objective function is approximated by the second order Taylor approximation with
the addition of constraint curvature terms in the Hessian, and constraints are
approximated by the first order Taylor approximation about ()kx . The problem can be
solved sequentially, which results in the sequential quadratic programming method
summarised below:

Algorithm 3.13: Sequential quadratic programming.

For ...,2,1=k

1. Solve (3.220) for ()kδ . Set ()1+kλ to the vector of Lagrange multipliers of the
linear constraints.

2. Set () () δ+=+ kk xx 1 .

The first order conditions 0=∇ � for this problem give (3.218), therefore the
solution ()kδ of the system (3.218) is a stationary point of the Lagrangian function of
the problem (3.220). Following the discussion in section 3.9.1, the second order

sufficient conditions for (3.220) are that the reduced Hessian matrix () () ()kkTk ZWΖ is
positive definite. If this is true, then ()kδ minimises (3.220). It follows that if unique
minimisers exist in Algorithm 3.13 for each k, then the iteration sequence is identical

3. Numerical Optimisation 3.11. Sequential Quadratic Programming

107

to that given by the Lagrange-Newton method (3.218) and (3.219). The Lagrange-
Newton method can converge to a KT point which is not a minimiser, therefore the
sequential quadratic programming algorithm is preferred.

The algorithm can be generalised for solving inequality constrained
problems. In this case the subproblem

δ
minimize () () () () ()kTkkTk fq ++= δδδδ gW

2

1

(3.221)

subject to ()() () () 0≥+= kTkk cAl δδ .

is solved instead of (3.220).

The Lagrange-Newton and SQP algorithms have good local convergence
properties stated in the following theorem[1]:

Theorem 3.17:

If ()1x is sufficiently close to *x , if the Lagrangian matrix

()
() ()

() 







−

−
=∇

0A

AW
T

1
1

1

1
2
�

is non-singular and if second order sufficient conditions hold at **,λx with

mrank =*A (where m is the number of constraints), then the Lagrange-

Newton iteration converges with second order. If ()1λ is such that (3.220) is
solved uniquely by ()1δ , then the same is true for the SQP method.

The Hessian matrix of the Lagrangian function W is required in the SQP
method. It is possible to approximate W by using updating formulae[1],[18], analogous
to those in quasi-Newton methods. For example, a matrix ()kB that approximates

()kW can be updated according to the DFP or BFGS formula, but with

() () ()() () ()()11 ,, ++ ∇−∇= kkkkk λλγ xx �� . (3.222)

The resulting algorithms are superlinearly convergent.

3. Numerical Optimisation 3.11. Sequential Quadratic Programming

108

The main difficulty of the SQP algorithm as stated above is lack of global
convergence properties. The algorithm can fail to converge remote from the solution
and it is possible that in some iteration the solution of the subproblem (3.220) or
(3.221) does not even exist. The reason for this is essentially the same as for any
method which constructs estimates purely on the basis of some simplified models (as
for example Newton’s method for unconstrained minimisation), i.e. the model is in
general adequate only in a limited region which does not necessarily contain the
problem solution.

While the line search strategy is a common approach to ensure global
convergence of the unconstrained minimisation algorithms, this approach is less
applicable in the direct methods for constrained minimisation (except those which
solve a sequence of unconstrained subproblems). The reason for this is that
especially when non-linear equality constraints are present, any straight line from the
current iterate will typically have only one feasible point, which makes use of the
line search in a standard way impossible.

The other approach for inducing global convergence is the trust region
approach. By adding a step length restriction ()kh≤δ to (3.220) or (3.221) the

possibility of an unbounded correction is removed. The difficulty is that if ()kx is
infeasible and ()kh is sufficiently small, then the resulting subproblem may not have
any feasible points. Another way to ensure that the resulting subproblem is not
unbounded is to add the Levenberg-Marquardt term Iν to ()kW . It is possible to

make ()kW positive definite by sufficiently increasing the parameter ν [4].

A way of avoiding the difficulties with step length restriction is use of the 1L
exact penalty function[1],[4] in conjunction with the SQP method. An exact penalty
function is a penalty function whose unconstrained local minima correspond to
constrained local minima of the original problem. The 1L exact penalty function for a
general constrained problem is given by

() () () ()()∑ ∑
∈ ∈

−++=
Ei Ii

ii ccf xxxx ,0maxνφ . (3.223)

Where ν is a control parameter that weights the relative contribution of ()xf and

the penalty terms. If *
ia are linearly independent, if

∞
< iλν 1 and if *x satisfies the

second order sufficient conditions for the original problem, then *x is a local
minimiser of (3.223) and can be obtained by a single unconstrained minimisation.
The disadvantage of such a penalty function is that it has discontinuous first
derivatives on the border of the feasible region (Figure 3.15), which requires the use
of special techniques for non-smooth minimisation.

3. Numerical Optimisation 3.11. Sequential Quadratic Programming

109

Figure 3.15: iL exact penalty functions for problem illustrated in

Figure 3.13.

For use with the SQP method, approximations (3.220) and (3.221) are
substituted in (3.223) and the step restriction (in ∞L norm) is added, which yields the
subproblem

δ
minimize ()() ()() ()() ()()()∑ ∑

∈ ∈

−++=
Ei Ii

k
i

k
i

kk llq δδδνδψ ,0max

(3.224)
subject to ()kh≤

∞
δ

This is an example of a so called L1QP problem, for which effective algorithms
exist[1]. Algorithm 3.13 that solves the subproblem (3.224) is consequently referred
to as the SL1QP algorithm.

The difficulties with an infeasible subproblem when using the step restriction
are avoided by using the exact penalty function. The radius of the trust region ()kh is
adjusted adaptively in a similar way as in restricted step algorithms for unconstrained
minimisation.

Most of the difficulties related to use of the L1QP subproblem arise from lack
of smoothness. The derivative discontinuities give rise to grooves in the penalty
surface, which can be difficult to follow by an algorithm. Another problem related to
derivative discontinuities is the Maratos effect[1],[21], in which although () ()kk λ,x may
be arbitrarily close to the solution, the SL1QP method fails to reduce the L1 exact

3. Numerical Optimisation 3.12. Further Remarks

110

penalty function. To avoid the effect, the step ()kδ must be recalculated after making
the correction for the higher order errors that arise.

The SQP method and its variants seem to be among the most promising methods for
solving general nonlinear problems. A variant of the method developed by A. Tits,
E.R. Panier, J. Zhou and C. Lawrence[22],[23] is built in the optimisation shell
described in the next chapter.

3.12 Further Remarks

In the present chapter some of the basis of nonlinear programming is
outlined. This knowledge is important for understanding the practical requirements
for implementation of the algorithmic part in the optimisation shell. The literature
cited in this chapter is mostly related to the mathematical and algorithmic
background of optimisation and less to practical implementation (except references
[3], [8] and [26]). Some implementation aspects are stressed in the next chapter
within a larger framework of the optimisation shell. The need for hierarchical and
modular implementation, which is stated there, is partially based on the heterogeneity
of optimisation algorithms evident from the present chapter.

In practice it is not always obvious which algorithm to use in a given
situation. This depends first of all on the case being solved. Although the theory can
offer substantial support for making the judgment, most of the literature on
optimisation methods recognize the significance of numerical experimentation
alongside the theoretical development. This implies a significant aspect that was
borne in mind during development of the optimisation shell. The shell should not
only include a certain number of algorithms, but also provide an open framework for
incorporation of new algorithms and testing them on simple model functions as well
as on practical problems.

Many issues important for engineering practice were not taken into account.
One of them is handling multiple conflicting optimisation criteria, i.e. solving the
problem stated as

minimise () () ()[]xxx mfff ...,,, 21

(3.225)
tosubject Ω∈x .

A common approach is to weight the individual criteria, which leads to the problem

3. Numerical Optimisation 3.12. Further Remarks

111

minimise () () () ()xxxx mm fwfwfwf +++= ...2211

(3.226)
tosubject Ω∈x ,

where 1w , …, mw are positive weighting coefficients. The problem which arises is

how to choose these coefficients. The choice is made either on the basis of
experience or in an iterative process where optimisation is performed several times
and coefficients are varied on the basis of the optimisation results.

Sometimes it is more convenient to designate one criterion as a primary
objective and to constrain the magnitude of the others, e.g. in the following way:

minimise ()x1f

tosubject () 22 Cf ≤x ,
… (3.227)

() mm Cf ≤x ,

Ω∈x .

This approach suffers for a similar defect as weighting criteria, i.e. the solution
depends on the choice of coefficients 2C , …, mC . Attempts to overcome this

problem lead to consideration of Pareto optimality[9],[14] and solution of the min-max
problem[9],[20].

Another important practical issue is optimisation in the presence of numerical
noise. Most of the methods considered in this chapter are designed on the basis of
certain continuity assumptions and do not perform well if the objective and
constraint functions contain a considerable amount of noise. This can often not be
avoided due to complexity of the applied numerical models and their discrete nature
(e.g. adaptive mesh refinement in the finite element simulations).

A promising approach to optimisation in the presence of noise incorporates
approximation techniques[35],[36]. In this approach successive low order
approximations of the objective and constraint functions are made locally on the
basis of sampled function values and/or derivatives. This leads to a sequence of
approximate optimisation subproblems. They refer to minimisation of the
approximate objective functions subject to the approximate constraints and to
additional step restriction, which restricts the solution of the subproblem to the
region where the approximate functions are adequate. The subproblems are solved by
standard nonlinear programming methods. For approximations more data is usually
sampled than the minimum amount necessary for determination of the coefficients of
the approximate functions, which levels out the effect of noise. A suitable strategy

3. Numerical Optimisation 3.12. Further Remarks

112

must be defined for choosing the limits of the search region and for the choice of
sampling points used for approximations (i.e. the plan of experiments)[35].

A common feature of all methods mentioned in this chapter is that they at
best find a local solution of the optimisation problem. There are also methods which
can (with a certain probability) find the global solution or more than one local
solution at once. The most commonly used are simulated annealing[26],[9],[14] and
genetic algorithms[9],[14]. Most of these methods are based on statistical search, which
means that they require a large number of function evaluations in order to accurately
locate the solution. This makes them less convenient for use in conjunction with
expensive numerical simulations, except in cases where global solutions are highly
desirable. Use of these techniques can also be suitable for finding global solutions of
certain optimisation problems which arise as sub-problems in optimisation
algorithms and in which the objective and constraint functions are not defined
implicitly through a numerical simulation.

3. Numerical Optimisation References

113

References:

[1] R. Fletcher, Practical Methods of Optimization (second edition), John
Wiley & Sons, New York, 1996).

[2] E. J. Beltrami, An Algorithmic Approach to Nonlinear Analysis and
Optimization, Academic Press, New York, 1970

[3] J. E. Dennis (Jr.), R. B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, SIAM,
Philadelphia, 1996.

[4] D. P. Bertsekas, Nonlinear Programming (second edition), Athena
Scientific, Belmont, 1999.

[5] Mathematical Optimization, electronic book at
http://csep1.phy.ornl.gov/CSEP/MO/MO.html , Computational
Science Education Project, 1996.

[6] A. V. Fiacco, G. P. McCormick, Nonlinear Programming –
Sequential Unconstrained Minimisation Techniques, Society for
Industrial and Applied Mathematics, Philadelphia, 1990.

[7] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods, Athena Scientific, Belmont, 1996.

[8] J. L. Nazareth, The Newton – Cauchy Framework – A Unified
Approach to Unconstrained Nonlinear Minimisation, Springer –
Verlag, Berlin, 1994.

[9] A. D. Belgundu, T. R. Chandrupatla: Optimization Concepts and
Applications in Engineering, Prentice Hall, New Jersy, 1999.

[10] P. E. Gill, W. Murray, M. H. Wright, Practical Optimization,
Academic Press, London, 1981.

[11] M. J. D. Powell (editor), Nonlinear Optimization – Proceedings of the
NATO Advanced Research Institute, Cambridge, July 1981, Academic
Press, London, 1982.

[12] M. H. Wright, Direct Search Methods: Once Scorned, Now
Respectable, in D. F. Griffiths and G. A. Watson (eds.), Numerical
Analysis 1995 (Proceedings of the 1995 Dundee Biennial Conference
in Numerical Analysis, p.p. 191 – 208, Addison Wesley Longman,
Harlow, 1996.

[13] K.G. Murty, Linear Complementarity, Linear and Nonlinear
Programming, Helderman-Verlag, 1988.

3. Numerical Optimisation References

114

[14] S.R. Singiresu, Engineering Optimization – Theory and Practice
(third edition), John Wiley & Sons, New York, 1996.

[15] E. Panier, A. L. Tits, On Combining Feasibility, Descent and
Superlinear Convergence in Inequality Constrained Optimization,
Mathematical Programming, Vol. 59 (1993), p.p. 261 - 276.

[16] C. T. Lawrence, A. L. Tits, Nonlinear Equality Constraints in
Feasible Sequential Quadratic Programming, Optimization Methods
and Software, Vol. 6, 1996, pp. 265 - 282.

[17] J. L. Zhou, A. L. Tits, An SQP Algorithm for Finely Discretized
Continuous Minimax Problems and Other Minimax Problems With
Many Objective Functions, SIAM Journal on Optimization, Vol. 6,
No. 2, 1996, pp. 461 - 487.

[18] P. Armand, J. C. Gilbert, A piecewise Line Search Technique for
Maintaining the Positive Definiteness of the Matrices in the SQP
Method, Research Report No. 2615 of the “Institut national de
recherche en informatique et en automatique”, Rocquencourt, 1995.

[19] C. T. Lawrence, A. L. Tits, Feasible Sequential Quadratic
Programming for Finely Discretized Problems from SIP, in R.
Reemtsen, J.-J. Ruckmann (eds.): Semi-Infinite Programming, in the
series Nonconcex Optimization and its Applications. Kluwer
Academic Publishers, 1998.

[20] J. L. Zhou, A. L. Tits, Nonmonotone Line Search for Minimax
Problems, Journal of Optimization Theory and Applications, Vol. 76,
No. 3, 1993, pp. 455 - 476.

[21] J. F. Bonnans, E. Panier, A. L. Tits, J. L. Zhou, Avoiding the Maratos
Effect by Means of a Nonmonotone Line search: II. Inequality
Problems - Feasible Iterates, SIAM Journal on Numerical Analysis,
Vol. 29, No. 4, 1992, pp. 1187-1202.

[22] C. T. Lawrence, J. L. Zhou, A. L. Tits, User’s Guide for CFSQP
Version 2.5: A C Code for Solving (Large Scale) Constrained
Nonlinear (Minimax) Optimization Problems, Generating Iterates
Satisfying all Inequality Constraints, Institute for Systems Research,
University of Maryland, Technical Report TR-94-16r1, 1997.

[23] The FSQP Home page, electronic document at
http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html , maintained
by the Institute for Systems Research, University of Maryland.

[24] H. J. Greenberg, Mathematical Programming Glossary, electronic
document at
http://www.cudenver.edu/~hgreenbe/glossary/glossary.html , 1999.

3. Numerical Optimisation References

115

[25] Optimization Frequently Asked Questions, electronic document at
http://www-unix.mcs.anl.gov/otc/Guide/faq/ , maintained by Robert
Fourer, The Optimization Technology Center.

[26] W.H. Press, S.S. Teukolsky, V.T. Vetterling, B.P. Flannery,
Numerical Recipies in C – the Art of Scientific Computing, Cambridge
University Press, Cambridge, 1992.

[27] J. W. Demmel, Applied Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

[28] L. N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

[29] B. Jacob, Linear Algebra, W. H. Freeman and Company, New York,
1990.

[30] I. N. Bronstein, K. A. Smendljajew, G. Musiol, H. Mühlig,
Taschenbuch des Mathematik (second edition - in German), Verlag
Harri Deutsch, Frankfurt am Main, 1995.

[31] I. Ku���������	
�����H. Neunzert, Mathematik in Physik und Technik
(in German), Springer - Verlag, Heidelberg, 1993.

[32] E. Kreyszig, Advanced Engineering Mathematics (second edition),
John Wiley & Sons, New York, 1993.

[33] Z. Bohte, Numeri����������, Društvo matematikov, fizikov in
astronomov SRS, Ljubljana, 1987.

[34] K. J. Bathe, Finite Element Procedures, p.p. 697-745, Prentice Hall,
New Jersey, 1996.

[35] F. van Keulen, V. V. Toropov, Multipoint Approximations for
Structural Optimization Problems with Noisy Response Functions,
electronic document at http://www-
tm.wbmt.tudelft.nl/~wbtmavk/issmo/paper/mam_nois2.htm.

[36] J. F. Rodriguez, J. E. Renaud, Convergence of Trust Region
Augmented Lagrangian Methods Using Variable Fidelity
Approximation Data, In: WCSMO-2 : proceedings of the Second
World Congress of Structural and Multidisciplinary Optimization,
Zakopane, Poland, May 26-30, 1997. Vol. 1, Witold Gutkowski,
Zenon Mroz (editors), 1st ed., Lublin, Poland, Wydawnictwo
ekoincynieria (WE), 1997, pp. 149-154.

