DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF WALES SWANSEA

A GENERAL PURPOSE COMPUTATIONAL
SHELL FOR SOLVING INVERSE AND
OPTIMISATION PROBLEMS

APPLICATIONSTO METAL FORMING PROCESSES

Igor GreSovnik
Dipl.Ing. Physics
Faculty of Mathematics and Physics
University of Ljubljana

THESISSUBMITTED TO THE UNIVERSITY OF WALES
IN CANDIDATURE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

C/Ph/239/00 APRIL 2000



DECLARATION

This work has not previously been accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree.

Signed (candidate)

Date

STATEMENT 1

Thisthesisisthe result of my own investigations, except where otherwise stated.
Other sources are acknowledged by giving explicit references. A bibliography is
appended.

Signed (candidate)

Date

STATEMENT 2

| hereby give consent of my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed (candidate)

Date



To my parents



Acknowledgments

| would like to thank:

my supervisor, Prof. D.R.J. Owen, for his guidance and advice;

my mentor, Dr. Tomaz Rodic¢, for his guidance and support;

the Slovenian Ministry of Science and Technology for financial support;
my parents for encouragement and support;

my colleaguesin C3M for productive collaboration;

Suzanafor her patience and understanding.




Summary

A general-purpose optimisation shell has been developed which utilises an
arbitrary simulation system for solution of inverse and optimisation problems. Focus
isdirected at an open and flexible structure of the shell which allows application to a
wide variety of problems and independent development of different solution tools,
which can be easily integrated into the optimisation system. In this respect, an
approach based on isolated treatment of different subproblems, which can be
identified in the overall problem, is followed.

The developed concepts were applied to the solution of problems related to
metal forming. The approach includes finite element analyses and related design
sensitivity evaluations, which are applied in gradient based optimisation agorithms.
The combined algorithms are examined by considering implementation of the overall
optimisation system.

Examples include inverse estimation of constitutive parameters as well as
optimisation of shape and thermo-mechanical processing parameters for thermo-
mechanical systems which show highly nonlinear, transient, coupled and path
dependent behaviour.
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1 INTRODUCTION

1.1 Motivation and Scope

Optimisation is a logical step forward from direct analyses of products and
processes. For linear problems this is already a well established field while active
research in areas related to nonlinear, transient, coupled and path dependent
problems has become feasible relatively recently!'¥ due to advances in computer
science, numerical analysis? ™ and sensitivity analysig*> ¢,

This work represents an attempt to develop a general purpose optimisation
system which can be effectively adapted to problems emerging in engineering and
science. A computational shell Inverse has been developed, which can be used in
conjunction with existing simulation systems in order to perform optimisation tasks.
A tempting challenge of designing an optimisation system that is flexible enough for
general application has been taken up. A contemporary finite element based
simulation environment Elfen® was utilised in the system, which enabled
exploitation of state of the art achievements®?1® in the field of numerical
simulations in continuum mechanics.

A prime aim of the shell development was to provide a solution environment
capable of solving a large variety of problems. Such an environment has been built
around a traditionally structured simulation code, which was not primarily designed
to solve optimisation problems and can not be easily restructured. This imposed a
particular emphasis on an open and flexible approach to shell development and a
tendency of division of problemsto sets of separately treated sub-problems.

Under these circumstances the shell has evolved into a general optimisation
programme whose scope is not limited in advance to solution of any specific kind of
optimisation problems or to usilisation of a specific simulation software. It provides a
framework for independent development of optimisation algorithms and other




1. Introduction 1.1. Motivation and Scope

solution tools in the form of separate modules, which are readily integrated in a
common optimisation environment. Its flexible user interface implemented through a
file interpreter enables interaction of built-in optimisation algorithms and utilities
with additional functionality provided in separate modules. The available utilities can
be arbitrarily combined in order to define solution strategies for complex problems.
These utilities include interfaces with simulation programmes, which provide access
to simulation capabilities.

The shell is developed in the scope of a broader project, the aim of which is
to build a complete general optimisation system based on advanced development
concepts (Figure 1.1)*7. This system will include a finite element solution
environment developed from the very beginning with the intention of being
applicable to solution of optimisation problems. This imposes an open and modular
structure convenient for building interfaces with other programmes and acceptable to
introducing changes in programme structure.

' '
Formulations
i - constitutive models
< Preprocessing - element formulation
- response functionas
—
|, Finiteelement \ /~ Symbolicsystem
solution for automatic
environment code generation 8
_ _ ) s g
T olestarlEs | | Element stiffnessk® | &
7 Ru*)=0 Element loads r® @
c § 5
i) w
ﬁ [Element sensitivit h g
= Sensitivity analysis . Y |2
E erms 8
= Du < @ a =
8— Dg or® or® 3
ag oul™ o
@@ _ J =
o
. N . N
%‘]g“vny Of SenSItIVIty terms of '8
response response functionals o
functionals 07 2
on ou o}
Al )\ )
- @@ J
v
| <—[ Post-processing ]

Figure 1.1: Outline of the idea of a complete optimisation system!*”.
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A particularly appealing feature is the use of a symbolic system for automatic
generation of element quantities such as element stiffness, loads and sensitivity
terms®®. Element formulations, constitutive models and response functionals are
defined on an abstract mathematical level. The system then derives the necessary
relations and generates the appropriate functions which are directly incorporated in
the ssimulation code through a standard interface. Such an approach enables quick
incorporation of new models and is convenient for handling complexity of sensitivity
anaysis.

The adequacy of the developed concepts was tested on examples related to
metal forming processes. Some typical optimisation problems which arise in this
field were tackled, such as optimisation of pre-formsin two stage forming processes
and optimal prestressing of cold forging tools.

It is acknowledged that numerical tools must be applied to such complex
processes with certain care. Numerical simulations often fail to adequately replicate
experimental results obtained in real metal forming processes or even in simple tests.
The reason for this often lies in inaccuracy in parameters of physical models or
processing conditions which are used as input data for ssmulations.

Obtaining accurate input datais not always a simple task. Direct evaluation of
the required constitutive and processing parameters requires measurements which
can not always be performed. This can be overcome by inverse analyses! 91201 [111-{14]
where the parameters are estimated through minimisation of discrepancies between
indirect measurements and simulation results by applying an optimisation algorithm.
This approach has been illustrated on some inverse identification problems, for
which the devel oped optimisation shell is also applicable.

1.2 Layout of the Thesis

Chapter 2 introduces the basic aspects of numerical simulations with a main
emphasis on sensitivity analysis for non-linear problems, which is performed by
using the direct differentiation and adjoint method. A general formal basis is
indicated and further references are quoted.

In chapter 3 the mathematical background of numerical methods for the
solution of optimisation problems is given. Implementation of some commonly used
algorithms is outlined. Discussion is limited to nonlinear programming algorithms
which were used within the scope of this work. The aim of this chapter isto give a
clear overview with some insight to the numerical complexity behind optimisation
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algorithms. In the final part of the chapter some practical algorithmic issues are
highlighted.

Chapter 4 describes the optimisation shell, which was developed in the scope
of the present work. The first part of this chapter is devoted to description of the shell
basic concepts and function. This is supported by a brief description of the shell file
interpreter and a short example in order to make the presented material less abstract.

The second part touches on the internal structure of the shell through a few
representative implementation issues. The selection of the considered issues was
made on the basis of significance for the shell concepts and connection with the
material in thefirst part.

Chapter 5 provides some examples which were solved by applying the
optimisation shell in conjunction with the finite element simulation programme
Elfen. In the first example experimental results from a standard tension test are used
for the inverse estimation of material hardening parameters. The second exampleisa
simple test for studying the applicability of optimisation techniques in optimal pre-
form design. In the third example optimal heating conditions of a two-stage forming
process are evaluated. The fourth example is an industrial application where
prestressing conditions for cold forging dies are optimised in order to prevent
initiation of cracks in the tool and therefore improve the tool life. The chapter is
concluded with some other problems, which have been solved using the shell by
different authors.

The final part summarises the significance and the scope of the performed
work. Some current deficiencies of the optimisation shell are pointed out and
guidelines for further development are indicated.
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2 SENSITIVITY ANALYSISIN FINITE ELEMENT
SIMULATIONS

2.1 Finite Element Simulations

The am of numerical simulations is to predict the behaviour of a system
under consideration. In the finite element approach this is performed by solving a set
of algebraic equations, which can be expressed in the residual form

R(u)=0. (2.2)

The above equations represent the discretised form of the governing equations
including balance laws, constitutive equations, and initial and boundary conditions,
which arise in mechanical, thermal, or electromagnetic problems. Unknowns u
define approximate solution and are considered as the primary sSystem response.
System (2.1) represents a wide variety of problems and description of finite element
techniques to solve particular problems are beyond the scope of this work. A large
amount of literature covers this topic, e.g.. references [1] - [7]. This section is
focused on basic aspects of sensitivity analysis’@ 1 for nonlinear problems, which
iscrucial for efficient optimisation procedures.

The system (2.1) can be solved by the Newton-Raphson method, in which the
following iteration is performed (chapter 3, [1]-[7]):

R fu)su=-R"), (22)

u =y +5u. (2.3)
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The term R(u(‘)) is referred to as the residual (or load) vector and the term 2—R(u(‘))
u

isreferred to as the tangent operator (or tangential stiffness matrix).

For time dependent problems the iteration scheme given by (2.2) and (2.3) is
not sufficient since the state of the system at different times must be determined.
Time is usualy treated differently to the spatial independent variables. The time
domain is discretised according to the finite difference scheme in which approximate

states are evaluated for discrete times Wt, %k, ..., Mk . Solution for intermediate times
is usually linearly interpolated within the intervals |t,"*)t| and time derivatives of
the time dependent quantities are approximated by finite difference expressions.

The approximate solution for the n-th time step is obtained by solution of the
residual equations

WR(y,09y)=0, (2.4)

which are solved for each time step (or increment) for Mu while ®Yu is known
from the previous time step. Dependence on earlier increments ((”‘Z)U, etc.) is
possible when higher order time derivatives are present in the continuum equations
(e.0. [8]). The system (24) can again be solved by the Newton-Raphson method in
which the following iteration is performed™:

d(n)R n i n n i
—(—rd OF (( )U())O-U = - )R(( )U()), (25)
(“)u(i+1) =(n) U(i) +JU. (26)

The incremental scheme is not used only for transient but also for path
dependent problems such as plasticity!®® where constitutive laws depend on
evolution of state variables, which inherently calls for an incremental approach!'*%,
Material response is not necessarily time dependent and the time can be replaced by
some other parameter, referred to as pseudo time. Treatment of path dependent
material behaviour requires introduction of additional internal state variables, which
serve for description of the history effect.

The state of a continuum system is often defined by two distinct fields, e.g.
the temperature and displacement fields. Two sets of governing equations define the
solution for both types of variables. When neither of these variables can be

! The Euler backward integration scheme is considered here, but other schemes such as variable
midpoint a gorithms can a so be incorporated.
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eliminated by using one set of equations, both sets must be solved simultaneously
and the system is said to be coupled. The approximate solution is obtained by solving
two sets of residual equations in each time step:

MR (Y, y,0 v, 0D y)=0 (2.7)
and
OR(y, 0y 0y ey)=0. (2.8)

Different solution schemes® ¥ include either solution of both systems
simultaneously in an iteration system, or solution of the systems separately for one
set of variables while keeping the other set fixed; the converged sets of variables are
in this case exchanged between the two systems.

In the present work the developed optimisation methodology was applied to
metal forming processes. Simulations of these processes must take into account
complex path dependent and coupled material behaviour. A survey of modelling
approaches fot this behaviour can be found in [9].

2.2 Senditivity Analysis

For the purpose of optimisation the notion of parametrisation is introduced.
We want to change the setup of the considered system either in terms of geometry,
constitutive parameters, initial or boundary conditions, or a combination of these. A
set of design parameters @ = [ﬂ@(ﬂn] is used to describe the properties of the

system which can be varied. The equations which govern the system and therefore
the numerical solution depend on the design parmeters.

To define optimisation problems certain quantities of interest such as the
objective and constraint functions must be defined. For many optimisation
algorithms the derivatives of these quantities with respect to the design parameters
(i.e. sensitivities) are important. Evaluation of these derivatives is the subject of
sensitivity analysis'™® ™ which is introduced in this section in terms of basic
formalism. For this purpose, let us consider a general function, which is dependent
on the design parameters which define the system of interest:

F(®)=G(u(e), @) (2.9)

10
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F isreferred to as the response functional and appears as a term in the objective or
constraint functions. F will be typically defined through a system response u, but
may in addition include explicit dependence on the design parameters, as is indicated
by the right hand side of (2.9). One way of evaluating derivatives dF/dg is

numerical evaluation by the finite difference formula

dF Fle o ts @ * DG Gy @)= F (G oo G ts Cr Gy @)
—\a,6,... = 1 n’ (2.10
ia (@.9...0) v (2.10)

Evaluation of each derivative requires additional evaluation of F at a perturbed set of
design parameters, which includes numerical evaluation of the system response u at
the perturbed parameters. More effective schemes, which are incorporated in a
solution procedure for evaluation of the system response, are described below.

Derivation of (2.9) with respect to a specific design parameter ¢ =@ * gives
—_— =+ (2.12)

Derivatives 0G/0u and 0G/0@ are determined explicitly by definition of the
functional F. The main task of the sensitivity analysis is therefore evaluation of the
term du/dg, which isan implicit quantity because the system response u depends on

the design parameters implicitly through numerical solution of the governing
equations.

Let us first consider steady state problems where the approximate system
response can be obtained by solution of a single set of non-linear equations (2.1).
Since the system is parametrised, these equations depend on the design parameters
and can be restated as

R(u(e),®)=0. (2.12)
This equation defines implicit dependence of the system response on the
design parameters and will be used for derivation of formulae for implicit sensitivity

terms.

In the direct differentiation method the term du/d¢ is obtained directly by
derivation of (2.12) with respect to a specific parameter ¢, which yields

! Index k is suppressed in order to simplify the derived expressions.

11
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oRdu__OoR (2.13)

This set of linear equations must be solved for each design parameter in order to
obtain the appropriate implicit term du/dg. This term is then substituted into (2.11)
in order to obtain the derivative of the functional F with respect to that parameter.
The equation resembles (2.2), which is solved iteratively to obtain the approximate
system response. According to this analogy (2.13) is often referred to as a
pseudoproblem for evaluation of the implicit sensitivity terms, and the right-hand
side -0R/dg is referred to as the pseudoload. As opposed to (2.2), (2.13) is solved
only once at the end of the iterative scheme, because the tangent operator 0R/du
evaluated for the converged solution u (where equations (2.12) are satisfied) must be
taken into account for evaluation of sensitivities. If the system of equations (2.2) is
solved by decomposition of the stiffness matrix, then the decomposed tangent
stiffness matrix from the last iteration can be used for solution of (2.13), which
means that the additional the computational cost includes only back substitution.
Evaluation of derivatives with respect to each design parameter therefore contributes
only a small portion of computational cost required for solution of (2.12) as opposed
to the finite difference scheme, where evaluation of the derivative with respect to
each parameter requires a complete solution of (2.12) for the corresponding
perturbed design. An additional complication is evaluation of the load vector
—-0R/0¢. It requires explicit derivation of the finite element formulation (more
precisely the formulae for evaluation of element contributions to the stiffness matrix)
with respect to design parameters, which must be incorporated in the numerical
simulation.

An alternative method for evaluation of sensitivities is the adjoint method. In
this method the implicit term du/dg is eliminated from (2.11). An augmented
functional

F(®)=G(u(e),®)-"R(u(e),®) (2.14)
is defined, where A is the vector of Lagrange multipliers, which will be used for

elimination of implicit sengitivity terms. F =F because R =0. Differentiation of
(2.14) with respect to a specific design parameter ¢ yields

gF _0Gdu,0G LMD jppfRdu, 0R (2.15)
dg oOudg Jd¢ @ ou dgp dg

! Vectors denoted by Greek letters are not typed in bold, but it should be clear from the context when
some quantity is a vector and when scalar.

12
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Since R =0 by (2.12) and a—R%+6—R:O by (2.13),
ou dp dg

dF _dr (2.16)

dp d¢

Thetermsin (2.14) which include implicit derivatives are

0G du OR du EG OR Odu
__—/]T__: —/]T— 2.17
ou dg ou dgp [ou ou dg (217)

These terms are eliminated from (2.15) by defining A so that the term in round
bracketsin (2.17) is zero. Thisisachieved if A solvesthe system

B(LRHA :Biﬁg. (2.18)

0ou [0 0ou O

System (2.18) is referred to as the adjoint problem for the adjoint response A with
the adjoint load (dG/du)". Once multipliers A are evaluated, the derivative of F
with respect to a specific parameter ¢ isobtained as

dF_dE_aG_/\TaR

—. (2.19)
dp dp d¢  0dg¢

The adjoint method requires the solution of the adjoint problem (2.18) for
each response functional F. It is efficient when the number of response functionalsis
small compared to the number of design parameters.

A similar approach can be adopted for transient problems where sensitivities
are evaluated within the incremental solution scheme. As for steady state problems
the dependence on the design parameter is taken into account in the discretised
governing equations (2.4):

OR(Mu(p) " u(g),¢)=0. (2.20)
It will be assumed that the response functional is defined through the response for the
fina time ™t, althou?h it can be easily defined as a function of response for
intermediate times %1%

F(0)=6("u(o), o). (2.21)
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Derivation with respect to the parameter ¢ yields

dF dc D™u oG
= = = 2472 2.22
dp d™u dg g (2.22)

In the direct differentiation method the implicit derivative is obtained directly
by derivation of (2.20), which yields (after setting the increment index to M)

Mg gM) Mg gM-1) (M)
0"'Rd™u _ Ho"'R d u+a RE (2.23)

™y dp B dg  ag

The pseudoload on the above equation contains the sensitivity of the response
evaluated in the previous step. By applying the direct differentiation procedure back
in time we see that the system

(MR g MR gty 9
0"Rd"™u _ _Ho™R d"u 0 RE (2.24)

"y dp " dp  dg

must be solved for d®u/dg after each time step (i.e. for i=1, 2, ..., M) after
convergence of the iteration (2.5) and (2.6), while the derivative of the initia
condition d(o)u/ dg needed after the first increment is assumed to be known.

In the adjoint method the implicit terms are again eliminated by the
appropriate definition of the Lagrange multipliers. The augmented functional is
defined by combination of (2.21) and (2.20) for all increments:

(®)®) (229
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Again F = F follows from (2.20) and 3—F:3—F follows from (2.20) and
¢ dg

(2.24). Derivation of (2.25) yields after rearrangement and some manipul ation
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dF _ dE _ 0G _ M (n)/\T 6(”)R Q) 5T d(l)R d(o)u

dp do 0p £ 0 d® dg
ML R ¢y 5 IR gy
5 by 9 +{2) )T - 2.26
nZ FIOTRRY "y dg ’ (2.26)
_(M) T a(M R d(M)U aG d(M)U

where the first line contains explicit terms and the other two lines contain implicit
terms which must be eliminated.

Elimination of implicit terms from (2.26) is achieved by solution of the
following set of adjoint problems for the Lagrange multiplier vectors:

(M)R ('V')/] _ G
oy F
o o ) (2.27)
n n+1
Ry =- R ™} n=M-1M -2,...M -1
0'"u 0"u
Oncethisis done, the functional derivative is obtained from
= M (n) (2) (0)
dF _dF _0oG_ (M7 "R _p TE@BC’_U (2.28)
dp do dop & 0p d“u dg

Since the equations (2.27) are evaluated in the reverse order to the tangent
operators, the complete problem must be solved before the sensitivity analysis can
begin. This requires storage of converged (and possibly decomposed) tangent
operators from all increments. The adjoint analysis may still be preferred when the
number of the design parameters is significantly larger than the number of response
functionals.

A similar derivation can be performed for coupled systems (i.e. equations
(2.5) and (2. 6)). The procedureisoutlined e.g. in [12], and [16]. In the direct method
sensitivity of one field is expressed in terms of the sensitivity of another, which gives
the dependent and the independent pseudoproblem. In the adjoint methods, two sets
of Lagrange multipliers must be introduced, one for each corresponding eguation.
Two adjoint problems are solved for each set of multipliers for each increment,
otherwise the procedure is the same as for non-coupled problems. Sensitivity
analysis for various finite element formulations in metal forming is reviewed in [15]
and [16] and discussed in detail in [10].
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Sensitivity analysis significantly increases the complexity of the simulation
code. One complication comes at the global level where the assembled problem is
solved in the incremental/iterative scheme. Solution of the adjoint or pseudoproblems
must be included in the scheme, which includes assembling of pseudoloads from
element terms. This is followed by appropriate substitutions in order to evaluate the
complete sensitivities. An additional complication in the adjoint method is that the
converged tangent operators must be stored for increments, since solution of the
adjoint problems is reversed in time. In this level the additional complexity can be
relatively easily kept under control if the programme structure is sufficiently flexible.
The number of necessary updates in the code which is primarily aimed for solution
of the direct problem is small and the additional complexity in the programme flow
chart is comparable to the complexity of the original flow chart.

A more serious problem is the complexity which arises on the element level,
where element terms of the pseudoloads are evaluated, i.e. derivatives of the residual
with respect to design parameters. The code should be able to evauate the
pseudoload for any parametrisation that might be used, which can include shape,
material, load parameters, etc. Implementation of a general solution code which
could provide response sensitivities for any possible set of parameters turns out to be
adifficult task. It must be taken into account that such a code must include different
complex material models and finite element formulations and that derivation of the
process of evaluation of element residua terms with respect to any of the possible
parameters can be itself a tedious task. Another complication which should not be
overlooked is the evaluation of the terms dG/ou . Although these are regarded as

explicit terms, for complex functionals their evaluation is closely related to the
numerical model and can include spatial and time integration and derivation of
guantities dependent upon history parameters, with respect to the response u.

The reasons outlined above make use of symbolic systems for automatic
generation of element level codd™™1® (Figure 1.1) highly desirable. In the case of
sengitivity analysis use of such systems enables implementation of new finite
element formulations and physical models in times drastically shorter then would be
needed for manua development. Additionally, use of these systems enables
definition of functionals which are used in optimisation and the necessary sensitivity
terms on abstract mathematical level where the basic formulation of the numerical
model is defined. These definitions can be readily adjusted to new types of problems,
because the necessary derivations are performed by the symbolic systems and the
appropriate computer code is generated automatically. The system for automatic
code generation is connected with a flexible solution environment framework
(referred to as the finite element driver®) into which the generated code can be
readily incorporated. The complexity of inherently combinatorial nature, which
would arise in a static simulation code applicable for sensitivity analysis in general
problems, can be avoided in this way.
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3 NUMERICAL OPTIMISATION

3.1 Introduction

311 Preliminaries

In general, optimisation problems can be stated as problems of minimisation
of some function of the design parameters x, subjected to certain constraints, i.e.:

minimise f(x) xOR"
subject to c(x)=0, iOE (3.1)
and c,(x)z0, jOl,

where f(x) is the objective function and ci(x) and cj(x) are constraint functions™.
Design parameters are also referred to as optimisation variables. The second line of
(3.1) represents the equality constraints of the problem and the third line represents
the inequality constraints. We have introduced two index sets, set E of the equality
constraint indices and set | of the inequality constraint indices. The above problem is
also referred to as the general nonlinear problem. Most of optimisation problems can
be expressed in this form, eventually having multiple objective functions in the case
of several conflicting design objectives.

Points X', which satisfy all constraints, are celled feasible points and the set of
all such points is called the feasible region. A point x is called a constrained local
minimiser (or local solution of the above problem) if there exists some

neighbourhood Q of X" such that f (x)< f (x’) for all feasible points X0Q,x'# X'
Such apoint is called a strict local minimiser if the < signisapplied in placeof <; a

! Number of optimisation variables will be denoted by n throughout chapter 3.
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dlightly stronger definition of isolated local minimiser, which requires the minimiser
to be the only local minimiser in some neighbourhood. Furthermore, x* is called the

global solution or global constrained minimiser it f(x')< f(x) for al feasible

points x’. This means that a global minimiser isthe local solution with the least value
of f.

Since the objective and constraint functions are in general nonlinear, the
optimisation problem can have several constrained local minimisers X . The goal of
optimisation is of course to comply with the objective as much as possible, therefore
the identification of the global solution is the most desirable. However, this problem
isin general extremely difficult to handle. Actualy there is no general way to prove
that some point is a global minimiser. At best some agorithms are able to locate
several local solutions and one can then take the best one of these. These methods are
mostly based on some stochastic search strategy. Location of problem solutions is of
a statistical nature, which inevitably leads to an enormous number of function
evaluations needed to locate individual solutions with satisfactory accuracy and
certainty. These methods are therefore usually not feasible for use with costly
numerical simulations and are not included in the scope of this work. Currently the
most popular types of agorithms for identifying multiple local solutions are the
simulated annealing a gorithms and genetic algorithms, briefly described in [9].

The optimisation problem can appear in severa specia forms dependent on
whether the inequality or equality constraints are present or not, and whether the
objective and constraint functions have some simple form (e.g. are linear or quadratic
in the optimisation parameters). These specia cases are interesting for mathematical
treatment because it is usually possible to construct efficient solution algorithms that
take advantage of the specia structure.

In the cases related to this work, the objective and constraint functions are
typically evaluated implicitly through a system response evaluated with complex
numerical smulation. Here it can not be assumed that these functions will have any
advantageous structure. At most there are cases with linear constraints or constraints
that can be reduced to the form of simple bounds on variables, and in some casesit is
possible to manage the problem without setting any constraints. Treatment of
optimisation algorithms in this chapter will correspond to this fact. Some problems
with special structure will however be considered since they appear as sub-problems
in genera algorithms. Example of thisis the problem (3.1) with a quadratic objective
function and linear constraint functions (the so called quadratic programming or QP
problem), which often appears in agorithms for general constrained and
unconstrained minimsation.

It proves that solution of the constrained problem is essentially more complex
than solution of the unconstrained problem. Also theoretical treatment of the latter is
in many aspects a natural extension of unconstrained minimisation, therefore the first
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part of this section is dedicated to the general unconstrained minimisation in
multivariable space. Some attention is drawn to show parallels with solution of
systems of nonlinear equations, which is the core problem in numerical simulations
related to this work. The source of additional complexity that arises in practical
unconstrained minimisation, as compared to the solution of nonlinear equations that
appear in simulations, will be addressed. The aim of this section is to represent the
theoretical background used in treatment of this complexity in order to assure
satisfactory local and global convergence properties. Basic treatment of the one
dimensional line search, atypical property of most practical algorithms, is also given
in this context.

In the second part a more general constrained problem will be addressed. The
additional mathematical background such as necessary and sufficient conditions will
be given first. The two most commonly used approaches to constrained optimisation
will then be described: sequential unconstrained minimisation and sequential
quadratic programming.

The section is concluded with some practical considerations with regard to
the present work. Some practical problems that can give rise to inadequacy of the
described theory will be indicated. A problem strongly related to this work is
optimisation in the presence of substantial amounts of numerical noise, which can
cause serious difficulties to algorithms based on certain continuity assumptions
regarding the objective and constraint functions.

3.1.2 Heuristic Minimisation M ethods and Related
Practical Problems

In the subsequent text the unconstrained problem is considered, namely

minimise f(x) xOR" (3.2)

Throughout this chapter it is assumed that f is at least a C* function, i.e. twice
continuously differentiable with respect to x. Every local minimum is a stationary
point of f, i.e. apoint with zero gradient!™:

0f(x)=glx)=g" =0. (33)

Minimisation can therefore be considered as a solution of the above equation, which
is essentially a system of nonlinear equations for gradient components

21



3. Numerical Optimisation 3.1. Introduction

gi(x):af(X)ZO, i=1..n. (3.4)

Thisis essentially the same system that arisesin finite element simulation™* and can
be solved by the standard Newton method, for which theiterationis

x k1) = () _ (Dg(k))-lx(k) _ (35)
The notation g = g(x(k)) is adopted throughout this work.

The method is derived from the Taylor series®®*? for g about the current
estimate x®:

g(x¥ +5)=g¥ + 05 +0(5) (3.6)

Considering this as the first order approximation for g and equating it to zero we
obtain the expression for step 0 which should bring the next estimate close to the
solution of (3.4)%

Dg(k)5 = _g(k) .
By setting x**Y =x® + 5 we obtain the above Newton Iteration.

The Newton method is known to be rapidly convergent!?, but suffers for a
lack of global convergence properties, i.e. the iteration converges to the solution only
in some limited neighbourhood, but not from any starting point. This is the
fundamental reason that it is usually not applicable to optimisation without
modifications. The problem can usually be elegantly avoided in simulations, either
because of some nice physical properties of the analysed system that guarantee
global convergence, or by the ability of making the starting guess arbitrarily close to
the equilibrium point where the equations are satisfied. This is, for example,
exploited in the solution of path dependent problems where the starting guess of the
current iterate is the equilibrium of the previous, and this can be set arbitrarily close
to the solution because of the continuous nature of the governing equations. Global
convergence can be ensured ssimply by cutting down the step size, if necessary.

In practice, thisis usually not at all case in optimisation. The choice of a good
starting point typicaly depends only on a subjective judgment where the solution
should be, and the knowledge used for this is usually not sufficient to choose the

' Notation g(x)=0f (x), f® = f(x(")), gl :g(x(k)), etc. will be generally adopted throughout this
text.

22



3. Numerical Optimisation 3.1. Introduction

starting point within the convergence radius of Newton’s method, especialy due to
the complex non-linear behaviour of f and consequently g. Modifications to the
method must therefore be made in order to induce global convergence!, i.e
convergence from any starting guess.

One such modification arises from considering what properties the method
must have in order to induce convergence to the solution. The solution X' must be a
limiting point of the sequence of iterations. This means that the distance between the
iterates and the solution tends towards zero, i.e.

lim
Kk - o0

‘xk —X*H =0. (3.7)

This is satisfied if the above norm is monotonically decreasing and if the sequence
has no accumulation point other than x". When considering the minimisation
problem and assuming that the problem has a unique solution, the requirements for a
decreasing norm can be replaced (because of continuity of f) by the requirement that

) are monotonically decreasing. By such consideration, a basic property any
minimisation algorithm should have, is the generation of descent iterates so that

fl) < f0 Ok, (3.8)

This is closely related to the idea of line search, which is one of the
elementary ideas in construction of minimisation algorithms. The ideais to minimise
f dong some straight line starting from the current iterate. Many agorithms are
centered on this idea, trying to generate a sequence of directions along which line
searches are performed, such that a substantial reduction of f is achieved in each line
search and such that, in the limit, the rapid convergence properties of Newton's
method are inherited.

An additiona complication which limits the applicability of Newton's
method is that the second derivatives of the objective function (i.e. first derivatives of
its gradient) are required. These are not always directly available since double
differentiation of numerical models is usualy a much harder problem than single
differentiation. Alternatively the derivatives can be obtained by straight numerical
differentiation using small perturbation of parameters, but in many cases this is not
applicable because numerical differentiation is very sensitive to errors in function
evaluation®* and these can often not be avoided sufficiently when numerical
models with many degrees of freedom are used. Furthermore, even if the Newton
method converges, the limiting point is only guaranteed to be a stationary point of f,

! Herein the expression global convergence is used to denote convergence to alocal solution from any
given starting point. In some of the literature this expression is used to denote convergence to a global
solution.
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but this is not a sufficient condition for a local minimum, since it includes saddle
points, which are stationary points but are not local minimisers.

The most simple agorithm that incorporates the idea of line search is
sequential minimisation of the objective function in some fixed set of n independent
directions in each iterate, most elementarily parallel to the coordinate axes. The
requirement for n independent directions is obvious since otherwise the algorithm

could not reach any point in IR". The method is called the aternating variables
method and it seems to be adequate at a first glance, but turns out to be very
inefficient and unreliable in practice. A simple illustration of the reasons for this is
that the algorithm ignores the possibility of correlation between the variables. This
causes the search parallel to the current search direction to destroy completely the
property that the current point is the minimiser in previously used directions. This
leads to oscillatory behaviour of the algorithm asillustrated in Figure 3.1.

N

. 7.

Figure 3.1: Oscillatory behaviour, which is likely to occur when using
sequential minimisation in afixed set of directions.

Another readily available algorithm is sequential minimisation aong the
current direction of the gradient of f. Again this seems to be a good choice, since the
gradient is the direction of the steepest descent, i.e. the direction in which f decreases
most rapidly in the vicinity of the starting point. With respect to this, the method is
called the steepest descent method. In practice, however, the method suffers for
similar problems to the alternating variables method, and the oscillating behaviour of
this method is illustrated in Figure 3.2. The theoretical proof of convergence exists,
but it can also be shown that locally the method can achieve an arbitrarily slow rate
of linear convergence!!.

The above discussion clearly indicates the necessity for a more rigorous
mathematical treatment of algorithms. Indeed the majority of the up-to-date
algorithms have a solid mathematical background!™ 1" 2% and partially the aim of
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this section is to point which are the most important features in the design of fast and
reliable algorithms.

[y

7

o

7,

-1 -0.5 0 0.5 1

'
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Figure 3.2: Oscillatory behaviour, which can occur when performing
sequential line searches along the steepest descent directions.

3.2 Simplex Method

One minimisation method that does not belong within the context of the
subsequent text is the simplex method™?: [?/! |t has been known since the early
sixties and could be classed as another heuristic method since it is not based on a
substantial theoretical background.

The simplex method neither uses line searches nor is based on minimisation
of some simplified model of the objective function, and therefore belongs to the class
of direct search methods. Because of this the method does not compare well with
other described methods with respect to local convergence properties. On the other
hand, for the same reason it has some other strong features. The method is relatively
insensitive to numerical noise and does not depend on some other properties of the
objective function (e.g. convexity) since no specific continuity or other assumptions
are incorporated in its design. It merely requires the evaluation of function values. Its
performance in practice can be as satisfactory as any other non-derivative method,
especially when high accuracy of the solution is not required and the local
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convergence properties of more sophisticated methods do not play so important role.
In many cases it does not make sense to require highly accurate solutions of
optimisation problems, because the obtained results are inevitably inaccurate with
respect to real system behaviour due to numerical modeling of the system (e.g.
discretisation and round-off errors or inaccurate physica models). These are
definitely good arguments for considering practical use of the method in spite of the
lack of good local convergence results with respect to some other methods.

The simplex method is based on construction of an evolving pattern of n+1

pointsin IR" (vertices of a simplex). The points are systematically moved according
to some strategy such that they tend towards the function minimum. Different
strategies give rise to different variants of the algorithm. The most commonly used is
the Nelder-Mead algorithm described below. The agorithm begins by choice of n+1

vertices of the initial simplex (xf),... , x,(}jl) so that it has non-zero volume. This

means that all vectors connecting a chosen vertex to the reminding vertices must be
linearly independent, e.g.

W, 200 iai(x&)l-xgﬂ)i 0.

If we have chosen xf) , we can for example obtain other vertices by moving,

for some distance, along all coordinate directions. If it is possible to predict several
points that should be good according to experience, it might be better to set vertices
to these points, but the condition regarding independence must then be checked.

Once the initial simplex is constructed, the function is evaluated at its
vertices. Then one or more points of the smplex are moved in each iteration, so that
each subsequent simplex consists of a better set of points:

Algorithm 3.1: The Nelder-Mead simplex method.

After theinitial simplex is chosen, function valuesin its vertices are eval uated:
10 = (x)i=1..n+1.
Iteration k is then as follows:
1. Ordering step: Simplex vertices arefirst reordered so that < £ <. < f®
where ) = £ (x®).

2. Reflection step: The worst vertex is reflected over the centre point of the best n
vertices (x) = % Z %1, o that the reflected point x* is
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%K) = 5() 4 (7(k) - X(k+)1)
Evaluate £ = £ (x®).If £ < £®) < £, accept the reflected point and go to
6.

3. Expansion step: If fr(k) < fl("), calcul ate the expansion

) = x84 o) _x9)
and evaluate 1% = £ (x®).1f 109 < £ accept x*) and go to 6. Otherwise
accept x¥) and go to 6.
4. Contraction step: If % > & perform contraction between x) and the better
of x" and x® . 1f 0 < & set

n+l?

(thisis called the outside contraction) and evaluate ) = f(xg‘)). If £ <t®
accept x¥) and go to 6.
If in contrary > f®) et

n+l?

(inside contraction) and evaluate . If £/ < &) accept x¥) and goto®.

n+l

5. Shrink step: Move al vertices except the best towards the best vertex, i.e.

and evaluate £,® = £(v)i=2, .. n+1. Accept v asnew vertices

6. Convergence check: Check if the convergence criterion is satisfied. If so,
terminate the algorithm, otherwise start the next iteration.

Figure 3.3 illustrates possible steps of the algorithm. A possible situation of
two iterations when the algorithm is applied is shown in Figure 3.4. The steps alow
the shape of the simplex to be changed in every iteration, so the simplex can adapt to
the surface of f. Far from the minimum the expansion step alows the simplex to
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move rapidly in the descent direction. When the minimum is inside the simplex,
contraction and shrink steps allow vertices to be moved closer to it.

Figure 3.3: Possible steps of the simplex algorithm in two dimensions
(from left to right): reflection, expansion, outside and inside contraction,
and shrink.

7.

-1 -0.5 0 0.5 1

Figure 3.4: Example of evolution of the simplex.
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There are basically two possibilities for the convergence criterion. Either that
function values at vertices must become close enough or the simplex must becomes
small enough. It is usually best to impose both criteria, because either of them alone
can be misleading.

It must be mentioned that convergence to a local minimum has not been
proved for the Nelder-Mead algorithm. Examples have been constructed for which
the method does not converget™d. However, the situations for which this was shown
are quite specia and unlikely to occur in practice. Another theoretical argument
against the algorithm is that it can fail because the simplex collapses into a subspace,
so that vectors connecting its vertices become nearly linearly dependent.
Investigation of this phenomenon indicates that such behaviour is related to cases
when the function to be minimised has highly elongated contours (i.e. ill conditioned
Hessian). Thisis also a problematic situation for other algorithms.

The Nelder-Mead algorithm can be easily adapted for constrained
optimisation. One possibility is to add a specia penalty term to the objective
function, e.g.

0= 16+ 18- 5 0+ 3 o, ). @9

where fn(i)l is the highest value of f in the vertices of the initial simplex. Since

subsequent iterates generate simplices with lower values of the function at vertices,
the presence of this term guarantees that whenever a trial point in some iteration
violates any constraints, its value is greater than the currently best vertex. The last
two sums give a bias towards the feasible region when all vertices are infeasible. The
derivative discontinuity of the terms with absolute value should not be problematic
since the method is not based on any model, but merely on comparison of function
values. A practical implementation is similar to the original agorithm. f is first
evaluated at the vertices of the initial smplex and the highest value is stored. Then
the additional termsin (3.9) are added to these values, and in subsequent iterates f is
replaced by f'.

Another variant of the simplex method is the multidirectional search
algorithm. Itsiteration consists of similar steps to the Nelder-Mead a gorithm, except
that all vertices but the best one are involved in all operations. There is no shrink step
and the contraction step is identical to the shrink step of the Nelder-Mead agorithm.
Possible steps are shown in Figure 3.5. The convergence proof exists for this
method!*, but in practice it performs much worse than the Nelder-Mead algorithm.
This is due to the fact that more function evaluations are performed at each iteration
and that the simplex can not be adapted to the local function properties as well as the
former algorithm. The shape of the simplex can not change, i.e. angles between it
edges remain constant (see Figure 3.5). The multidirectional search agorithm is
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better suited to parallel processing because n function evaluations can aways be
performed simultaneously.

Figure 3.5: possible steps in the multidirectional search agorithm:
reflection, expansion, and contraction.

3.3 Basic Mathematical Background

Construction of optimisation methods described further in this section is
based on some model of the objective function and constraints. Such treatment of the
problem arises to a large extent from the fact that locally every function can be

developed into a Taylor series™® about any point X :

f(x' +h): ih_“ f (”)(x'), (3.10)

= nl

where f(“)(x):%f(x) and n'=1[203L]..[h. This expression itself does not have a
X

significant practical value. A more important fact is that

limR (h)=0 (3.11)

n-oo

and

30



3. Numerical Optimisation 3.3. Basic Mathematical Background

Lipan(h):o, (3.12)
where
R(h)=f(x +h)-s,(n) (313)
and
s,(h) = Z% £0(x). (3.14)

This means that if we use only a few terms in the Taylor series, the error that we
make tends to zero both when we increase the number of terms without limit for
some fixed h, and when we take a fixed number of terms and decrease the step h
towards zero. This follows from the result>”

hn+l

f((x +6h) 0< O <1. (3.15)
(n+1)

R,(h)=

The above equation also holds if function f is only €"™*. This means that
every sufficiently smooth function can be localy approximated by a simple
polynomial function, which is sometimes more convenient for theoretical treatment
than the original function.

A similar development is possible for afunction of n variables:

R R A I AR A

il_ll %+hzaix2+...+hn;7naf(xl,xz,...,xn)+, (3.16)
R,(h.h,,...h )
where
d o [
R (h, ... ):(nil)! R 61
f(x,+6h,...x,+8.h), 0<@ <1 i=1..n
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In view of the beginning of this discussion, we can consider numerical
optimisation as the estimation of a good approximation of the optimisation problem
solution on the basis of limited information about the function, usually objective and
constraint function values and their derivatives in some discrete set of points. The
goa is to achieve satisfactory estimation with as little function and derivative
evaluations as possible. Now we can use the fact that general functions can be locally
approximated by simpler functions. Besides, functions of simple and known form
(e.g. linear or quadratic) are completely described by a finite number of parameters.
If we know these parameters, we know (in principle) all about the function, including
minimising points.

There exists a clear correspondence between the above considerations and the
design of optimisation algorithms. One thing to look at when constructing algorithms
is how they perform on ssimple model functions, and proofs of local convergence
properties based to a large extent on properties of the algorithms when applied to
such functiong ™17,

Heurigtically this can be explained by considering a construction of a
minimisation algorithm in the following way. Use function values and derivatives in
a set of points to build a simple approximation model (e.g. quadratic), which will be
updated when new information is obtained. Consider applying an effective
minimisation technique adequate for the model function. Since the model
approximates the function locally, some information obtained in this way should be
applicable to making decision where to set the next iterate when minimising the
original function. In the limit, when the iterates approach the minimum, the model
function should be increasingly better approximation and minima of the successively
built models should be good guesses for the subsequent iterates.

In fact many algorithms perform in a similar manner. The difference is
usually that models are not built directly, but the iterates are rather constructed in
such a way that the algorithm has certain properties when applied to simple
functions, e.g. termination in a finite number of steps. This ensures good local
convergence properties. In addition some strategy must be incorporated which
ensures global convergence properties of the algorithm. The remainder of this section
will consider some mathematical concepts related to this. First, some basic notions
will be introduced, and then some important algorithmic properties will be discussed.

331 Basic Notions

Quadratic model functions are the most important in the study of
unconstrained minimisation. This is because the Taylor series up to quadratic terms
isthe ssimplest Taylor approximation that can have an unconstrained local minimum.
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K eeping the terms up to the second order in (3.16) gives the following expression for
a second order Taylor approximation:

t(x +h)= f(x)+nTor (x')+%hT[D2f (x)n, (3.18)

where

isthe function gradient and
0% f (x):G(x):(D]] T)f (x)

isthe Hessian matrix® of the function, i.e. matrix of function second derivatives,

02t ()], =6, ()= aiafx (x). (3.19)

Notation g(x)=0f (x) and G(x) =02 (x) will be used throughout this text.

Theideaof alinein IR" isimportant. Thisis a set of points

x=x(a)=x +as, (3.20)

where a O R is a scalar parameter, x is any point on the line and s is the
direction of the line. s can be normalised, e.g. with respect to the Euclidian norm, i.e.

Zsﬁzl.

It is often useful to study how a function defined in IR" behaves on aline.
For this purpose, we can write

2
! In standard notation Operator [j2 =A = [J7[] = \ Lz is the Laplace operator. However, in most
1 0X

optimisation literature this notation is used for the Hessian operator, and so is also used in this text.
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fa)=f(x(@))=f(x +as). (3.21)

From this expression we can derive direction derivative of f, i.e. derivative of the
function along the line:

f
)5 22 S 2ot

This can be written as

LI BEAN o2
a S

In asimilar way the curvature along the line is obtai ned:

d*fla) _d of _d & of
da® dada da Izs())q
dx, 9%f oo 9%f

2.5 Z da axdx, ; ,lesj 0%0X

and so

=s"(0f )s. (3.23)

A genera quadratic function can be written in the form
1 ; T
q(x):Ex Gx+b"x+c, (3.24)

where G is a symmetric constant matrix, b a constant vector and ¢ a constant scalar.
The gradient of thisfunctionis

Og(x)=Gx+b (3.25)

and the Hessian matrix is

0%q(x)=G, (3.26)
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where the rule for gradient of a vector product
D(uTv)z (DuT)v + (DVT)U; u=u(x),v=v(x)
was applied.

We see that a quadratic function has a constant Hessian and its gradient is an
affine function of x. As a consequence, for any two points the following equation
relating the gradient in these pointsisvalid:

Oq(x')-0g(x )=G(x -x). (3.27)

If G is nonsingular, a quadratic function has a unique stationary point

(Dq(x'): 0):
X =-G™p, (3.28)

which is aso a minimiser if G is positive definite (see section 3.3.2). Taylor
devel opment about the stationary point gives another form for a quadratic function

q(x):%(x—x')T G(x-x)+c, (3.29)
, 1 -
where ¢ :C_EX Gx .
In this text aterm linear function® will be used for functions of the form

I(x)=a"x+h, (3.30)

where a" is a constant vector and b a constant scalar. Such functions have a constant
gradient

! Mathematically this is an affine function. Linear functions are thosé®® for which
f (ax+by) = af (x)+bf (y) for arbitrary x and y in the definition domain and for arbitrary constants a

and b. Affine functions are those for which f(x)—c is a linear function, where c is some constant.

However, in the optimisation literature affine functions are often referred to simply as linear and this
is also adopted in this text.
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Ol(x)=a (3.31)
and zero Hessian

02(x)=0. (3.32)

3.3.2 Conditionsfor Unconstrained Local Minima

Consider first aline through some point X', i.e. x(a)=x" +as. Let usdefinea
scalar function of parameter a using values of function f on this line as
f(a)=f(x(a)). 1f X" isalocal minimiser of f(x), then Oisclearly alocal minimiser
of f(a). From the Taylor expansion for a function of one variable about 0 then it

follows™” that f has zero slope and non-negative curvature at  =0. This must be
true for any line through x , and therefore for any s. From (3.22) and (3.23) it then
follows

g =0 (3.33)
and
s'G's=0 [s, (3.34)

where the following notation is used: "= f(x’), g(x)=D0f (x), g =g(x),
G(x)=0%f(x), and G" =G(x’). This notation will be used through this text, and
similarly f(x®)= % etc.

Since (3.33) and (3.34) are implied by assumption that X is alocal minimiser
of f, these are necessary conditions for X being a local minimiser. (3.33) is referred
to afirst order necessary condition and (3.34) as a second order necessary condition.
This condition states that the Hessian matrix is positive semi-definite in a local
minimum.

The above necessary conditions are not at the same time sufficient, i.e. these
conditions do not imFIy X to bealoca minimiser. Sufficient conditions can be stated
in the following way'™:

Theorem 3.1;

Sufficient conditions for a strict and isolated local minimiser X~ of f are that f has
azero gradient and a positive definite Hessian matrix in X :
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g =0 (3.35)
and
s'G's>0 [Os#0 (3.36)

There are various ways how to check the condition (3.36). The most
important for practical purposes are that>®! G is positive definite, the Choleski
factors of the LL" decomposition exist and all diagonal elementsl, are greater than

zero, and the same applies for diagonal elements d, of the LDLT decomposition.

This can be readily verified on those algorithms which solve a system of equation
with the system matrix G in each iteration, since one of these decompositions is
usually applied to solve the system.

Some agorithms do not evaluate the Hessian matrix. These can not verify the
sufficient conditions directly. Sometimes these algorithms check only the first order
condition or some condition based on the progress during the last few iterations. It
can usually be proved that under certain assumptions iterates still converges to a
local minimum. Algorithms should definitely have the possibility of termination in a
stationary point, which is not a minimum (usually in a saddle point with indefinite
Hessian matrix). Some algorithms generate subsequent approximations of the
Hessian matrix, which converge to the Hessian in the limit when iterates approach a
stationary point. The condition can then be checked indirectly on the approximate
Hessian. More details concerning this will be outlined in the description of individual
algorithms.

3.3.3 Dedrable Propertiesof Algorithms

A desired behaviour of an optimisation agorithm is that iterates move
steadily towards the neighbourhood of alocal minimser, then converge rapidly to this
point and finally that it identifies when the minimiser is determined with a
satisfactory accuracy and terminates.

Optimisation agorithms are usually based on some model and on some
prototype algorithm. A model is some approximation (not necessarily explicit) of the
objective function, which enables a prediction of alocal minimiser to be made.

A prototype agorithm refers to the broad strategy of the algorithm. Two basic
types are the restricted step approach and the line search approach, described in
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detail in the subsequent sections. There it will be also pointed out that the ideas of
prototype algorithms are usually closely associated with global convergence.

Local convergence properties of an algorithm describe its performance in the
neighbourhood of a minimum. If we define the error of the k-th iterate

h() = x®) —x*, (3.37)

it may be possible to state some limit results for h®. An algorithm is of course
convergent if h®) _ 0. If alimit

=a (3.39)

exists where a> 0 is some constant, then we say that the order of convergenceis p.
This definition can also be stated in terms of bounds if the limit does not exist: the
order of convergenceisp if

Hh(k+1)
= -

for some constant a >0 and for each k greater than some kii,. An important cases are
linear or first order convergence

Hh(m)
Hh(k)u <a (3.40)
and quadratic or second order convergence
Hh(kﬂ)
T <a. (341)

The constant a is called the rate of convergence and must be less than 1 for
linear convergence. Linear convergence is only acceptable if the rate of convergence
is small. If the order and rate are 1, the convergence is sublinear (slower than all

linear convergence). Thiswould be the case if Hh"” =1/k.

When the order is 1, but the rate constant is O, the convergence is superlinear
(faster than all linear convergence), i.e.
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=0. (3.42)

Successful methods for unconstrained minimisation converge superlinearly.

Many methods for unconstrained minimisation are derived from
guadratic models. They are designed so that they work well or exactly on a quadratic
function. This is partially associated with the discussion of section 3.3.1: since a
general function is well approximated by a quadratic function, the quadratic model
should imply good local convergence properties. Because the Taylor series about an
arbitrary point taken to quadratic terms will agree to a given accuracy with the
original function on a greater neighbourhood than the series taken to linear terms, it
is preferable to use quadratic information even remote from the minimum.

The quadratic model is most directly used in the Newton method (3.5), which
requires the second derivatives. A similar quadratic model is used in restricted step
methods. When second derivatives are not available, they can be estimated in various
ways. Such quadratic models are used in the quasi-Newton methods.

Newton-like methods (Newton or quasi-Newton) use the Hessian matrix or
its approximation in Newton’'s iteration (3.5). A motivation for this lies in the
Dennis-Moré theorem, which states that superlinear convergence can be obtained if
and only if the step is asymptotically equal to that of the Newton-Raphson method™.

The quadratic model is also used by the conjugate direction methods, but in a
less direct way. Nonzero vectors s9.6@ s gre conjugate with respect to a
positive definite matrix G, when

s =0mizj. (3.43)

Optimisation methods, which generate such directions when applied to a
quadratic function with Hessian G, are called conjugate direction methods. Such
methods have the following important property':

Theorem 3.2;

A conjugate direction method terminates for a quadratic function in at most n
exact line searches, and each x™) isaminimiser of that function in the set

O k . ]
D(;x:x(l)+Zajs('),aj OR[ (3.44)
O 1= H
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The above theorem states that conjugate direction methods have the property
of quadratic termination, i.e. they can locate the minimising point of a quadratic
function in a known finite number of steps. Many good minimisation algorithms can
generate the set of conjugate directions, although it is not possible to state that
superlinear convergence implies quadratic termination or vice versa. For example,
some successful superlinearly convergent Newton-like methods do not possess this

property.

It is useful to further develop the idea of conjugacy in order to gain a better
insight in what it implies. We can easily see that s are linearly independent. If for
example s\ was alinear combination of some other vectors s/, eg.

(i) = (k)
stV=\ BsY,
; ’

multiplying this with $I'G would give
which contradicts the positive definiteness of G.

We can use vectors s\ as basis vectors and write any point as
— @ 4 g )
X=x"+ Z as". (3.45)

Taking into account this equation,(3.29) and conjugacy, the quadratic function from
the theorem can be written as*

qla)= %(x ~x ) Gx-x)= %(a ~a')s'Gsla-a’). (3.46)

We have ignored a constant term in (3.29), which has no influence on further
discussion, and written the minimiser x of g as

X0 =x+ Y ars),

! Notation o =[a,,a,,...a,]" is used. Vectors denoted by Greek letters are not typed in bold, but it
should be clear from the context when some quantity is vector and when scalar.
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and S is a matrix whose columns are vectors s'). Since s are conjugate with
respect to G, the product S'GS is a diagonal matrix with diagonal elements d, , say,

and therefore

Q(a):% : (ai _ai*)zdi . (3.47)

We see that conjugacy implies a coordinate transformation from x-space to
a -spacein which G isdiagonal. Variablesin the new system are decoupled from the
point of view that g(ar) can be minimised by applying successive minimisations in
coordinate directions, which results in a minimiser a” corresponding to x* in the x
space. A conjugate direction method therefore corresponds to the alternating variable
method applied in the new coordinate system. Enforcing conjugacy overcomes the
basic problem associated with the alternating variable method, i.e. the fact that
minimisation along one coordinate direction usually spoils earlier minimisations in
other directions, which is the reason for oscillating behaviour of the method shown in
Figure 3.1. Since a similar problem is associated with the steepest descent method,
conjugacy can be successfully combined with derivative methods.

A side observation is that eigenvectors of G are orthogonal vectors conjugate
to G. A quadratic function is therefore minimised by exact minimisation along all
eigenvectors of its Hessian. Construction of the conjugate direction methods will
show that there is no need to know eigenvectors of G in order to take advantage of
conjugacy, but it is possible to construct conjugate directions starting with an
arbitrary direction.

Another important issue in optimisation algorithms is when to terminate the
algorithm. Since we can not check directly how close to the minimiser the current
iterate is, the test can be based on conditions for alocal minimum, for example

Hg(k)u <eg, (3.48)

where ¢ is some tolerance. Sometimes it is not easy to decide what magnitude to
choose for &€, since a good decision would require some clue about the curvature in
the minimum. The above test is also dependent on the scaling of variables. Another
difficulty is that it can terminate in a stationary point that is not a minimum. When
second derivative information is available, it should be used to exclude this
possibility.

When the algorithm converges rapidly, tests based on differences between
iterates can be used, e.g.
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X))

<& O (3.49)
or
Ol < g, (3.50)

These tests rely on a prediction how much at most f can be further reduced or
X approached to the minimum.

The test
%g(k)TH kg(k) ’ (3.51)

where H is the inverse Hessian or its approximation, is also based on predicted
change of f.

Finally, the possibility of termination when the number of iterations exceeds
some user supplied limit is a useful property of every algorithm. Even when good
local convergence results exist for a specific agorithm, this is not necessarily a
guarantee for good performance in practice. Function evaluation is always subjected
to numerical errors and this can especially affect algorithmic performance near the
solution where local convergence properties should take effect.

3.4 Line Search Subproblem

34.1 Features Relevant for Minimisation
Algorithms

The line search prototype algorithm sequentially minimises the objective
function along straight lines. The structure of the k-th iteration is the following:

Algorithm 3.2: Iteration of aline search prototype algorithm.

1. Determine a search direction s accordi ng to some model.
2. Find o™, which minimises f (x¥ +as®) and set x*9 = x() + g ¥k,
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Finding aminimum of f on aline isreferred to as the line search subproblem.

In the minimum, slope df /da must be zero, which from (3.22) gives
of kdTsk) = g, (3.52)
If s satisfies the descent property
kgl <, (3.53)

then the function can be reduced in the line search for some a® >0 unless x* isa
stationary point. A line search method in which search directions satisfy the descent
property is called the descent method.

The descent property is closely associated with global convergence and by
suitable choice of a line search condition it is possible to incorporate it within a
global convergence proof. Merely requiring that f is decreased in each iteration
certainly does not ensure global convergence. On the other hand, expensive high
accuracy line searches do not make sense, especially when the algorithm is far from
the solution. Therefore conditions for line search termination must be defined so that
they alow low accuracy line searches, but still enforce global convergence.

Let us write f(a)=f(x®¥+as®) and let @* denote the least positive a
for which f(a)= f(0) (Figure 3.6). Negligible reductions can occur if we allow the
line search to be terminated in points closeto O or & () Line search conditions must

exclude such points, impose significant reductions of f, guarantee that acceptable
points always exist and can be determined in a finite number of steps, and should not
exclude the minimising point 8" when f (a) is quadratic with positive curvature.
These requirements are satisfied by the Goldstein conditions
f(a)< £(0)+ap f(0) (3.54)

and

f(a)= £(0)+a(1-0)f (0), (3.55)

where p[ Eb%@ is some fixed parameter. (3.54) implies
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fl)— gl 5 —pglTak), (3.56)
where 3 = x**9 —x() The condition p < 0.5 ensuresthat when f () is quadratic,
the minimiser is an acceptable point, but thisis not true for a general function (Figure

3.6 aso shows the case where the minimiser is not an acceptable point). This
deficiency is dismissed with the Wolfe-Powell conditions

f(a)< £(0)+ap f(0) (3.57)
and

f'(a)=o (0), (3.58)
where o[ E{),%Eand o 0(p.,1). Thisimplies

g(k+1)T 50 s o g(k)T oK) (3.59)

Let @ >0 be the least positive value for which the graph f(a) intersects the line
f(0)+a p f'(0) (point b in Figure 3.6). If such a point exists, then an interval of
acceptable points for the Wolfe-Powell conditions existsin (0,4).

ol f ()
40

20 f

10

of (0 () \\g\l—p) £'(0)

Figure 3.6: Line search conditions. [a,b] istheinterval of acceptable
points for Goldstein conditions, while[a& ,b] isan interval of acceptable
points for the Wolfe-Powell conditions. Slopes of auxiliary lines are
denoted in the figure.
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A two-sided test on the slope of f can also be used, i.e.
[f'(a)<-0'(0) (3.60)

together with (3.57). Aninterval of acceptable points existsin (O,d') for this test, too,
if a exists.

To ensure global convergence, line searches must generate sufficient
reduction of f in each iteration since otherwise non-minimising accumulation points
of the sequence of iterates can exist. Fulfillment of this requirement depends on the
applied line search criterion, but aso on the line search directions. If these become
orthogonal to the gradient, than no reduction of f can be made. It is advantageous to
introduce some criterion to bound directions away from orthogonality to the gradient
direction.

The angle criterion is defined as

gk sg— u Ok, (3.61)

where g > 1 >0 isafixed constant and 6% isthe angle between the gradient of f

and the search direction, i.e.

cos‘1H ‘ ‘ = (3.62)

Aol 8

The following global convergence theorem then holdsY:

Theorem 3.3:

For a descent method with Wolfe-Powell line search conditions, if Of is
uniformly continuous on the level set {x; f(x)< f(l)} and if the angle criterion
(3.61) holds, then either f® _ -0 or g 0.

Considering practical agorithms, the steepest descent method satisfies the
angle criterion. Newton-like algorithms (section 3.5) define the search direction as

s = —H gk, (3.63)
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3. Numerical Optimisation 3.4. Line Search Subproblem

If HY is positive definite, then s*) is a descent direction. In this case a sufficient

condition is that the spectral condition number ) of H® is bounded above for
every k. The spectral condition number of amatrix is the ratio between its largest and

smallest eigenvalues (4,/4, ). The relations™* |Hg|, < A|g|, and g"HG =2 A, g"g
hold for any matrix H and vector g, and thisimplies an estimation

et_ 1
9 APIPOR

which implies the above statement.

A much weaker criterion can be used in place of the angle criterion in
Theorem 3.3, namely

Z cos? 0% = o, (3.64)

in this case liminf Hg(k)u =0, which meansthat g - 0 on a subsequence'”.

3.4.2 Derivative Based Line Search Algorithms

Line search algorithms 3 consist of two parts. The first one is the
bracketing stage, which finds a bracket, that is an interval known to contain
acceptable points. The second part is the sectioning stage, in which a sequence of
brackets whose length tends to zero is generated. It is advantageous to use some
interpolation of f (a) in this stage in order to find an acceptable point which is close
to the minimiser.

If fis not bounded below, it can happen that an interval of acceptable points
does not exist. It is therefore advisable to supply a lower bound ( f , say) so that all

points for which f(a)< f are considered acceptable. The line search can then be
restricted to the interval (0, i] , where u isthe point at which the p -line reaches the
level f,i.e

(3.65)
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3. Numerical Optimisation 3.4. Line Search Subproblem

In the bracketing stage a; is set in increasingly large jumps until a bracket
[a,b,] on an interval of acceptable points is located. An agorithm suitable when
objective function derivatives are availableis given below.

Algorithm 3.3: Bracketing stage of line search.
Initidly a, =0 and a, isgivensothat 0<a, < i. For each i the following
iteration is repeated:
1. Evauate f(a) and f'(a,).
2. If f(a,)< f then terminate line search.
3. If f(a,)>f(0)+a,pf'(0) or f(a,)= f(a,,) then
set a, =a,_, and b =a,, terminate bracketing.
4. If |f'(a;) < -0 1(0) then terminate line search.
5. If f'(a;)=0 then
set a =a; and b =a,_,, terminate bracketing.
6. If usa,_ +2(a -a,,) thenset a,,, = u, else
choose a;,, D[ai—1+2(ai _ai—l)’ min(ﬂ’ai +T1(ai _ai—l))]

1, isapre-set factor for which size of the jumpsisincreased, e.g. 10. Lines2
to 5 terminate the bracketing stage, if a suitable bracket is located, or the whole line
search, if an acceptable point or point for which f(ai)s f is found. If neither of
these situations take place in the current iteration, the search interval is extended
(line 6). In this case it is convenient to choose a,,, as a minimiser of some
interpolation of f(a), e.g. a cubic polynomial constructed using f(a, ), f'(a.).
f(a,) and f'(a,).

If an acceptable point is not found in the bracketing stage, then a bracket
[a1. ,q] is located, which contains an interval of acceptable points with respect to

conditions (3.54) and (3.60). The bracket satisfies the following properties:

a a isthecurrent best trial point that satisfies (3.54) (it ispossiblethat b <a,, i.e.
the bracket is not necessarily written with ordered extreme points).

b. (b-a)f'(a)<0,but f'(a) doesnot satisfy (3.60).

c. dther f(b)>f(0)+bo'(0) or f(b)=f(a) or both.
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3. Numerical Optimisation 3.4. Line Search Subproblem

The sectioning stage is then performed in which the bracket is sectioned so
that the length of subsequently generated brackets [aj,bjj tend to zero. In each

iteration a new triad point a; is chosen and the next bracket is either [aj,al.],
[aj,aj], or [aj,bj] or, so that the above described properties remain vaid. The
agorithm terminates when the current trial point a; is acceptable with respect to
(3.54) and (3.60).

Algorithm 3.4: Sectioning stage of the line search

A bracket [a,,b,] isfirst available from the bracketing stage. Thej-th iteration is

then:
1. Choose a; D[aj +r2(bj -a, ) b, —rg(bj -, )J

I

evauae fla;) and f'a;).

2. 1f fla;)> (0)+pa,f'(0) or fla,)= (), then

set a;,, =a; and b, =a;, begin the next iteration.
3. |If ‘f'(aj)s—af'(o)‘,then terminate the line search.
4. Set a;, =a;

i+l

If (b,-a,)f'(a,)20 thenset b, =a,, elseset by, =b

i -

r, and 1, are prescribed constants (0<7,<7,<3, 7, <0), which prevent
a; being arbitrarily closeto a; or b;. Then

bj+1 - a'j+1

<(1-1,)b, - 4| (3.66)

holds and the interval length therefore tends to zero. Their values can be for example
T, =45 and 7, =3. Thechoice of a; inline 1 can again be made by minimisation of

some interpolation of f(a).

If o> p then the algorithm terminates in a finite number of steps with a; which is
an acceptable point with respect to (3.54) and (3.60) 1.

In practice it can happen that the algorithm does not terminate because of
numerical errors in the function and its derivatives. It is therefore advisable to
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3. Numerical Optimisation 3.4. Line Search Subproblem

terminate if (aj —aj)f’(aj)s £, where ¢ is some tolerance on f, with indication that
no further progress can be made in the line search.

It is advantageous if a good initial choice a;, (i.e. close to the line minimiser)

can be made before the beginning of the bracketing stage. Some algorithms can give
an estimation of likely reduction in the objective function in the line search Af . This

can be used in the quadratic interpolation of f, giving

__p O
a,=-2 o) (3.67)

A suitably safeguarded reduction in the previous iterate can be used as estimation of
Af, eg. Af =max(f %Y - () 10¢), where ¢ isthe same tolerance as above. In the
Newton-like methods (section 3.5) the choice a, =1 is significant in giving rapid
convergence. Therefore the choice

a, = min%,—ZfA,—(g)E (3.68)

is usualy made. The choice a, =1 is aways made when iterates come close to the
minimiser, if the method is superlinearly convergent.

3.4.3 Non-derivative Line Search Algorithms

If the line search is performed in an agorithm where derivatives are
evaluated numerically by finite difference approximation, then f'(a) can aso be
approximated numerically and the line search strategy described in the previous
section can be used. There also exist methods, which perform line searches, but do
not use derivative information (e.g. direction set methods). In these methods non-
derivative line search algorithms are used.

In the absence of derivative information, the criteria for acceptable points

described in the previous section can not be applied. None-derivative line search
methods rely on the fact that if we have three points a, b and ¢ such that

a<b<cOf(b)< f(a)Of(b)< f(c), (3.69)
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3. Numerical Optimisation 3.4. Line Search Subproblem

then f has at least one local minimum in the interval [a,c]. It is then possible to

section this interval, keeping three points, which satisfy the above relation through
iterates.

The non-derivative line search also consists of a bracketing and sectioning
stage. In the bracketing stage a triple of points {a,,b,,c} that satisfy (3.69) is found
in the following way:

Algorithm 3.5: Sectioning stage of a non-derivative line search.

Given a, =0, f,=f(a,), a, and f, = f(a,) suchthat f, < f,, thei-th
iteration is as follows:

1. Seta =a,,+{(a -a,,), evauae f = f(a,).

2. If f <f,accept a, and terminate the line search.

3. If f>f_ ,seta =a._, b =a._ and c =a,, terminate bracketing.

Again f issome user defined value, so that the point with value of f lesser
than f is automatically accepted as the line minimum. ¢, >1 is some factor which
ensures that trial intervals are progressively enlarged, e.g. {, =2.

The algorithm assumes that initially f, < f,. If f, > f;, the agorithm can
smply change a, and a, before the first iteration begins. The other possibility is to
try with o' =-a,. If f'=f(a')> f,, we can immediately terminate bracketing with
a=a,b=a,=0and c, =a,, otherwise we change a, and a, andset a, =a".

The sectioning stage (Figure 3.7) is described below.

Algorithm 3.6: Sectioning stage of a non-derivative line search.

Given atriple of points{a,,b;,c} , which satisfy (3.69), thej-th iteration is as
follows:

a, +Zz(bj —Q, )’bj _Zz(bj —a, )] '%’ evaluate (/) :(aj).
b, +2,(c,-b) )¢, -2, -0 ] &

2. 1f f, < f , then accept a; and terminate the line search.

1. Choose a, Dg

3. If a, D[bj_l,cj_l] , interchange a; and c; .
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3. Numerical Optimisation 3.4. Line Search Subproblem

4. If a,<b,,set a,,,=a;, b, =a; and ¢;,, =b;, gotoline6.

5 Ifa;zb,seta, =a;,b,=b andc, =c;,gotoline6.

6. Check convergence criterion. If the criterion is satisfied, then terminate with b
as the line minimum.

A triple of points {aj,bj,cj} satisfies the condition (3.69) through all
iterations. Parameter {, (0<{, <3) ensures that the lengths of successive brackets
[aj ,cj] tend to zero. ¢, =0.1 isareasonable choice.
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Figure 3.7: Sectioning stage of the non-derivative line search in the
case when interpolation is not applied.

a; can be chosen as the minimiser of a quadratic interpolation of f, i.e. a
parabola through the points (aj, f(aj ). (bj, f(bj ) and (cj, f(cj ). The formula of
such parabolais

and itsminimiser is
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3. Numerical Optimisation 3.4. Line Search Subproblem

(b)- (2] (3.70)

o eps b=a)[f(0)- (] - (o)
" 2 (b-a)f(b)- f(c]-(o-c)

where indices j have been omitted.

If a,, is an element of the acceptable interval in line 1 of the above
dgorithm, then a; = a,;, is set. Otherwise the longer a; is obtained by sectioning

n

the longer of both intervals. If the longer interval is [aj ,bj] , then

r
a; =g, +E(bj —aj), (3.71)

where 7 issome fixed parameter such that 0.5<7<1-¢,.

A common choice is the golden section ratio 7 = (1+ JE)/z =1.618. It follows
from the request that when a new point a; is inserted in [aj ,bj] , both potentially
c...—b.
new brackets have the same interval length ratio —*—2 (i.e. 1/7), which then
j+1_ j+1
gives 7 = (1+ \/5)/ 2. This request can be applied when pure bracketing takes place
and also theinitial triple has the same interval length ratio.

The convergence can be checked either on function values, e.g.
max{(f (a, )= £ (o, (¢, )- £ (b, )y <& (3.72)
or oninterval length, i.e.

c —a|<e. (3.73)
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3. Numerical Optimisation 3.5. Newton-like Methods

3.5 Newton-like Methods

Newton-like methods are based on a quadratic model, more exactly on the
second-order Taylor approximation (equation ) of f(x) about x®. The basic ideas

around this were explained in sections 3.1.2 and 3.3 and will be further developed in
this section.

In section 3.1.2 Newton's method was derived from the solution of the
system of equations

Og(x)=0,

where the iteration formula was derived from the first order Taylor’'s approximation
of g(x), giving iteration formula (3.5). Two problems related with direct application
of the method were mentioned there, i.e. lack of global convergence properties and
explicit use of the second order derivative information regarding the objective
functions. Some general ideas on how to overcome these problems were outlined in
section 3.3 and will be further developed in this section for algorithms, which in
principle stick with the basic idea of Newton’s method.

In order to take over and develop the ideas given in section 3.3, let us start
from the second order Taylor approximation of f itself, developed around the current
iterate:

F(x +6)=qM(8)= 19 +g"5 +%5TG(“)5 . (3.74)

Using the results of section 3.3, the stationary point of this approximation is a
solution of alinear system of equations

GHg=—gl. (3.75)

It is unique if G® is non-singular and corresponds to a minimiser if G® is positive
definite. Newton's method is obtained by considering o®) as solution of the above

equation and setting the next guess to x*) + 3% . The k-th iteration of Newton's
method is then

1. Solve (3.75) for &,
2. Set xk) =) 4 50
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3. Numerical Optimisation 3.5. Newton-like Methods

Thisis well defined as a minimisation method only if G® is positive definite
in each iteration, and this can be readily checked if for example LDLT
decomposition is used for solution of (3.75). However, even if G® is positive
definite, the method may not converge from any initial guess, and it can happen that

{f (k)} do not even decrease.

Line search can be used to eliminate this problem. The solution of (3.75) then
defines merely the search direction, rather than correction o"). The correction is
then obtained by line minimisation using agorithms described in section 3.4.2, and
such amethod is called Newton’s method with line search. The direction of searchis

g™ (3.76)

If G® and hence its inverse are positive definite, this defines a descent
direction. If G® is not positive definite, it may be possible to make a line search in
+s® | but the relevance of searching in - s guestionable because this is not a
direction towards a stationary point of q(d). Furthermore, the method fails if any

x") is a saddle point of f. This gives s*) =0, although x*) is not a minimiser of f.

One possibility of how to overcome this problem is to switch to the steepest
descent direction whenever G is not positive definite. This can be done in
conjunction with the angle criterion (3.61) to achieve global convergence.

Minimising in the steepest descent directions can lead to undesired oscillatory
behaviour where small reductions of f are achieved in each iteration. This happens
because second order model information is ignored, as shown in section 3.3.3. The
alternative approach is to switch between the Newton and steepest descent direction
in a continuous way, controlling the influence of both through some adaptive
weighting parameter. This can be achieved by adding a multiple of the unit matrix to
G™ o that the search direction is defined as

(% +vi1)s® =—g¥. 3.77)

Parameter v is chosen so that G +v1 is positive definite. If G® is close to

positive definite, a small v is sufficient and the method therefore uses the curvature
information to a large extent. When large values of v are necessary, the search

directions becomes similar to the steepest descent direction —g®) .

This method still fails when some x) is a saddle point, and the second order
information is not used in the best possible way. Further modification of the method
incorporates the restricted step approach in which minimisation of the model
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guadratic function subjected to length restriction is minimised. This is a subject of
section 3.7.

3.5.1 Quasi-Newton Methods

In the Newton-like methods discussed so far the second derivatives of f are
necessary and substantial problems arise when the Hessian matrix of the function is

not positive definite. The second derivatives of GX can be evauated by numerical
differentiation of the gradient vector. In most cases it is advisable that after this

operation G is made symmetric by G :%(§+§T), where G is the finite difference
approximation of the Hessian matrix. However, evaluation of G can be unstable in

the presence of numerical noise, and it is also expensive, because quadratic model
information built in the previous iterates is disregarded.

The above mentioned problems are avoided in so called quasi-Newton

methods. In these methods G®™ are approximated by symmetric matrices H®,
which are updated from iteration to iteration using the most recently obtained
information. Analogous to Newton’s method with line search, line minimisations are
performed in each iteration in the direction

s = —H gk, (3.79)

By updating approximate G rather than G, a system of equations is avoided and
the search direction is obtained simply by multiplication of the gradient vector by a
matrix. An outline of the algorithm is given below:

Algorithm 3.7: Genera quasi-Newton algorithm.

Given a positive definite matrix H @ the k-th iteration is:
1. Calculate s according to (3.78).
2. Minimisefaong s®, set x¥ =x®) + g where ¢ isaline minimum.
3. Update HY to obtain H®*Y

If no second derivative information is available at the beginning, H® can be any
positive definite matrix, e.g. HY =1 . The line search strategy described in section

3.4.2 can be used in line 2. If HY is positive definite, the search directions are
descent. This is desirable and the most important are those quasi-Newton methods,
which maintain positive definiteness of H®.
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The updating formula should explicitly use only first derivative information.
(k)

Repeated updating should change arbitrary H W to aclose approximation of G

The updating formula is therefore an attempt to augment the current H® with
second derivative information gained in the current iteration, i.e. by evaluation of f

and Of at two distinct points. In this context equation (3.27), which relates the

Hessian matrix of a quadratic function with its gradient in two distinct points,
requires attention.

Let uswrite
oM = st — () (3.79)

and
k+1) _

Y = glen) _ g, (3.80)

Using the Taylor series of g about x(®) gives arelationship similar to (3.27), i.e.

y¥) = G5k +of o] . (3.81)

The updating formula should therefore correct H®Y 5o that the above relation
(k+1)71

would hold approximately with H in place of G®. This gives the so caled
guasi-Newton condition, in which the updating formula must satisfy

H k) = 51 (3.82)

Since this condition gives only one equation, it does not uniquely define the

updating formula and permits various ways of updating H. One possibility isto add a
symmetric rank one matrix to H ) i,

H =40 4y’ (3.83)

Substituting thisinto (3.82) gives
H®W +uuT ) = 50, (3.84)

Since u(T)y(k) isascalar, matrix multiplication is associative and multiplication with
ascalar is commutative, u must be proportional to & —H® &) Wwriting
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u=alo® - HMy)

and inserting thisinto (3.84) gives a = ]/ \/ (5(k) -H (k)y("))T Y% and therefore

(3.85)

This formula is caled the rank one updating formula according to the above
derivation.

For a quadratic function with positive definite Hessian the rank one method
terminates in a most n+1 steps with H™) =G™, provided that 5%, ..., 5™ are
independent and that the method is well defined™. The proof does not require exact
line searches. Also the so called hereditary property can be established, i.e.

H(i)y(J) =W, =12 ..i-1. (3.86)

A disadvantage is that in general the formula does not maintain positive definiteness
of H®) and the dominator in (3.85) can become zero.

Better formulas can be obtained by allowing the correction to be of rank two.
This can always be written'?!33 a5

HEY = HE +uuT +w (3.87)
Using thisin the quasi-Newton condition gives

u and v can not be determined uniquely. A straightforward way of satisfying the
above equation is to set u proportional to *) and v proportional to H®y®) . By

solution of the equation separately for both groups of proportional vectors the
Davidon — Fletcher - Powell or DFP updating formulais obtai ned:

T T
+55 _HyyH

H&Y =H .
o 3y y'Hy

(3.89)

Indices k have been omitted for the sake of simplicity (this approach will be adopted
through this section) and the symmetry of H is used.
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Another rank two updating formula can be obtained by considering updating

and approximating G instead of G™. Let us write B® =H®™ and consider
updating B® in asimilar way as H® was updated according to the DFP formula.
We require that the quasi-Newton condition (3.82) is preserved. This was true for the
DFP formula, but now we are updating inverse of H®, therefore, according to
(3.82), y(k) and 0" must be interchanged. This gives the formula

. T BdoO'B
B(kaé)szm%- e (3.90)

We however still want to update H™ rather than B, because a solution of system

of equations is in this way avoided in the quasi- Newton iteration. The following
updating formula satisfies BICUH &3, = -

T T
M =R LV PR (391)

This is caled the Broyden — Fletcher — Goldfarb — Shanno or BFGS updating
formula.

The BFGS and the DFP formula are said to be dual or complementary
because the expressions for B&*Y and H** in one are obtained by interchanging
B o H and y o & in the other. Such duality transformation preserves the quasi-
Newton condition. The rank one formulais self-dual.

The DFP and BFGS updating formula can be combined to obtain the so
called Broyden one-parameter family of rank two formulae:

HEt = (1-gHED + pH L., (3.92)

This family includes the DFP and BFGS and aso rank 1 formula. The quasi-Newton
method with a Broyden family updating formula has the following properties™

1. For aquadratic function with exact line searches:

«  Themethod terminatesin at most n iterations with H™Y =G ™.

» Previous quasi-Newton conditions are preserved (hereditary property (3. 86)).

Conjugate directions are generated, and conjugate gradients when H © =,

2. For general functions:

* Themethod has superlinear order of convergence.

* The method is globally convergent for strictly convex functions if exact line
searches are performed.

58



3. Numerical Optimisation 3.5. Newton-like Methods

(k+1)

v for

The Broyden family updates maintain positive definiteness of H
¢=0.

Global convergence has also been proved for the BFGS method with inexact

line searches subject to conditions (3.56) and (3.59), applied to a convex objective
function™™. The BFGS method with inexact line searches converges superlinearly if

G is positive definite.

The BFGS method also shows good performance in numerical experiments.
The method is not sensitive to exactness of line searches, in fact it is a generally
accepted opinion that inexact line searches are more efficient with the BFGS method
than near exact line searches. The contemporary optimisation literature! ™ suggests

the BFGS method as preferable choice for general unconstrained optimisation based
on aline search prototype algorithm.

3.5.2 InvarianceProperties

It is important to study how optimisation algorithms perform when affine
transformation of variablesis made, i.e.

y =Ax+a, (3.93)
where A isnonsingular. Thisis a one-to-one mapping with inverse transformation
x=A"y-a).

f can be evaluated either in x space (denoted by f,(x)) or in'y space (denoted by
f,(y)=f(a*(y-a)).

Applying the chain rule for derivation in x space gives

=, (3.94)

g,=A'g,. (3.95)
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Applying the gradient operator to the above equation then gives
0,0, =A"0,0,'A,i.e

G,=ATGA. (3.96)

Thenotation g, =0J, f, etc. was used, so that for example

0°f
[G y]ij - ayla;l .

The following theorem!® applies to Newton-like methods:

Theorem 3.4:

If H® transforms under transformation (3.93) as

HY = AHUAT [k, (3.97)
then a Newton-like method with fixed step @) isinvariant under the
transformation (3.93). A method isaso invariant if a™ is determined by tests

on f®, g™k or other invariant scalars.

Transformation (3.97) in the above theorem is obtained by inverting (3.96),
since H®) approximate GY inthe guasi-Newton methods.

We see that the steepest descent method (treated as quasi-Newton method

with H® =1) is not invariant under transformation (3.93) because | does not
transform correctly. Modified Newton methods are aso not invariant because
G +vI1 doesnot transform correctly when v >0.

For a quasi-Newton method to be invariant, H® must be chosen so as to
transform correctly (as (3.97)) and the updating formula must preserve the

transformation property (3.97). Therefore, if H @ =1 s chosen, then invariance does

not hold. H® :G(x(l))_1 transforms correctly and therefore this choice does not
affect invariance.
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In order to show that a specific updating formula preserves the transformation
property (3.97), we must show that AHMAT =HY (which is (3.97) premultiplied
.y T . . . + _ + .
by A and post-multiplied by AT) which implies AH* AT = H(yk U, Let us do this for
the DFP formula

H(k+1):H +5x5xT _nyxyxTHx.

¢ ATy (3.98)

We will pre-multiply the above equation by A and post-multiply it by AT and
use relations A9, =9, following from (3.93) and y, = AT y, following from (3.95).
We will consider individual termsin equation (3.98).

The first term on the right-hand side of (3.98) gives, after multiplication, H (yk)
by assumption. Consider then the denominator of the second term:

3y, =0/ATATy, =(Ad,) y, =9y,
the denominator isinvariant. The numerator after multiplication gives
ASS AT =50,
so the second term transforms correctly. Consider the denominator of the third term:

yH Yy, =y ATAHATA Ty, =(A Ty, H ATy, =

v, Hyy,

the denominator is invariant under transformation. The numerator after
multiplication is

AH, .y H AT =AH ATA Ty TAAH AT =H y, (A Ty, H, =

g
H yyyyy H y
so the third term is al'so transformed correctly. AH AT = H*) isvalid since

T T
Jydy _HyyyyyHy
T

AHUIAT =4+ 2
5)’ yy yyHyyy
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and thisisthe DFP formulain the y space.

Similarly the preservation of (3.97) can be proved for al updating formulas in
which the correction is a sum of rank one terms constructed from vectors  and Hy,
multiplied by invariant scalars. Such versions are the BFGS formula and hence all
Broyden family formulas.

The Broyden family (including BFGS and DFP) algorithms are therefore
invariant under the affine transformation of variables (3.93), provided that HY is
chosen so as to transform correctly, i.e. as (3.97). However, even if H® is not

chosen correctly, after n iterations we have H™Y =G™9™ which is transforms
correctly. The method therefore becomes close to the one in which invariance is
preserved.

Invariance to an affine transformation of variables is a very important
algorithmic property. Algorithms which have this property, are less sensitive to
situations in which G is ill-conditioned, since an implicit transformation which
transforms G to the unity matrix | can be introduced, which does not change the
method. Algorithms that are not invariant, i.e. the steepest descent or the alternating
variables method, can perform very badly when the Hessian is ill-conditioned.

When using methods which are not invariant, it can be advantageous to find a
linear transformation which improves the conditioning of the problem!**.

If columns of A are eigenvectors of G, then G is diagonalised when
transformation (3.96) is applied. Conditioning can be achieved by additional scaling
of variables, i.e. by multiplication with a diagonal matrix. This approach is however
not applicable in practice because it is usually difficult to calculate eigenvectors of
G. For positive definite G the same effect is achieved by using Choleski factors of G

asthe transformation matrix. G, =A"A gives
G,=ATGAT=ATATAAT =]

It is often possible to improve conditioning just by scaling the variables. In
this case A is chosen to be adiagonal matrix so that A” estimates G, in some sense.

G,=ATG,A™ (from (3.96)) is required to be close to the unity matrix in some

sense. It can be required, for example, that [G y] =10i. It is usually not necessary

to explicitly perform the scaling, but | can be replaced in the methods by a suitable
diagonal matrix. For example, the modified Newton method can be improved by

using G +vA inplaceof G+v1.
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3.6 Conjugate Direction Methods

Optimisation algorithms described in this section are based on the result
given in Theorem 3.2, which associates conjugacy and exact line searches with
guadratic termination. These algorithms rely on an idealized assumption that exact
line searches are performed as in Algorithm 3.2. This is possible for a quadratic
function, but not in general. By using interpolation in the line search algorithm, it is
still possible to locate alocal minimum up to a certain accuracy, and this approach is
used in practice with the conjugate direction methods. An argument which justifies
thisisthat in the close neighbourhood of a minimum, quadratic interpolations of the
objective functions will enable the line minimum to be located almost exactly, so that
the inexact nature of the line search algorithm will not spoil local convergence
properties, which are theoretically based on the assumption of exact line search.

In section 3.6.1 derivative based conjugate direction methods are described.
In section 3.6.2 algorithms based on the idea of conjugacy, but in the absence of

derivative information are treated. All the described methods generate conjugate
directions when they are applied to a quadratic function.

3.6.1 Conjugate Gradient Methods

Conjugate gradient methods begin with line search along

st = —gW (3.99)

and then generate search directions s**¥ k=1 from -g**¥, so that they are

conjugate to sV, ..., s®with respect to the Hessian matrix G when a method is
applied to a quadratic function.

For a quadratic function it follows from (3.27) that

Y=ok, (3.100)

where ) =gl —gl) and 5® = xk*9 —x®) | a5 usual. Conjugacy conditions (3.43)
can therefore be written as
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ST =0 j#i (3.101)

since ' =G =Galsll), The last expression is a consequence of the fact that
xU*) is obtained by aline search performed from x{) along s/

The above equation can be used to prove an important property. First we can
see that

s'gi =00, (3.102)

because exact line searches are used. By using the above equation and (3.101) we
obtain

ST glken) =
S(i)(T)(g(k+l) —gl) gl gkt 4 gl 4 g(i+l)):’ (3.103)

S04 00 1 ) 1 g0 =0 [, k>

(x+2)

Thismeansthat g™ is orthogonal to all search directions of previous steps:

gk =0 Ok, i <k. (3.104)
Thisis actually the result of Theorem 3.2.

In the Fletcher-Reeves method s“* is obtained from —g*¥ by the extended

Gramm-Schmidt orthogonalisation!?® with respect to %), j <k, in order to
satisfy conjugacy conditions (3.101). We can write*

k+l) - _g(k+l) + ﬁ(l)S(J) . (3105)

i

gl

Multiplying the transpose of the above equation by y(‘) gives

S(k+1)Ty(i) =0= _g(k+1)Ty(i) + ﬁ(' )S(i)Ty(i) , (3106)

! The derivation of the Fletcher-Reeves method was found to be not completely clear in some
optimisation literature and is therefore included herein.
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where (3.101) was taken into account. It follows that

' (k+1)T (i) (k+0)T (S (i+1) _ ~(i)
ﬁ(u)_g V' _9 (g g ) (3_107)

STy (g —gi)) -

It follows from construction of s/ ((3.99) and (3.105)) that vectors g(l), g(") and
s, ..., s span the same subspace. Therefore, since g(k”) is orthogonal to the

subspace spanned by sV, ...,s% due to (3.104), it is also orthogonal to vectors
& (k)

9”,...0%, i.e

gg®) =0 Ok, i <k (3.108)

We seethat only S% # 0 and that

=-9 9 (3.100)

The denominator of the above equation can be obtained by substituting s by
(3.105) with decreased indices and taking into account that only ,8("‘1) IS non-zero,
together with the established orthogonality properties:

T _ 1) \T T
ST gl) = (_g(k) + Bkl 1)) gi = g gl

Now we have

p=9__9 ° (3.110)

The obtained results can be summarized in the following way:

Theorem 3.5;

The Fletcher-Reeves method with exact line searches terminates for a quadratic

function at a stationary point x™* after m< n iterations. In addition, the
following results hold for 1<i<m:

$V'Gs) =0; j=1,2,...,i -1 (conjugate directions), (3.111)
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g =0: j=12,..,i-1 (orthogonal gradients) (3.112)
and

gl = g4t (descent conditions). (3.113)

The termination must occur in at least n iterations because in the opposite

case g(”+l) # 0 would contradict the result that gradients are orthogonal .

When applied to a quadratic function with positive definite G, the Fletcher-
Reeves method turns to be equivalent to the Broyden family of methodsif HY =1,
the starting point is the same and exact line searches are performed in both
methods! ™!, For non-quadratic functions line search Algorithm 3.4 is recommended
with ¢ =0.1. Resetting the search direction to the steepest descent direction
periodically after every n iterations is generally an accepted strategy in practice.
When compared with quasi-Newton methods, conjugate gradient methods are less
efficient and less robust and they are more sensitive to the accuracy of the line search
algorithm. Methods with resetting are globaly convergent and exhibit n-step
superlinear convergence, i.e.

e x|
RO

Kk -

0 (3.114)

Some other formulas may be used instead of (3.110). Examples are the
conjugate descent formula

(k+1)T (k+1)
(k) - g g 11
B g(k)TS(k) (3.115)
and the Polak-Ribiere formula
(k+1) _ (k) YT ~(k+2)
pY = o J Jo" (3.116)
g(k) g(k)

Considering the derivation of the Fletcher-Reeves method, it can be seen that these
formulas are equivalent to the Fletcher-Reeves formula when applied to quadratic
functions with exact line searches. The conjugate descent formula has a strong
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)T

descent property that s g <0 if g)#0. The Polak-Ribiere formula is
recommended when solving large problems'™.

Another possibility for conjugate gradient methods is to use symmetric
projection matrices in the calculation of s, which annihilate vectors ), ..., -

S(k) = _P(k)g(k)’ k =12, ..,n. (3117)
Initialy
and subsequent PY) are updated as
.
plk+d) — plk) _ Pyt pt _ (3.119)

YT plk) )

Again this method is equivalent to other described methods for quadratic functions.
When applied to general functions, P") must be reset to | every n iterations since
P™) = 0. The method has the descent property s¥'g) <0, but has a disadvantage
that matrix calculations are required in each iteration.

3.6.2 Direction Set Methods

Direction set methods ™% generate conjugate directions with respect to the
Hessian matrix G, when they are applied to a quadratic function, without use of
derivative information. Construction of the conjugate direction is based on the
following theorem™:

Theorem 3.6: Parallel subspace property

Let us have a quadratic function q(x) with a positive definite Hessian matrix G .
Consider two parallel subspaces S and S,, generated by independent directions
W, ..., s¥ (k<n) fromthe points v and v?  suchthat S #S,,i.e

0 < o0
S=px=vi¥+ Zais(') Oa, 0
0 = 0
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and smilarly S,. Let z® pethe point which minimises g on S and z?) the
point which minimises g on S, Then 72 -z s conjugate to s, ..., s% with
respectto G, i.e. (z(z) —z(l))TGs(‘) =0,i=1..kK.

The above theorem is outlined for two dimensions in Figure 3.8. Although
instructive, a two-dimensional representation is not completely satisfactory because

the complement of the vector space spanned by s¥ is one dimensional and therefore
the line z% +a(z® -zY) contains a minimum of g(x,x,). Also the parallel
subspaces are only one dimensional.

Figure 3.8: The parallel subspace property in two dimensions.

In the direction set methods, conjugate directions ) are generated one by
one by minimising the function in a subspace spanned by previously constructed

s9, ..., s (giving x"), say), a paralel subspace is created by displacing the
obtained minimum by a vector that is independent on s®,.... st (d%, say),
followed by minimising in that subspace (giving z, say), and setting a new
conjugate direction to s') =z —=x®) | Since the directions Y, ...,s") are conjugate,
previously performed minimisation in directions sV, ..., s is not affected by
moving along the line z() +a(z(‘) —x(‘)). Minimisation in the subspace
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N N . U
U IE U

is therefore achieved by line minimisation along that line (this is well illustrated in
Figure 3.8). Thisis of course valid only for quadratic functions, but the construction
of an algorithm for general functionsis based on the same arguments and is similar.

From the above construction it is clear that the direction s is a linear
combination of vectors d®,d®, ..., d®, but is not contained in the subspace spanned

by d@*9,d@*2 gt

The above described procedure is followed in Smith’s method. The cycle is
repeated when the function is not quadratic. The method requires independent

vectors d¥,d®@, ..., d™ to be supplied, which are used for the successive generation

of parallel subspaces after minimisation in the current subspace. This is however not
the most effective approach because directions are not treated equaly. Line
minimisations are performed more frequently in the directions that are constructed
earlier.

This deficiency is abolished in Powell’s method. Its cycle is as described
above, except that a point of the parallel subspace is obtained by line minimisations
along d,d®™ ... d® from x©) rather by just adding d") to x%). Powell’s method is
also such that cycles can be continued when the function is not quadratic, while in

Smith’s method directions are restarted after each cycle. The algorithm is sketched
below.

Algorithm 3.8: Powell’ s direction set algorithm.

Given independent directions sV, 62 . s the minimum point xW aong S
Isfound by aline search. Then the following iteration is repeated for i =1, 2, ...:
1. Find

() — ) 1~y i)
ZV =XV + a.S
]Z j

by sequentially minimising f aong U, d@ s f i <n thenthelast i
directions have aready been replaced by conjugate directions.
j+1)

2. For j=1,2,.., n-1replace s/ by sl*Y.
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3. Set s =20 —x{) which is anew conjugate direction. Find the minimum
point X =20 + o d" along s by aline search. For aquadratic function,
when i <n, x(* isaminimum point of the subspace

] )
S= D(;X22(')+ O'S(k)
U kzzn—i ‘

Ooo

sincethelast i +1 directions are conjugate.

The first n-i line searchesin line 1 locate a point in a parallel subspace. The
last i line searches can be thought of as minimisation of that subspace spanned by the
last i directions (which are conjugate).

The a gorithm terminates in about n? line searches when applied to quadratic
functions. This is about twice as much as Smith’s method (4n(n+1)), but the

directions are now treated equally. Pseudo-conjugate directions are retained for a
general function after the n-th iteration and are updated from iteration to iteration.
The method is therefore more effective for general functions as Smith’s method. One

of the problems with this method is that in some problems directions s tend to
become linearly dependent. It is possible to introduce modifications which deal with
this problem. One possibility is to reset the direction set every certain numbers of the
cycles.

3.7 Restricted Step Methods

The restricted step prototype algorithm is an aternative to the line search
strategy, in an attempt to ensure global convergence of minimisation algorithms.

There is one fundamental difference between the line search and restricted
step approach. As can be seen from precedent sections, the line search based
algorithms rely to a great extent on a quadratic model. Directions of line searches are
essentially constructed in such away that when an algorithm is applied to a quadratic
function with a positive definite Hessian matrix, termination occurs in a finite
number of exact line searches. Then, using the argument that every sufficiently
smooth function can be localy (i.e. in the neighbourhood of the current guess)
approximated by a quadratic function, the strategy designed on a quadratic model is
more or less directly transferred to algorithms for handling general functions.
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The fact that even within a single line search the minimised function can
deviate far from its quadratic approximation is ignored by the line search approach.
On the contrary, the main idea of the restricted step approach is to make direct use of
the quadratic model, but only in the limited region where this is an adequate
approximation to the original function. This leads to a sub-problem of minimsation
of a quadratic approximation, limited to a certain region. One of the benefits is that
difficulties with a non-positive definite Hessian matrix are avoided. It is clear at first
sight that among the important concerns of restricted step methods is how to define a

so called trust region QW j.e thene ghbourhood of a current guess in which the use
of a quadratic approximation is adequate.

In the view of the above discussion, consider the problem
minimise q®(s)

(3.120)
subject to 3] < ht,

where q(k)(é') is a second order Taylor approximation of f about x®) and
o=x-x¥ie

q¥(0)= W +gW 5+167GM5. (3.121)
The second part of equation (3.120) defines the trust region as

Q) = {x; Hx - x(k)H < h(")}. (3.122)

Restricted step methods aim at keeping the step restriction h) as large as
possible, subject to the restriction that a certain agreement between (3™ and

f (x®) +3%) must be retained, where 3% is the solution of (3.120). Some measure
of agreement must be defined for this purpose. Let us define the actual reduction of f
inthe step k as

A0 = £00 — £ (x4 5)) (3.123)
and the corresponding predicted reduction as
Aq®) = q(k)(o) — q(k)(5(k)) = fl) g (5(k))_ (3.124)

Then theratio
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(3.125)

A
Q0

is a suitable measure of the agreement, where good agreement is indicated by r®)
being close to 1. In restricted step algorithms it is attempted to maintain a certain

degree of agreement by adaptively changing h). such a prototype agorithm is
defined below.

Algorithm 3.9: Iteration of the restricted step prototype a gorithm.

Given x® and h®) evaluate f®), g and G™ to define q*/(5) in (3.122).
Solve (3.120) for o).
Evaluate f(x* +5®)and r®,

If 1 <7, set hY = p |60,
if 1% >7, and 6% =" st b = p,n®),

dsesat h®* =pK)
5. 1f r® <0 set x® =x® gsesat x**) = x® 45K

El R o

Constants used in the above agorithm must be chosen so that 0<7, <7, <1,
0<p <1 and 1<p,. A suitable choice is 7, =025, 7,=0.75, p, =025 and
p, =2, but the agorithm is not very sensitive to the choicd™. In line 4 of the
algorithm the step restriction is tightened if agreement between Af ) and AgY is
bad, and relaxed if the agreement is good and at the same time the minimum of g lies
on the edge of the trust region. If the minimum of g™ lies inside the trust region,

then there is no need to further relax the step restriction because that constraint will
become inactive anyway, and the algorithm will reduce to the basic Newton method

with rapid convergence. In line 5 x* is preserved if f(x(k)+5("))> £, which
guarantees the descent property f 9 < £,

The following strong convergence result holds for restricted step methods':

Theorem 3.7:

For Algorithm 3.9, if X' 0B O R" Ok, where B isbounded, and if f O C?2

on B, then there exists an accumulation point x® which satisfies the first and
the second order necessary conditions for alocal minimum. If G also satisfies
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the Lipshitz condition |G (x)- G(y)ﬂ < AJx~y] in some neighbourhood of x*

and if G* is positive definite, then for the main sequence r™® _ 1, inf h) >0,
the constraint |J] < h) isinactive for sufficiently large k , and convergenceis
second order.

The existence of B in the above theorem is not a strong requirement. It is
implied if any level set {x; fx< f(k)} is bounded because x™) are descent.

If the L, norm is used in the step restriction, then the subproblem (3.120)
becomes a quadratic programming problem with ssmple bounds, for which good
algorithms for local solutions exist. It is however difficult to find globa solutions,
but in practiceit is adequate to calculate only local solutions.

Slow progress of the method can arise if the norm is not scaled. Ideally the
natural metric norm |J], =4'GJ would be chosen when G s positive definite, but

the scaling of variables can also be an adequate approach.

The Hessian matrix in the restricted step methods can be replaced by the
approximate Hessian B® or itsinverse H®, updated according to a quasi-Newton
scheme. In such a case similar global convergence result holds as for the original
method.

3.8 Basicsof Constrained Optimisation

The remainder of chapter 3 is devoted to the case in which constraints on the
optimisation variables are defined (Figure 3.10). The presence of constraints
introduces additional complexity in the treatment of local solutions in view of the
definition of necessary and sufficient conditions, which is discussed in the present
section.

Constrained optimisation problems are much more difficult to treat
numerically than unconstrained problems. Many agorithms for their solution are
based on transformation of the constrained problem to a sequence of unconstrained
optimisation subproblems whose solutions converge to the solution of the
constrained problem. A commonly used approach is the penalty function approach
based on addition of weighted penalty terms to the objective function which cause
high values where constraints are violated or close to be violated. In the limit when
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weights tend to infinity, the solutions of the unconstrained problems tend to the
solution of the constrained problem. This approach is described in section 3.10.

The next important approach is the elimination of variables. Equality
constraints are used to define implicit dependence (through solution of a nonlinear
systems of equations defined by equality constraints) of a subset of optimisation
variables on the remaining variables. The constrained problem is in this way
transformed to an unconstrained problem defined on a reduced set of variables, but
each evauation requires a system of nonlinear equations to be solved for the
dependent variables. When inequality constraints are involved, the active constraints
are treated as equality constraints. Since it is not known in advance which constraints
are active in the solution, the set of active constraints is iteratively updated. This
leads to the active set type of methods, the principle of which are described in
sections 3.9 and 3.11.

Algorithms for solution of constrained optimisation problems are based on
guadratic models to a large extent. Some algorithms for general functions explicitly
generate quadratic programming subproblems (quadratic objective function and
linear constraints). These algorithms represent an alternative to the more traditional
penalty function approach and seem to be superior from the point of view of
efficiency. Section 3.9 covers some basic aspects of quadratic programming.

There are aso solution agorithms which linearise both the objective
functions and constraints about the current iterate and therefore generate a sequence
of linear programming problems*®®!. This approach seems to be popular in some
fields, however only problems with some special structure can be successfully solved
in this way (e.g. with the objective function close to linear), therefore attention is not
devoted to the approach in this work. Linear programming (linear objective function
and constraints) is also not treated in thiswork for the same reason.

3.8.1 Langrange Multipliersand First Order
Conditionsfor Unconstrained Local Minima

Consider the problem (3.19) where constraints are present. For any point X'
active or binding constraints are those for which the corresponding constraint
function is zero at that point. A set of their indices will be denoted by

A =a(x)={i;c(x)=0} (3.126)

Any congtraint is active at X' if that point is on the boundary of its feasible
region. The set of active constraints at the solution # is of particular importance.
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Constraints which are not active at the solution can be perturbed by small amounts
without affecting the problem solution.

The gradient of the i-th constraint function Cc, will be denoted by a and
referred to as the normal vector of the constraint ¢ . These vectors can be arranged in
aJacobian matrix A, whose columns are constraint gradients.

Consider a problem with only equality constraints and a feasible incremental
step J taken from aloca minimiser. By a Taylor series we have

6 +3)=c +3"a +ol[o]).

Since J isafeasible step we have q(x* +5):c,* =0 and where the length of

the step length is small, we have by neglecting higher order terms d'a; =0. By

taking into account all constraints, we can define a feasible direction as a direction
which satisfies

s'a =0 TiOE. (3.127)

Clearly if sis afeasible direction then —sis also a feasible direction. Since x’
is a constrained local minimiser, there is no feasible descent direction, because
otherwise f could be reduced by an arbitrarily small step in that direction. It follows

that s'"g' =0 for any feasible direction s. Due to (3.127) this is satisfied if g isa
linear combination of constraint gradients, i.e.

g = ; al=Ax. (3.128)

Multipliers A are referred to as Lagrange multipliers and can be arranged in the

Lagrange multiplier vector (denoted by A" without a subscript). The above equation
isalso anecessary condition for alocal minimiser. If (3.128) would not hold, then g’
could be expressed as

g =AX +u (3.129)

where u is a component of g orthogonal to al a . Then s=-u would be a
feasible descent direction (i.e. would satisfy both (3.128) and s'g” <0). A feasible
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incremental stepd along s would reduce f, which contradicts the fact that x™ is a
local minimiser. Thisisillustrated in Figure 3.9 for a single constraint.

Figure 3.9: lllustration of necessary conditions for a constrained local
minimum.

The necessary conditions are a basis of the method of Lagrange multipliers

for equality constraint problems. The method searches for vectors X~ and A", which
solve the equations

g(x)= ; Aa(x)

and (3.130)
c(x)=0, iDE.

This approach has a similar disadvantage to the Newton method for unconstrained
minimisation: the above equations are satisfied in a constrained saddle point or
maximiser, since no second order information is taken into account.

The above equations can be written in a simpler form if we define the
Lagrangian function
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£(x,2) = £(x)- Y Ac (). (3.131)

Oz(x,A)=0, (3.132)
where
O= o, (3.133)
A

OO

is the gradient operator in the n+m dimensiona variable space (m will denote the
number of constraints). We see that a necessary condition for a local minimiser is

that (x* A )T is a stationary point of the Lagrangian function.

Lagrange multipliers have a clear practical interpretation. If the Jacobian matrix of
constraints has rank m (linearly independenta, ) then the multipliers in (3.128) are

uniquely defined by

A =A"g, (3.134)

where A" =(A"TA")*AT is a generdlised inversd? of A*. Consider in such case
perturbations of the right-hand sides of the constraint
c(x)=¢, i0E (3.135)

and let f(g) and A(g) denote how the solution and multipliers change with respect
to perturbations. The lagrangian function for the perturbed problemsis

£(x,A,6)=f(x)- ; Al (x)-¢) (3.136)

In the perturbed solution new constraints are satisfied, therefore
f(x(g)) = £(x(e). Ale).).

Derivation of this equation with respect to € gives
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T T
df _de_ox ) oN  or
deg dg  0¢ 0¢; 0,

By (3.132), (3.135) and (3.136) it follows that

d o) (3.137)

Lagrange multipliers therefore indicate how sensitive the value of the objective
function at the solution isto changes in the corresponding constraints.

Consider now a case where inequality constraints are present. Only active
constraints at the solution # influence conditions for the solution. A set of active
inequality constraints at the solution will be denoted by 1" (=# n 1) . Any feasible
direction s must satisfy (in addition to (3.127)) the condition

s'a, 20 Oi0l". (3.138)

Conditions for alocal minimiser are

(3.139)

g* = ZA*a*

il
and
A=zo0iadl’. (3.140)

Condition (3.139) can be deduced in a similar way to (3.130). Condition (3.140),
which is an extra condition with respect to the case of equality constraints, can be
deduced using the result (3.137). A small perturbation of the i- th active inequality
constraint by positive & induces a change x(¢) that is feasible with respect to the

unperturbed problem. Therefore f must not decrease, which implies df * /dé‘i >0 and
henceA =0.
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Figure 3.10: Constrained optimisation problem with two inequality
constraints. Contours of constraint functions are drawn only in the
infeasible region where their values are less or equal to zero. Since both
constraints are active in the solution, the solution would remain
unchanged if one or both constraints were replaced by equality
constraints.

Lagrange multipliers have another important interpretation in the case of
inequality constraints. Consider a point at which (3.139) is satisfied and (3.140)

holds for all i except for i=p,i.e. A, <0, and let al a be linearly independent.
Then it is possible to find a direction s for which s'a, =1 and s"a; =0 for all other

active constraints. Such is given for example by s= A”Tep, where e, is the p-th
coordinate vector. Then s is a feasible direction and at the same time a descent

direction since

s'g =s'a A, <0. (3.141)

This first contradicts the fact that x is alocal minimiser and is another proof that
conditions (3.140) are necessary. Besides, it indicates that f(x)can be reduced by
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moving away from the boundary of constraint p for which the corresponding
Lagrange multiplier is negative. This is important in the active set methods for

handling inequality constraints, where constraints index p with /\*p <0 can be
removed from the active set (section 3.9.2).

In the derivation of the first order conditions the regularity assumption that
a; areindependent was made. Thisis not necessarily the case and an exact statement
of the conditions requires more careful treatment™.

First the notion of feasible direction must be defined more exactly. Consider a
feasible point X' and any infinite sequence of feasible points convergent to this point

{x®} ~ x' wherein addition x¥ # x' for all k. It is possible to write
x®) —x' = oMsk) Ok (3.142)

where 6® >0 are scalars and s are vectors of any fixed length o >0. A
directional sequence is defined as any such sequence for which vectors s converge
to some direction, i.e. s¥ - s. The limiting vector s is then referred to as the
feasible direction. #(x')=#" will be used to denote the set of &l feasible directions
a x'.

It can be seen from the previous discussion that the set of feasible directions
for the linearised constraint set is

T '_ H
F(X,):F,:%Smmsai’-o DuDE% (3143
H s'a, 20 Oi0OI'H

where |" isaset of active inequality constraintsat X' .

Thereation #' O F' holdsin general. #'=F' ether if the constraints i 0 #'

are linear or vectors a, , i A are linearly independent. The assumption 7' =F' is
referred to as a constraint qualification at x' .

The set of descent directionsat x' isdefined as

p(x)=0'={s g <q. (3.144)

! In some optimisation literature the possibility that gradients of active constraints in the solution can
be linearly dependent is ignored, sometimes with an argument that this is an extremely unlikely
situation.
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If x" is a local minimiser, then ¥ n9 =0, i.e. no feasible descent
directions exist.

Let the following regularity assumption be made:
Fnp =F no. (3.145)

This is weaker assumption than #' O F'. Under this assumption the

following more general statement of the first order necessary conditions can be
made 17

Theorem 3.8: Kuhn-Tucker (or KT) conditins.

If X" isalocal constrained minimiser and if regularity assumption(3.145) holds,

then there exist Lagrange multipliers A” such that x* and 4™ satisfy the
following system:

0,£(x,A)=0

c(x)=0, il (3.146)

A point that satisfies the above conditions is referred to as a KT point. The
condition A ¢ =0 isreferred to as the complementarity condition. It states that both

A and ¢’ can not be non-zero, which means that inactive constraints are regarded
as having zero Lagrange multipliers. If thereis no i such that A =¢” =0 then strict

complementarity is said to hold. The case A =¢’ =0 appears for example if an

unconstrained minimiser lies on the boundary of the feasible region, which is an
intermediate state between a constraint being strongly active and inactive.
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382 Second Order Conditions

Consider first the case with only equality constraints. The second order
conditions can be derived from the second order Taylor series of the Lagrangian

function about the local solution. It is assumed that a, are independent so that unique

Lagrange multipliers exist. Let a feasible incremental step 0 be made along any
feasible direction s. By feasibility it followsthat f(x+3)= £(x+J,1). We also take

into account that ~ is stationary at X and A to eliminate the first derivatives. The
second order Taylor expansion then gives (after neglecting higher than second order
terms)

f(x +8)=2x +a,4)=
ol +8,x )48 0, (¢ N )+ 18T WE =, (3.147)
S R

f +13'Wo

W denotes the Hessian matrix of the Lagrangian function with respect to variables x:
W =022(x A )=0%f(x)- ZADC( ). (3.148)

Since X is alocal minimiser, the function value taken in any feasible infinitesimal
incremental step in any direction must be greater than or equal to . It follows that

s'TWs =0 (3.149)
for any feasible direction, i.e. for any sthat satisfies
a's=0 OI0E. (3.150)
This is a second order necessary condition for alocal minimiser, which can also be
stated as a requirement that the Lagrangian function must have a non-negative
curvature along any feasible direction.
A sufficient condition isthat X satisfies (3.128) and
sS'W's>0 (3.151)

for all feasible directions s that satisfy (3.150) (a zero vector is not considered to be a
feasible direction).
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Figure 3.11: Illustration of the second order conditions. A problem
with three different equality constraints is shown. In all three cases

a =g and A =1. The problem with constraint function ¢, does not

match the necessary conditions for X to be alocal minimiser because
s' (D 2f (x* ))s <s' (/\ O%c, (x* ))s and thus s"W, s< 0. The second
constraint satisfies necessary but not sufficient second order conditions
and therefore higher order terms of the Taylor series become significant.

When inequality constraints are present, again only active constraints affect
matters. We can also realize that the second order conditions are important only

along feasible stationary directions (s'g" = Owith respect to constraints), but not
along ascent directions where first order information is sufficient. If an inequality
constraint ¢,(x)=0 is present with A’ >0, then directions for which s'a >0 are

ascent directions (according to the discussion regarding (3.141)). Stationary
directions satisfy

s'a =0 Oi0#A (3.152)
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The second order necessary conditions are then that (3.149) holds for all s
that satisfy (3.152). Sufficient conditions for a strict local minimiser are that the

Kuhn-Tucker conditions with strict complementarity (A >00i01") hold and
s'W's>0 Us:s'a =0,i04 . (3.153)

Exact statement of these conditions” again relies on some regularity
assumption. Let us define a set of strictly active constraints

c={i;inenx >q. (3.154)
Consider feasible directional sequences for which x*) _, x" for which

c(x¥)=0 miox . (3.155)

and define g~ asaset of al resulting feasible directions. A corresponding set where
constraints which determine ¢ are linearised can then be defined as

*T . *
G :%;s;tom & s=0104, *%. (3.156)
H a s20,i0a \#A, H

6 OG" holds and in order to state the second order necessary conditions, the
regularity assumption

G =G (3.157)

is made. The second order necessary and sufficient conditions can then be stated as
bel w14

Theorem 3.9 (second order necessary conditions):

If X" isaconstrained local minimiser and if the regularity assumption (3.145)
holds, then there exist multipliers A* such that Theorem 3.8 isvalid (i.e. X isa
KT point). For any such A, if also the regularity assumption (3.157) holds, it
follows that

s'W's>0 OsOG . (3.158)
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Theorem 3.10 (second order sufficient conditions):

If at X" there exist multipliers A* such that conditions (3.146) hold, and if
s'W's>0 OsOG, (3.159)

then x" isastrict local minimiser.

3.8.3 Convex Programming Results

Some strong theoretical results hold when the objective function is a convex
function and when the feasible region is a convex set. Within the scope of this work
these results are not important because of direct applicability to specific problems,
but are important for treatment of subproblems that arise in some optimisation
algorithms. Convex programming result are also important for statement of the
duality principles, which are employed in the reasoning of some general optimisation
algorithms.

By definition, aset K in IR" is convex if for each pair of points x,,x; K
and for each #0[0]] also x, 0K , where

X, = ([1-0)x, +6x,. (3.160)

An equivalent definition isthat for any set of points x,,X,, ... X, K X, OK where
x5=26?ixi and Zﬁizl 0 6=00i. (3.161)

A convex function on a convex set K is afunction for which the epigraph is a
convex set. The epigraph of a function is the set of pointsin IR x R" that lies on or
above the graph of the function. The equivalent definition of a convex function f (x)

isthat for any X,,x, OK it follows that

f,<(1-6)f,+6 f, De0[0]]. (3.162)

The definition of a strictly convex function is similar but with strict inequality in the
above equation. If — f(x) isconvex then f(x) issaid to be concave.
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If f is convex and C' on an open convex set K, then for each pair
Xo: X, K

f, = f,+(x, —x,) Of,. (3.163)

This means that a graph of f must lie above or along its linearisation about any point.
It immediately follows (by interchanging x, and x,) that

(x, =%, ) Of, = f, = f, = (x, —x, ) Of,. (3.164)

This corresponds to a statement that the slope of a convex function f is non-
decreasing along any line. If f is €2, this result implies (by taking the limit
%, =X,| - 0) that O°f (x) is positive semi-definite at each x 0K .

A convex programming problem is a problem of minimisation of a convex
function on a convex set. Such aproblemis

minimise f (x)
(3.165)
subject to xOK, K={x;¢(x)20,i=12,...,m},

where f(x) is convex on K and constraint functions ¢ (x) that define K are concave

on R". Convexity of K defined as above follows from the fact that an epigraph of
any concave function is a convex set, and from a known theorem that intersection of
convex setsisaconvex set.

The following important results hold for convex programming problems¥:

Theorem 3.11:

Every local solution to a convex programming problem is also a global solution,
and the set of global solutions S isconvex. If f(x) isalso strictly convex on
K, then the solution is unique.
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Theorem 3.12:

In the convex programming problem (3.165), if f(x) and q(x) ae C* on K

and if the Kuhn-Tucker conditions (3.146) hold at X", then X isaglobal
solution to the problem.

3.8.4  Duality in Nonlinear Programming

The concept of duality provides a set of rules for transformation of one
problem to another. By applying these rules alternative formulation of the problem is
obtained, which is sometimes more convenient computationally or has some
theoretical significance. The original problem is referred to as the primal and the
transformed problem as the dual. Some duality transformations have a symmetry
property that the dual of the dual is the primal (i.e. that the transformation applied
twice gives the original problem).

Usually some of the variables in the dual correspond to Lagrange multipliers

of the primal and take the value A" at the dua solution. The dual and the primal
should be related in the way that the dual has a solution from which the solution of
the primal can be derived. Duality transformations of this kind are associated with
the convex programming problem as the primal. A set of such duaity
transformations can be derived from the Wolfe dual whose statement is given in the
theorem below!™.

Theorem 3.13;

If X solvesthe primal convex programming problem (3.165), if f and ¢ are

C* functions, and if the regularity assumption (3.145) holds, then X", A" solve
the dual problem

maximise £(x,A)

(3.166)
subject to 0, £(x,A)=0, A=0.

The minimum primal and maximum dual function values are equal, i.e.
£ = L(X*, X )
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The Wolfe dual is not symmetric. The dual is not necessarily even a convex
programming problem. An advantageous property is that if the primal is unbounded
then the dual has inconsistent constraints and therefore does not have a solution. It is
possible that the primal has inconsistent constraints, but the dual still has a solution.
However if the constraints are linear, then infeasible constraints in the primal imply
that the dual is unbounded.

An example of application is the quadratic programming problem

minimise 1x"Gx+g'x
(3.167)
subject to ATx>b
where G is positive definite. The Wolfe dual is
maximise Ix'Gx+g'x-A" (ATx—b)
(3.168)
subject to Gx+g-AA=0, A=0.

The first set of constraints can be used to eliminate x (i.e. x=G*(AA-g)), which
gives the problem

maximise  ~3 /" (AT AW+ 4 b +ATGg)-1g'G g
(3.169)
subject to A=0.

This is again a quadratic programming problem, but subject only to ssmple bounds.

When the solution A" is found, X is obtained by solving the equation used for
elimination of x from (3.168).

3.9 Quadratic Programming

A quadratic programming (QP) problem is an optimisation problem with
quadratic objective function and linear constraint functions, i.e.

minimise q(x)=1x"Gx+g"x
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(3.170)
subject to ax=h,i0E

and ax=hb,idl.

where G is symmetric. If G is positive semi-definite, a local solution x™ is also
global, and if G is positive definite, it is aso unique. This follows from Theorem
3.13 since such a problem is a convex programming problem. Only if G is indefinite
can alocal solution which is not global occur.

39.1 Equality Constraints Problem

The quadratic programming problem with only equality constraints can be
stated as

minimise q(x)=1x"Gx+g'x
(3.171)
subject to A'x=D.

It will be assumed that there are m< n constraints and that A has rank m, which
ensures that unique multipliers A exist. A is a nxm matrix whose columns are
vectors a,, i OE from (3.170),and bO R ™.

The problem can be transformed to an unconstrained minimisation problem
by direct elimination of variables using constraints. Let partitions

x, O (A, 0O O G, G, O
X = 1D’ A= lD' gzglﬂ' G:%;n 12D (3.172)
Al 2 2 2 Gl

be defined, where x, JIR™ and x, JR"™, sothat A, is mxm, G,; is mxm, etc.
Then mvariables in the vector x, can be expressed in terms of x, as

x, =A; [0 -Alx,). (3.173)

Substituting thisinto q(x) gives
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ll/(Xz) = Q(Xl(xz)’xz) =
%X; (Gzz _GzlAl_TAZ _AZAl_lelz +A2A1_1611A1_TA£ )Xz +

X3 (G =~ A,AG, JATD+1bTATIG LA D +
x;(0, - AALg, )+ gl AT

(3.174)

The problem is so transformed to unconstrained minimisation of (x,). If the
Hessian (the matrix in the round brackets in the second line) is positive definite, then
a unique minimiser X, exists and is obtained by solving the linear system of
equations y(x,)=0. x; is obtained by substitution in (3.173). The Lagrange
multiplier vector is defined by g =AA" where ¢ :Dq(x*):g+Gx*, and can be
calculated by solving the first partition g, = A,A".

The described approach is not the only possibility. First of al, it is possible to
rearrange variables and choose some other set of variables to be independent. More
generaly alinear transformation of variables can be made. Such a general approach
is the generalised elimination method.

Let Y and Z be nxm and nx(n-m) matrices such that [Y:Z] is non-
singular and

ATY =1,

(3.175)

A'Z=0__ .

Y' can be regarded as the left generalised inverse of A since a solution of the

system A'x=b isgiven by x=Yb. The solution is not unique and other solutions
aregivenby x=Yb+J where  isinthe n—m - dimensional null column space of
A e

AT0=0 (3.176)

If the matrix Z has linearly independent columns z,, z,, ..., Z,_,,, then these

vectors form a basis of the null space of A?%, At any feasible point x (i.e. solution of
Ax =Db) any feasible correction J (which gives another solution) can be written as

o= Z y.z, (3.177)
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where vy, Y,, ..., ¥,., &e the components in the null space of A, referred to aso as
reduced variables in this space. Any feasible point can be written as

x=Yb+2Zy. (3.178)

The above equation provides a way of eliminating constraints Ax=b by
transformation to the n—-m - dimensiona space of reduced variables in which
constraints are always satisfied, and is therefore a generalisation of (3.173).
Substituting the equation into (3.171) gives the reduced quadratic function

w(x)=1y'Z'GZy +(g+GYb) Zy +1(g+GYb)'Yb.  (3.179)

If the reduced Hessian matrix Z'GZ is positive definite then a unique
solution exists and can be obtained by solution of the system Oy(y)=0, i.e.

(z'Gz)y=-2"(g+GYb). (3.180)

It is convenient to solve this system by Choleski factorisation®®® which also
enables positive definiteness to be checked. x™ is then obtained from y* by using

(3.178). Lagrangian multipliers are obtained from g =A A", which after pre-
multiplying by Y' gives

X=Y"g =YT(Gx +g). (3.181)

Note that g in this equation does not refer to the gradient vector, but is a constant
vector in the definition of g(x). The reduced gradient vector is Z"(g+GYb). This

shows that the reduced derivatives can be obtained by pre-multiplication by Z",
since g+GYb =0qg(Yb) isthegradient of q(x) a x = Yb.

Different methods arise from different choice of Y and Z. It is convenient to
use any orthogonal (QR) factorization?®1% of A:

(RO RO
A=Qp [Q,Q,] DEQR (3.182)

where Q isa nxn orthogonal matrix, R isa mxm upper triangular matrix, and Q,
and Q, are nxm and nx(n—m) partitions of Q. Then we can choose

Y=QRT, 72=0,. (3.183)
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Thisimplies that the vector Yb from (3.178) is orthogonal to any feasible change d
and the reduced coordinate directions z, are mutually orthogonal.

The reduced system (3.180) is first solved to obtain y', and then X is
calculated by substitution into (3.178). Numerically it is most convenient to evaluate
vector Yb, which appears in these equations, by forward substitution in R'u=b
(since R is upper triangular) followed by multiplication Yb =Q,u. Multipliers A
are then calculated by backward substitution in RA =Q;g . Such a scheme is

referred to as the orthogonal factorization method. Its advantage is that because of
using orthogonal transformations, the method is less sensitive to round-off errors’®”,

In general, Y and Z can be obtained by completion of the matrix A to afull-
rank nxn matrix and partitioning of the inverse of that matrix. For example, we can
choose any nx(n-m) matrix V such that the matrix [A :V] is non-singular. Y and
Z are then obtained by

YO
A:Vit=0_.0 (3.184)
[A:V] 08

where Y and Z are nxm and nx(n-m) partitions respectively. They satisfy
conditions (3.175) and are therefore suitable for use in the generalised elimination
method. The resulting method can be interpreted as a method which makes linear
transformation with the matrix [A ; V] .

Different methods arise from specific choices of V. Choosing
V= @E (3.185)
ils

resultsin the direct elimination method. The identity

M, o0 0O AY o0 O¥'O
. 15 "D (T DD (3.186)
2 ] D_AZAl ID [l

gives expressionsfor Y and Z. It can then be verified by substitution into (3.180) and
taking into account the appropriate partitioning that the resulting method is identical
to the direct elimination method.

The orthogonal factorization method is obtained by setting
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V=0,, (3.187)

where Q, isdefined by (3.182). By using the identity

. L RQID Y'D
[A:v]*=[QR:Q)*=F ?F%TD (3.189)
0Q. O 0

(3.183) is obtained, which confirms that the orthogonal factorization method was
obtained. The above equation can be expressed as

[A:v]'= @:% (3.189)

where A* = (ATA)_lAT isthe full rank generalised inverse, therefore Y = A*" from
(3.183).

39.2 Active Set M ethods

Inequality constraints can not be simply used to eliminate variables or reduce
the dimension of the problem. Only those inequality constraints that are active in the
solution actually affect matters. If it would be known in advance which constraints
are active in the solution, these constraints could be used as equality constraints and
all other constraints could be ignored. Active set methods gradually update the set of
active constraints and solve the resulting equality constrained problems where
constraints regarded as inactive are temporarily ignored. It is assumed that the
Hessian matrix of the problem is positive definite. The basic idea is illustrated in
Figure 3.12 and described below .

On the k-th iteration a feasible point x®) is known which satisfies active
constraints as equalities, i.e. aiTx(“)zbI Oid#a where # is the index set of
constraints currently regarded as active and treated as equality constraints. All
equality constraints are in this set. x* also satisfies a'x*) >b Oi04, so that the

current active set A isequivalent to the set of active constraints A
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Figure 3.12: Progress of the active set method in a problem with three
inequality constraints.

The iteration attempts to solve the equality problem where only active

constraints occur. By shifting the origin to x®) and looki ng for a correction o% this
problemis

minimise 13"Ga+a"gw
(3.190)
subject to a'do=0 0Oi0a,

where g = Dq(x(")) =g+Gx™.
If & is feasible with respect to constraints not in 4, then x*¥ =x® +5 is

taken. If not aline search is made in the direction s = 3 to find the best feasible
point. ) isfound which solves

—aTy(K)
a® =min min b'—Ta‘(;XfH (3.191)
aTdk <o a‘is E
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and x& = x®) + g0k js et

If a® <1 then a new congtraint (with index p, say) which achieves the
minimum in the above equation becomes active and its index p is added to the active
set A .

If x*) solves the current equality problem, then it is possible to compute

multipliers A9 as described in the previous section. Vectors x®) and A satisfy all
the first order conditions for the original inequality constrained problem except
possibly the conditions A = 0,i 1 . Thetest istherefore made if these conditions are

satisfied for al inequality constraints in #. If so, the first order conditions are
satisfied and since the problem is convex (because G is positive definite), this is

sufficient for x* to be a global solution. Otherwise there exists an index q such that
/\g‘) <0. Inthiscaseit is possible to reduce q(x) by allowing constraint g to become
inactive (according to discussion around equation (3.141)). Constraint q is therefore
removed from # and the algorithm continues as before. It is possible that there are
more than one indices with /\(ik) <0. Then qisselected so that it solves

min A, (3.192)

ioanl

The complete algorithm is outlined below.

Algorithm 3.10: The active set method.

A feasible point X% must be given. # =" isset where 2% contains indices of
al constraints for which ¢, (x(l)) =0. Thek-thiteration is then as follows:

1. If 0 =0 doesnot solve (3.190) then go to 3.

2. Compute Lagrange multipliers A and solve (3.192). If A 20 then

terminate with X = x®), otherwise remove ¢ from 4.
Solve (3.190) for s,

Solve (3.191) to find ™ and set x*¥ = x) + oMk,
If <1, add p to 7.

Set k=k+1 andgotol.

o Uk w

The initial feasible point can be obtained from any given point x© by
iteratively solving the problem

95



3. Numerical Optimisation 3.10. Penalty Methods

minimise | Z)(q —aiTx)

(3.193)
subject to axzh Oiov®,

where V® is the set of infeasible constraints at x*). Iteration is repeated until x*/
becomes a feasible point. Minimisations are performed as line searches along edges

s =al) where q™ is the index with the least Lagrange multiplier in iteration k.
Each search terminates with a new constraint becoming active!.

So far it was assumed that the Hessian matrix G is positive definite. If G is
indefinite then local solutions exist which are not global. For any local solution the

reduced Hessian matrix Z'GZ is positive semi-definite and this matrix is actually
used when the equality problem is solved. However, when the agorithm proceeds,
not necessarily all constraints that are active in the solution are in the active set.
Therefore problem (3.190) with indefinite reduced Hessian can arise. In this case a

solution of (3.190) " isno longer a minimiser. Any feasible descent direction can

be chosen for s®, for example the negative reduced gradient vector. a™® is then
obtained from

—aTy(K)
i0a, a S(k)

a;rs(k)<0 1

(3.194)

rather than from (3.191). If the above equation does not have a solution (i.e. the
infimum of the right-hand sideis — ), this indicates that the origina QP problem is
unbounded.

3.10 Penalty Methods

Penalty methods® are a traditiona and commonly used approach to
constrained minimisation. The idea of penaty methods is to control constraint
violations by penalizing them. The origina objective function is modified by
addition of penalty terms, which monotonically increase as constraint violations
increase. The sum of the objective function and penalty terms is called the penalty
function. Some parameter is usually associated with penalty terms to control the
amount of the penalty. The minimiser of the objective function is approximated by
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unconstrained minimisers of the penalty function, which should converge to the
constrained minimiser as the control parameter isincreased (Figure 3.13).

c1(X)=0

f(x)

constrained
minimiser @
min. f (w

Figure 3.13: Use of penalty functions. The problem with one equality
constraint is sketched in the first picture. The subsequent pictures show
penalty function contours with increasing parameter ¢ . The minimiser

of the penalty functions approaches the problem solution as o increases,
but also ill-conditioning increases.

The following penalty function can be used for equality constraints:
Ax.0)=f(x)+ 105 (62)= F(x)+ oS o) elx). (3195
’ 2 ; | 2 ;

Parameter o determines the amount of the penalty. A simple penalty algorithm is
outlined below.
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Algorithm 3.11: The penalty agorithm.

1. Choose afixed sequence {0} - o, eg. {1,10,100,1000,.} .

2. Find aloca minimiser x(a(")) of (o(x,a(k)), using a minimiser of the
previous iteration as a starting guess.

3. Terminate if c(x(a("))) is sufficiently small, otherwise go to 2.

The quantities associated with o will be denoted by upper index k, e.g.
x(a(k)): x®)f (x(a("))): f ), etc. The following convergence result holds for such
an algorithm!®':

Theorem 3.14 (penalty function convergence):
Let f(x) be bounded below on anon-empty feasible region and let global
minimisers be evaluated in step 2 of the above algorithm. If o -
monotonically, then {g¥(x®),a®)} {c(")Tc(")} and { 1 ®} are non-decreasing,

c® _ 0 and any accumulation point X of {x*)} solvesthe equality
constrained problem.

The agorithm has some other limiting properties, which enable useful
estimations to be made and are gathered in the theorem below.

Theorem 3.15 (penalty function convergence):

If o® - o, x) - x" and rank A" =m (misthe number of constraints), then
X isaKT point and the following hold:

' =) =g +100W W +0(1/0), (3.197)
h) = —JTk/‘ +olyo), (3.198)

where T isdefined by
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ow" -A"00 OH -T0O
O T O =0 ..t . O (3.199)
A oo T U O

W isthe Hessian matrix of the Lagrangian function and A is the Jacobian matrix of
constraints. Notation a=o(h) - a/h - 0 has been used.

These results enable some enhancements of the algorithm to be made. (3.196)
gives an estimation of the Lagrange multipliers and (3.197) can be used as a better

estimationto f* than ¢ itself. (3.199) can be used to terminate the iteration and to
provide better initial approximations when minimising (o(x,a(k)).

For inequality constraint problems the following penalty function can be
used:

dx,0)= f (x)+%az (min(0,c (X)) (3.200)

il

A disadvantage of this penalty function is the jump discontinuity in second
derivatives where ¢(x)=0. x approaches x* from the infeasible side of the

inequality constraints, therefore algorithms that use such a penalty function are called
exterior point algorithms.

Another class of agorithms for inequality constraints are barrier function
methods. Barrier terms, which are infinite on the constraint boundaries are added to
the penalty function. These algorithms preserve strict constraint feasibility in all
iterations and are therefore called interior point algorithms. Their use is
advantageous when the objective function is not defined in the infeasible region.

Two commonly used barrier functions are the inverse barrier function

@x,r)=f(x)+r ;%X) (3.201)

and the logarithmic barrier function

ox,r)=f(x)-r y In(c (x)). (3.202)

(18]
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A sequence {r(")} — 0 is chosen, which ensures that the barrier terms become more
and more negligible as compared to the objective function, except close to the
constraint boundary. Sequential minimisation of the penalty functions is performed
asin Algorithm 3.11.

Penalty and barrier approaches have a smple extension for problems with
mixed equality and inequality constraints. Mixed penalty terms for equality
constraints and penalty or barrier terms for inequality constraints are added to the
objective function for corresponding constraints 4.

The described algorithms are linearly convergent. A difficulty associated with
the penalty and barrier approach is that when the control parameter o is increased
(or r decreased, respectively), the Hessian of the penalty (or barrier) function
becomes increasingly ill-posed, which is evidently illustrated in Figure 3.13. It is
therefore difficult to find accurate solutions of the subsequent unconstrained
minimisation problems. The additional problem with barrier functionsis that they are
not defined in the infeasible region, which can be difficult to handle for minimisation
algorithms.

3.10.1 Multiplier Penalty Functions

The multiplier penalty functions represent an attempt to use penalty functions
adequately by keeping the control parameter o finite and thus to avoid ill-
conditioning of the penalty function when o islarge. The approach follows from the
idea that the constrained minimiser X can be made an unconstrained minimiser of
@(x,0) by changing the origin of the penalty terms. This leads to the penalty
function

§0(X,9,0'): f(X)+%;Ui((;|(X)_0i)2 =

f (x)+3(clx) - 8] S(c(x)-6)

where 6,00 R" and S=diag(c;) is a diagona matrix with S, =g,, and the
equality constrained problem is considered. The aim of the algorithm is to find the
optimal shift of the origin 8 such that a minimiser of ¢(x,6,0) with respect to

variables x will correspond to the constrained minimiser X .

, (3.203)

Let usintroduce different parameters
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A=60, i=12.,m. (3.204)

If we ignore the term %Zaﬁiz , which is independent of x and therefore does not

affect the minimiser, ¢ becomes
ox,A,0)= f(x)-A"c(x)+2c(x)" Sc(x). (3.205)

Because the above function is obtained from (3.195) by adding a multiplier term
—A'c, it is referred to as the multiplier penalty function'. There exists optimum
values of multipliers A, for which x* minimises ¢(x,A,0). It turns out that these
values are the Lagrange multipliers A™ at the solution, provided that parameters o,
are large enough. An exact formulation of thisis given in the theorem below!¥.

Theorem 3.16:
If second order sufficient conditions for a constrained local minimum hold at x”,
A, then thereexists o' 20 (i.e. ai' >00i) such that forany o >0’ X isan
isolated local minimiser of glx, A", 0),i.e. X' =x().

Illustration of the multiplier penalty function is shown in Figure 3.14. Thisis
done for the same problem as in Figure 3.13, so that the multiplier penalty function
can be compared to the standard penalty function. The optimal value A was used in
the figure and both values of o, were sufficiently large, so that the minimum of the

penalty function corresponds to the solution of the original equality constrained
problem.

The Lagrange multipliers at the solution of the original problem are not

known in advance, therefore a method for generating a sequence A*) - ' must be
incorporated in the algorithm.

! The term augmented Lagrangian function is also used, since the function can be considered as the
Lagrangian function where f is augmented by the term 1¢(x)" Sc(x).
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|0:10|\

Figure 3.14: Multiplier penalty functions for problem illustrated in
Figure 3.13. Minimiser of the multiplier penalty functions corresponds to
the constrained minimiser even for asmaller value o, =1.

To construct such a method it is assumed that the second order sufficient
conditions hold at x* and that components of vector o are sufficiently large.
Consider x being implicitly dependent on A in a way that x(/\) isaminimiser of
¢(x, 7). Since X" =x(A') is by Theorem 3.16 an isolated local minimiser of @x, 1),
x(A) is defined uniquely in some neighbourhood Q, of A". x(A) can be determined
by solving the equations

Og(x,A)=0. (3.206)
Consider the function
wA)=g(x(1),1). (3.207)

Since x(A) isalocal minimum of @(x,A), it follows that

w(A)=dx(2) A< dx' A)=glx A7) =X ), (3.208)

where ¢{x',A)=¢lx", 1) is obtained by using ¢ =0 (feasibility) in (3.205). We
have g(A)<w()'), therefore X' is alocal unconstrained maximiser of (1), and
this is true globally if x(A) is a global minimiser of @(x,A). A sequence A¥ - X
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can be generated by applying an unconstrained minimisation method to —(A), for
which derivatives of ¢ with respect to A are needed.
Derivatives of ¢ with respect to x are obtained from (3.205):
O@x,A,0)=g-AA+ASc (3.209)

and

W, =0%¢(x,A,0)=0%f —;(/h —0,c)0% +ASAT. (3.210)

By the chain rule we have

dy _oy ox , 0¢
dl ox oA oA’

and since dg/0x =0 from (3.206) and 0@/dA, =—c from (3.205), it follows that
0,@A = —c(x(1)). (3.211)

By the chain rule we then have

dA oxoA A
Applying d/dA to (3.206) gives

d(0¢) _o(0¢) ox , 3(0g) _
di  ox oA oA

d(0¢)/ox = 0%p=W, and d(0g)/dA =-A from (3.209), therefore g—j =W,'A and

dc

D2w(A)= o ATW A (3.212)

x(2) "

The sequence AX) X can be obtained by applying Newton’s method from
someinitial estimate A%, which gives
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A1) = jl) ((ATWjA )'lc) , (3.213)

x(10))

which requires second derivatives of f and c. When only first derivatives are
available, a quasi-Newton method can be used to find x(A(")) and the resulting H

matrix can be used to approximate W, * in the above equation, i.e.

o) = p) - ((ATHA)'lc) (3.214)

x()l(k)) ’

An agorithm that uses the derived results is described below.

Algorithm 3.12: The Multiplier penalty algorithm.
.St A=A g=0" k=0 and Hc(o) =,

. Find the minimiser x(A,o) of ¢{x,A,0) and evaluate c=c(x(A,a)).
1 d, >%HC(“)HM then set 0, =100; i :|¢|>2|c| andgoto 2.

. Set k=k+1, W =2, W =0 and c =c.
. Evaluate A% according to (3.214) (where H and A are known from step 2)
and goto 2..

a b~ W DN PP

The am of line 3 in the above algorithm is to achieve linear convergence at
rate 1/4 or better. The required rate of convergence is obtained when parameters o

are sufficiently large. o remains constant then and only the parameters A are
changed.

The multiplier penalty function for the inequality constrained case can be
derived and used in a similar way!%1?.

The use of multiplier penalty methods is a significant improvement as
compared with the traditional penalty methods. High accuracy of the constrained
minimum can be achieved at low values of penalty parameters o . IlI-conditioning of
the minimised penaty function, which is a serious obstacle when using the
traditional penalty approach, is avoided to a great extent. An advantage inherited
from the penalty approach is that any type of existing unconstrained minimisation
techniques can be directly employed in the algorithm. However, the sequential nature
of the penalty approach is less efficient than the more direct approach of the
sequential quadratic programming approach described in the next section.
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3.11Sequential Quadratic Programming

The penalty approach to constrained optimisation is based on definition of a
sequence of unconstrained problems whose solutions converge to the solution of the
original problem. A more direct approach is based on approximations of the
objective and constraint functions. This seems to be a more efficient approach and

[r;lz?ny recent developments in optimisation algorithms are related to this approach!*®"

Consider first the equality constrained problem. A system (3.132) is a
stationary point condition for a local solution x* and Lagrange multipliers in the

solution A". By applying Newton’s method to solve this stationary point problem the
following iteration is obtained:

kO
022 witey Sapach (3.215)

where 0°Z is the matrix of second derivatives of the Lagrangian functions with
respect to variables x,A and O, is defined by (3.133). The resulting method is

referred to as the Lagrange-Newton method when applied to the solution of an
equality constrained problem.

Expressions for the first and second order derivatives are obtained from
(3.131). By taking into account these expressions, (3.215) becomes

owl  —AWOExg G-gW+AKNKND
0 =0 4w D (3.216)
T A 0 g0 g ¢ O

AW is the Jacobian matrix of constraints evaluated at x*) and W) =0 2(x®) )
isthe Hessian matrix of the Lagrangian function with respect to variables x, i.e.

w =02f (x)- 5 A"'0% (x¥). (3.217)

ILE

The system (3.216) can be rearranged to be solved for A« = 0 +3)
instead of A . If wewrite 0% = & , the system becomes
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ow® Wowo G-glo
3.218
%—A(")T 0 Dgﬂ% Ooo B (3.218)

Solution of the system gives A**? and 3*), while x*V is obtained by

x4 = () 4 5 (3.219)

Similarly as in the case of the Newton Method for unconstrained problems,
the system of equations in the Lagrange-Newton iteration can be considered as a
solution of aminimisation problem. Consider the problem

minimize q¥(3)= %JTW(“)J +g¥Tg+ f®
(3.220)
subject to 10(5) =AW 5+ =0,

This can be considered as an approximation of the original problem where the
objective function is approximated by the second order Taylor approximation with
the addition of constraint curvature terms in the Hessian, and constraints are

approximated by the first order Taylor approximation about x*). The problem can be
solved sequentially, which results in the sequential quadratic programming method
summarised below:

Algorithm 3.13: Sequential quadratic programming.
For k=12, ...
1. Solve (3.220) for ™). Set A**) to the vector of Lagrange multipliers of the
linear constraints.
2. Set x4 =x) 4 5.

The first order conditions O£ = Ofor this problem give (3.218), therefore the
solution 6®) of the system (3.218) is a stationary point of the Lagrangian function of
the problem (3.220). Following the discussion in section 3.9.1, the second order
sufficient conditions for (3.220) are that the reduced Hessian matrix %" w®z® js

positive definite. If thisis true, then ok minimises (3.220). It follows that if unique
minimisers exist in Algorithm 3.13 for each k, then the iteration sequence is identical
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to that given by the Lagrange-Newton method (3.218) and (3.219). The Lagrange-
Newton method can converge to a KT point which is not a minimiser, therefore the
sequential quadratic programming algorithm is preferred.

The agorithm can be generalised for solving inequality constrained
problems. In this case the subproblem
minimize q¥(s)= %JTW(“)J +g¥Tg+ f®
(3.221)
subject to 1K(5) =AW 5+ > 0.
is solved instead of (3.220).

The Lagrange-Newton and SQP algorithms have good local convergence
properties stated in the following theorem!™:

Theorem 3.17:

If x¥ issufficiently closeto X, if the Lagrangian matrix

ow® —al@Q
Dzz;(l)=DW(1)T N
TA 0 O

is non-singular and if second order sufficient conditionshold at x , A" with
rank A" =m (where m isthe number of constraints), then the Lagrange-

Newton iteration converges with second order. If A s such that (3.220) is
solved uniquely by o | then the same is true for the SQP method.

The Hessian matrix of the Lagrangian function W is required in the SQP
method. It is possible to approximate W by using updating formulag™*® analogous

to those in quasi-Newton methods. For example, a matrix B that approximates
W& can be updated according to the DFP or BFGS formula, but with

P =0z (x6, 206) - O g (x ), A6D), (3.222)

The resulting algorithms are superlinearly convergent.
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The main difficulty of the SQP algorithm as stated above is lack of global
convergence properties. The algorithm can fail to converge remote from the solution
and it is possible that in some iteration the solution of the subproblem (3.220) or
(3.221) does not even exist. The reason for this is essentialy the same as for any
method which constructs estimates purely on the basis of some simplified models (as
for example Newton’s method for unconstrained minimisation), i.e. the model isin
general adequate only in a limited region which does not necessarily contain the
problem solution.

While the line search strategy is a common approach to ensure global
convergence of the unconstrained minimisation algorithms, this approach is less
applicable in the direct methods for constrained minimisation (except those which
solve a sequence of unconstrained subproblems). The reason for this is that
especialy when non-linear equality constraints are present, any straight line from the
current iterate will typically have only one feasible point, which makes use of the
line search in a standard way impossible.

The other approach for inducing global convergence is the trust region
approach. By adding a step length restriction |J] < h*) to (3.220) or (3.221) the

possibility of an unbounded correction is removed. The difficulty is that if x* is

infeasible and h™ is suffici ently small, then the resulting subproblem may not have
any feasible points. Another way to ensure that the resulting subproblem is not

unbounded is to add the Levenberg-Marquardt term vI to w®  tis possible to
make W® positive definite by sufficiently increasing the parameter v 4.

A way of avoiding the difficulties with step length restriction is use of the L,
exact penalty functiont®™ in conjunction with the SQP method. An exact penalty
function is a penalty function whose unconstrained local minima correspond to
constrained local minima of the original problem. The L, exact penalty function for a

general constrained problem is given by
ox)=v f(x)+ ; . (x) + g max(0,—¢, (x)). (3.223)

Where v is a control parameter that weights the relative contribution of f(x) and
the penalty terms. If & are linearly independent, if v <1/|A|, andif x satisfiesthe

second order sufficient conditions for the original problem, then x is a local
minimiser of (3.223) and can be obtained by a single unconstrained minimisation.
The disadvantage of such a penalty function is that it has discontinuous first
derivatives on the border of the feasible region (Figure 3.15), which requires the use
of special techniques for non-smooth minimisation.

108



3. Numerical Optimisation 3.11. Sequential Quadratic Programming

Figure3.15: L, exact penalty functions for problem illustrated in
Figure 3.13.

For use with the SQP method, approximations (3.220) and (3.221) are
substituted in (3.223) and the step restriction (in L, norm) is added, which yields the
subproblem

minimize ¢/(6)=v q*(5)+ > 109(3) + )3 max(0,-1%(5))

(3.224)
subject to 3] <h®

This is an example of a so called L1;QP problem, for which effective algorithms
existt¥. Algorithm 3.13 that solves the subproblem (3.224) is consequently referred
to as the SL;QP agorithm.

The difficulties with an infeasible subproblem when using the step restriction

are avoided by using the exact penalty function. The radius of the trust region h*) is
adjusted adaptively in asimilar way as in restricted step algorithms for unconstrained
minimisation.

Most of the difficulties related to use of the L;QP subproblem arise from lack
of smoothness. The derivative discontinuities give rise to grooves in the penalty
surface, which can be difficult to follow by an algorithm. Another problem related to

derivative discontinuities is the Maratos effect!™?!, in which although x*), ¥} may
be arbitrarily close to the solution, the SL1QP method fails to reduce the L; exact
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penalty function. To avoid the effect, the step 3" must be recalculated after maki ng
the correction for the higher order errors that arise.

The SQP method and its variants seem to be among the most promising methods for
solving general nonlinear problems. A variant of the method developed by A. Tits,
E.R. Panier, J. Zhou and C. Lawrencé®®!® s built in the optimisation shell
described in the next chapter.

3.12 Further Remarks

In the present chapter some of the basis of nonlinear programming is
outlined. This knowledge is important for understanding the practical requirements
for implementation of the algorithmic part in the optimisation shell. The literature
cited in this chapter is mostly related to the mathematica and algorithmic
background of optimisation and less to practical implementation (except references
[3], [8] and [26]). Some implementation aspects are stressed in the next chapter
within a larger framework of the optimisation shell. The need for hierarchical and
modular implementation, which is stated there, is partialy based on the heterogeneity
of optimisation algorithms evident from the present chapter.

In practice it is not always obvious which algorithm to use in a given
situation. This depends first of all on the case being solved. Although the theory can
offer substantial support for making the judgment, most of the literature on
optimisation methods recognize the significance of numerical experimentation
alongside the theoretical development. This implies a significant aspect that was
borne in mind during development of the optimisation shell. The shell should not
only include a certain number of algorithms, but also provide an open framework for
incorporation of new algorithms and testing them on simple model functions as well
as on practical problems.

Many issues important for engineering practice were not taken into account.
One of them is handling multiple conflicting optimisation criteria, i.e. solving the
problem stated as

minimise [£.(x), £,(x), ..., f,.(x]]

(3.225)
subject to xdQ.

A common approach isto weight the individual criteria, which leads to the problem
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minimise f(x)=w,f (x)+w, f,(x)+...+w,_f ()

(3.226)
subject to xdQ,
where w,, ..., w,, are positive weighting coefficients. The problem which arises is

how to choose these coefficients. The choice is made either on the basis of
experience or in an iterative process where optimisation is performed severa times
and coefficients are varied on the basis of the optimisation results.

Sometimes it is more convenient to designate one criterion as a primary
objective and to constrain the magnitude of the others, e.g. in the following way:

minimise f,(x)
subject to f,(x)<C,,
(3.227)
f (x)<C,,
xQ.

This approach suffers for a similar defect as weighting criteria, i.e. the solution
depends on the choice of coefficients C,, ..., C,. Attempts to overcome this

problem lead to consideration of Pareto optimality!®*¥ and solution of the min-max
problem{% 2%,

Another important practical issue is optimisation in the presence of numerical
noise. Most of the methods considered in this chapter are designed on the basis of
certain continuity assumptions and do not perform well if the objective and
constraint functions contain a considerable amount of noise. This can often not be
avoided due to complexity of the applied numerical models and their discrete nature
(e.g. adaptive mesh refinement in the finite element simulations).

A promising approach to optimisation in the presence of noise incorporates
approximation techniques™®®. |n this approach successive low order
approximations of the objective and constraint functions are made locally on the
basis of sampled function values and/or derivatives. This leads to a sequence of
approximate optimisation subproblems. They refer to minimisation of the
approximate objective functions subject to the approximate constraints and to
additional step restriction, which restricts the solution of the subproblem to the
region where the approximate functions are adequate. The subproblems are solved by
standard nonlinear programming methods. For approximations more data is usually
sampled than the minimum amount necessary for determination of the coefficients of
the approximate functions, which levels out the effect of noise. A suitable strategy
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must be defined for choosing the limits of the search region and for the choice of
sampling points used for approximations (i.e. the plan of experiments)™.

A common feature of al methods mentioned in this chapter is that they at
best find a local solution of the optimisation problem. There are also methods which
can (with a certain probability) find the global solution or more than one local
solution at once. The most commonly used are simulated annealing®®®4 and
genetic algorithms™1*¥, Most of these methods are based on statistical search, which
means that they require a large number of function evaluations in order to accurately
locate the solution. This makes them less convenient for use in conjunction with
expensive numerical simulations, except in cases where global solutions are highly
desirable. Use of these techniques can also be suitable for finding global solutions of
certain optimisation problems which arise as sub-problems in optimisation
algorithms and in which the objective and constraint functions are not defined
implicitly through anumerical simulation.
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4 OPTIMISATION SHELL “INVERSE”

4.1 Aimsand Basic Structure of the Shdll

41.1 Basic |deas

As mentioned in the introductory part, the main purpose of the optimisation
shell “Inverse” isto utilize afinite element method based simulation code for solving
inverse and optimisation problems. The philosophy of the shell1® follows the idea
that two naturally distinct parts can be recognized in the solution scheme of
optimisation problems (Figure 4.1).

One part of the solution procedure is the solution of a direct problem at given
optimisation parameters. This comprises numerical solution of the equations that
govern the system of interest. In the scope of this work, this is performed by a finite
element simulation, referenced in chapter 2 and schematically shown in a dashed
frame on the right-hand side of Figure 4.1.

It is regarded that when a set of optimisation parameters is given, the system
is completely determined in the sense that any quantity required by the optimisation
algorithm can be evaluated. This usualy refers to the value of the objective and
constrained function and possibly their derivatives for a given set of parameters.
Evaluation of these quantities is referred to as direct analysis™ and is shown in the
larger dashed framein Figure 4.1.

The notion of direct analysisis not used in auniform way in the literature. Some authors use this term
to denote merely the numerical simulation and sometimes the term is not defined strictly. In the
present work the term “direct analysis’ refers strictly to evaluation of the relevant quantities (e.g. the
value of the objective and constraint functions) at a given set of optimisation parameters and includes
all tasks that are performed as a part of this evauation.
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Figure4.1: Typical solution scheme for an optimisation problem.

In order to utilise an existing simulation environment for solution of inverse
and optimisation problems, the optimisation shell performs tasks on the left-hand
side of Figure 4.1. Taking into consideration merely the solution scheme as shown in
this figure, these tasks can be further divided into two parts. The part not included in
the larger frame obviously represents an optimisation algorithm in its most basic
sense (i.e. as was treated in the previous chapter). The part included in the frame
represents those tasks of the direct analysis that are not performed by the simulation
environment. This part can be viewed as an interface between the optimisation
algorithm and the simulation.

The above discussion indicates that two basic elements of an optimisation
system, i.e. optimisation agorithms and simulation tools, can be implemented as
physically separate parts. This is one of the key ideas followed by the present work
and is clearly reflected in separate and independent treatment in chapters 2 and 3. It
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must be emphasised that the above statements do not exclude dependency between
optimisation algorithms and solution agorithms for the direct problem applied in
gpecific cases. It is evident that close correlation between different numerical
algorithms applied in the solution scheme of a specific problem is not excluded and
was actually stressed at the end of the previous chapter. For example, whether
analytical derivatives are provided by the ssmulation module or not usually plays a
crucia role in defining the optimisation algorithm whose use will result in the most
effective overall solution of the problem. This however does not affect physically
separate treatment or implementation of either algorithm.

The scheme in Figure 4.1 is restricted to a solution process of a specific
problem. When an optimisation system is treated, it is also important how the
problem is defined and which solution strategies can be applied by using the system.
In this respect it is significant to consider individual tools and agorithms
implemented within the system, operational relations and interfaces between the
parts of the system, which enable synchronous function, and finaly the user
interface.

Figure 4.2 outlines the operation of the presented optimisation system. It
consists of the optimisation shell and the finite element simulation environment. In
the solution scheme, the shell performs the tasks on the left-hand side of Figure 4.1,
while the simulation environment is employed in solution of the direct problem,
which corresponds to the tasks shown in the right-hand side of the figure.

The direct problem solved within the optimisation loop is determined by the
values of the optimisation parameters. The problem is determined when boundary
conditions, geometry, constitutive relations, etc. are known. These represent input
data for numerical simulation. A transformation between optimisation parameters
and the input data must therefore be defined. This transformation is referred to as
parametrisation and is shown in Figure 4.1 as the first task of a direct analysis. This
task istypically performed by the shell.

Optimisation parameters usually affect only a part of the simulation input
data’. It is therefore advantageous to prepare a skeleton of the direct problem in
advance and use it as atemplate for parametrisation. Most conveniently this skeleton
is a definition of a direct problem at a specific set of optimisation parameters. It is
usually created using pre-processing facilities of the simulation environment as
shown in Figure 4.2.

The optimisation shell changes the affected input data according to the values
of optimisation parameters. In the figure, this is done by updating the simulation
input file, but can also be done directly by manipulating the data structure of the

1 In this respect we talk more specifically about parametrisation of individual components, e.g.
parametrisation of shape (or domain), parametrisation of material models, etc.
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simulation programme, provided that the shell and the ssimulation unit can share data
structures in the memory. After the simulation is performed, the shell reads the
results and evaluates the quantities required by the optimisation algorithm. The shell
must therefore be able to access the necessary simulation results. In the figure, results
are accessed through the simulation output file, but a direct access can also be
implemented.

Check results
Define th
Shell command file El‘ Shell output file EI Delinethe
the problem
Interpret
comr?mnd Output FEM System
file results :
FEM pre-
pprocessor -

!

Update parameters
FEM input file EI
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programme

$

Read analysis results .
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Figure 4.2: Operation scheme of the optimisation system.

Changing input data for numerical simulation, running the simulation and
reading its results are performed by interface utilities of the shell. These are direct
analysis tasks performed by the shell and are shown within the left-hand side of the
larger frame in Figure 4.1. The shell can also perform a certain amount of processing
of simulation results. It is not strictly defined which parametrisation and result
processing tasks are performed by the shell and which by the simulation
environment. This depends mostly on the capabilities of the simulation pre- and post-
processing modules. The shell should permit employment of available capabilitiesin
the simulation environment if these are convenient for performing the relevant tasks.

The optimisation shell includes implementation of various optimisation
algorithms and other tools which can serve in the solution of optimisation problems.
These tools are accessible through the shell user interface, which is separated from
the user interface of the simulation environment. The current user interface is
implemented through the shell input file in which the user defines the problem, and
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the shell output file, where the shell writes its results (Figure 4.2). Unlike traditional
simulation input files, which consist of various sets of data written in some
prescribed format, the shell input file consists of commands that are interpreted by its
built-in interpreter. It is therefore commonly referred to as the shell command file.

4.1.2 Requirements Taken into Consideration

Before continuing with description of the optimisation shell, it is appropriate
to mention some requirements which affect its design™ 131", These requirements
will be referenced later in the text in order to justify certain design aspects.

The basic demand for a good optimisation system is flexibility. It must be
possible to apply the system to a large variety of problems that can possibly appear.
This concerns definition of the problem itself as well as definition of the solution
strategy. On one hand this flexibility is determined by the set of tools for solution of
different subproblems, which are offered by the system. On the other hand the
conceptual structure of the system should not impose any fundamental restrictions on
the way how different tools can be combined to solve complex problems.

Somehow conflicting with flexibility is the demand for simplicity of use.
Logical structure of the system is a prerequisite for avoiding conflicts induced by
these two demands. A system is easy to be applied for certain types of problems if
the user is required to provide only that information necessary to define the particular
problem and if the requirements are set by the system in a clear way. It is obvious
that this can be achieved only on a case to case basis, so that all particularities can be
taken into account. The system must be structured hierarchically, so that high level
easy-to-use tools for particular problems can be implemented by templates built on
the lower-level basis. These tools can introduce additional concepts, but these should
apply localy and should not affect the underlying system, which can be still applied
independently and should retain generality.

A group of requirements is related to the economy of the system
development. This essentially means the ability of achieving the best possible effect
with limited development resources. The effect is measured in terms of applicability
of the system to various problems the potential user can be faced with and in terms of
effort needed for problem definition and computer time needed for problem solution.
Beside logical structure of the system, economy of development is mostly related to
its portability, modularity and openness.

Portability means that the system can be easily transferred from one
computational platform to another. A portable system can be developed in any
homogeneous or heterogeneous computer environment so that its transfer to a
different environment requires minimal additional development effort. It is most
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easily achieved by using portable development tools. Due to portability reasons most
of the system was developed in ANSI C*?? Compilers based on the ANSI C
standard are available on most existing computer architectures and are usually
implemented in a strict enough manner that it is possible to transfer programmes
between different platforms without maor modifications. Use of non-standard
libraries has been avoided as much as possible in the shell development. Where
system dependent details could not be completely avoided, they were captured in
isolated and clearly distinguished locations which are easy to identify and modify
when transfer to a new platform is performed. One of the development principles that
were taken into account is also that turning off system dependent details should
affect as little functionality as possible. In this way detrimental effects of non-
standard behaviour of any system part can usually be avoided to a great extent.

The modular structure of the system aso has beneficial effect on economy of
development. In a modular system, tools that constitute its functionality are
implemented in separate units. Development of these units must be as independent as
possible, so that development and change of specific tools does not affect and is not
affected by existent structure and functionality. Modularity is best achieved by
imposing a limited number of clear genera rules on the system and providing a
simple implementation interface for development of new modules. This interface
must be such that it does not restrict the range of tools which can potentially be
added to the system. It must be possible to apply this interface to existing general
tools which were not primarily developed to be included in the system. Optimisation
algorithms provide a good example of these principles. The main concern of an
optimisation algorithm is to effectively locate a constrained local minimiser to a
given accuracy, i. e. with as few function evaluations and housekeeping operations as
possible. If the algorithm is used as a part of a complex optimisation system, a
number of additional implementation details must be solved such as interaction with
the simulation environment. However, this should not affect development of the
algorithm itself, because the am of the algorithm remains the same. Additional
requirements such as interaction with simulation environments must be overcome by
the implementation interface, which is used at the final stage when the already
implemented algorithm is built into the system.

Openness of the system includes two aspects. The first aspect regards the
definition of the problem. In this respect openness means that the user can easily
access various built-in utilities and employ external programmes using the available
interfacing utilities when defining a solution strategy for the problem to be solved.
This has strong impact on the flexibility of the system. The development aspect of
openness means that existing functionality can be directly employed when
developing additional tools in the system. The shell can therefore be easily integrated
with other programmes and different modules can be developed independently and
merged together. This facilitates development of higher level and more case specific
tools on the basis of lower-level utilities. Openness of the system is to a large extent
conditional on its modularity.
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4.1.3 Operation Synopsis

The optimisation shell “Inverse” operates on the basis of an input (or
command) file, in which the user defines what the shell should do. The problem to be
solved is not defined in a descriptive way as is usualy the case with simulation
programmes, but as a set of instructions for the shell, which ensures sufficient
flexibility of the user interface!®°.

Figure 4.3 shows how parts of the optimisation system interact in the solution
procedure. Any action of the optimisation shell is triggered by the corresponding
command in the command file. The shell file interpreter'™ reads commands one by
one and runs internal interpreter functions that correspond to them. The built-in
optimisation algorithms and other utilities such as mathematical tools (function
approximation, matrix operations etc.) or interfacing with the simulation, are
accessed through the interpreter functions. Each command in the command file has
its own argument block through which arguments can be passed to corresponding
functions. The argument block is enclosed in curly brackets that follow the
command.

The shell includes a general built-in function that performs the direct analysis
(Figure 4.3). Optimisation algorithms and some other utilities such as tabulating
functions call this function for evaluation of necessary quantities such as values of
the objective and constraint functions. Actually there is an additiona interface
function between this function and any calling algorithm (not shown in the figure).
This function covers specificity of the algorithm regarding input and output of the
direct analysis. This includes formats of function arguments prescribed by the
specific algorithm. It also concerns the fact that different algorithms require different
datato be evaluated, e.g. some of them require derivatives and the others do not.

The general analysis function runs interpretation of a specific block in the
shell command file, referred to as the analysis block. This block is so interpreted
every time the direct analysisis performed and is therefore used for user definition of
the direct analysis. Since the complete interface with the simulation environment is
accessible through interpreter commands, the user can precisely define how the
numerical ssimulation at specific values of optimisation parameters is performed and
how data is transferred between the shell and simulation environment. The analysis
block is physically an argument block of the analysis command. When this command
is encountered by the interpreter, the position of its argument block is stored so that
the block can be interpreted any time by the general analysis function.

There must exist a data link for transferring input and output parameters of
the direct analysis between the calling algorithm and user definition in the analysis
block. The data is passed through function arguments between the algorithm and the
direct analysis function called by that agorithm. The data link between this function
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and user definition is established through pre-defined variables. These variables
uniquely define the place where particular input and output data of the direct analysis
is stored. The internal analysis functions automatically update input data obtained by
the algorithm (e.g. values of optimisation parameters) on the appropriate pre-defined
location. After interpretation of the analysis block it retrieves the data to be returned
to the calling algorithm (e.g. values of the objective and constraint functions) from
the locations defined for this purpose. The user can access these locations through
interpreter functions for accessing variables. The user must ensure in the analysis
definition that analysis results are correctly evaluated and stored to the appropriate
locations, where they can be retrieved by the analysis function and returned to the
algorithm!®®.

Optimization Shell |Function for direct analysis
(evaluation of objectiveand
constraint functions, etc.)

Algorithms
-
Tabulati
utﬁiﬁ(;]g 4 User interface
nterpreter)

Optimization
algorithms

Interfaceto
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programme

exchange
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programme

Figure 4.3: Structure and operation of the optimisation shell.

Beside interpreter commands for accessing various built-in tools, there are
also commands for controlling the flow of interpretation, such as branching and
looping commands, for example. Programming capabilities of the interpreter are
supplemented by a system of user-defined variables*”? and a system for evaluation of
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mathematical expressions®. The shell can therefore be programmed in a way that
resembles a high level programming language'.

The shell design allows the user to interact with the solution process at
several levels. All tools and algorithms provided by the shell are run from the
command file. Their output results can be stored in user-defined variables, and so
used as input for other built-in algorithms. The available utilities can therefore be
easily combined as necessary when applied to the solution of more complex
problems. This feature is further enhanced by programming capabilities of the
interpreter, which makes the shell very flexible and applicable to a large variety of
problems.

At first sight the consequence of such a flexible user interface implemented
through the interpreter is that the optimisation system can not be made easy to use. It
might seem that solution of any optimisation problem requires detailed programming
of the solution process, which isonly assisted by built-in utilities.

Thisisnot an entirely correct impression. For any set of similar problemsit is
possible to implement a high level interface in such a way that definition of the
problem and the solution procedure require a minimum amount of user interference.
Such an interface can be built by templates written for the shell interpreter. User
interaction can be reduced merely to insertion of input data, which can eventually be
assisted by an external user interface.

Such high level interfaces inevitably restrict the range of problems that can be
solved by the system. Their use is adequate when the optimisation system is used for
highly specialised purposes. Another way of making the system easier to use is to
introduce high level functions that perform complex tasks or combination of groups
of tasks, which appear steadily in alarger group of related problems. This can result
in a hierarchical structure of utilities where the user can decide which level to use.
High level tools make the use of the system easier without imposing a priori
restrictions on flexibility. New higher level commands can be created by
combination of existing lower level utilities using the shell interpreter. In this way
interventions in the shell source code are avoided, which reduces the level of skill
necessary for implementation of such tasks.

By implementation of hierarchically structured sets of lower and higher level
commands, the two fundamentally conflicting demands for flexibility and simplicity
of use can be compromised. Currently the most urgent problem with the shell is that
many necessary sets of high level specialised commands are not as yet implemented,
which is especially expressive at interfacing the simulation environments.

! In this respect file interpreter commands are also referred to as functions. This is sometimes better to
be avoided in order to avoid ambiguity and confusion of interpreter commands and internal functions
of which the shell consists.

124



4. Optimisation Shell “Inverse” 4.2. Function of the Shell

4.2 Function of the Shell

The discussion in the previous sections was centered around the basic
concepts of the shell. In order to make these things less abstract, a few more details
regarding the shell function are given in the present section. Some details will be
cleared from the user point of view. The intention of this section is however not to
serve as a user reference, but merely to give more insight into how previously
described concepts are reflected when the shell is applied to the solution of problems.
Detailed reference of the existing functionality of the shell exist in the form of
manuals available on the Internet! 4124122

421 BasicFilelnterpreter Syntax

The basic file interpreter syntax is simple:

conmandl { argunents } command2 { argunents } ...

When a shell command file is interpreted, the interpreter simply searches for
commands, locates their argument blocks and passes control to the appropriate
functions that are in charge of execution. For each interpreter command there exists
an appropriate function installed in the file interpreter system. These functions are
usually just an interface between commands in the command file and those functions
which realy do the job, and are referred to as interpreter functions in this text.
Interpreter functions take care of the correct transfer of arguments from the argument
block in the command file and for imposing additional syntax and other rules
imposed by the optimisation shell. Such two stage arrangement makes it possible to
easily incorporate functions and modules that were not primarily developed for use
in the shell. Separation of the concepts imposed by the shell and those implied by a
specifically incorporated function or module is achieved in this way. The two stage
calling arrangement is evident from Figure 4.3.

Thefile interpreter is supported by the system for evaluation of mathematical
expressions or expression evaluator. This is an independent system of the shell. Its
capabilities are accessed by the file interpreter functions for treatment of their
arguments. The basic functionality offered by the expression evaluator is evaluation
of mathematical expression with the ability of defining new variables and functions.
For the interpreter itself the most important use of the expression evaluator is
evaluation of conditions in branching and looping commands. This enables the
interpreter to be used as a programming language.

Control of the interpretation flow!*3!™¥ js implemented through branching and
looping interpreter commands and through the function definition utility. All related
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functionality is treated as a part of the file interpreter. The syntax of these utilitiesis
described below.

The if command interprets a block of code in the basis of the value of a
condition. Its syntax is the following:

if { (condition) [ blockl ] else [ block 2] }

If the condition in round brackets is true (that is non-zero), then the block of
code blockl is interpreted, otherwise the block block2 is interpreted. The condition is
evaluated by the expression evaluator.

The while commands repeatedly interprets a block of code. The block is
being interpreted as long as the condition remains satisfied (i.e. the value of the
condition expression is non-zero). The syntax is the following:

while { ( condition ) [ block ] }

The condition in the round bracket is evaluated by the expression evaluator in
each iteration of the loop before the code block in square brackets is interpreted. The
first evaluation of the condition expression as zero causes exit of the loop and
interpretation is continued after the while command argument block. Typicaly the
code block contains commands that affect the value of the condition expression, so
that after a certain number of iterations the value of the expression becomes zero and
the loop exits.

Similar to the while command is the do command, except that the condition
expression is evaluated after interpretation of the code block and therefore the block
isinterpreted at least once. Its syntax is the following:

do { [ block ] while (condition) }

Beside standard branching and looping commands, the ability of defining
new interpreter commands is relevant. This is referred to as the function definition
utility and is also implemented through an interpreter command. This utility enables
implementation of commands that perform combined tasks by employing existing
commands. Higher level commands can therefore be implemented without
interference in the shell source code. Commands defined by the function definition
utility behave in asimilar manner to the built-in commands.

New interpreter commands are defined by using the function command. Its
syntax is the following:

function { funcnanme ( argl arg2 ...) [ defblock ] }
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funcname is the name of the new function, argl, arg2, etc. are names of
function arguments, and defblock is the definition block of the new command. The
function command makes the interpreter install a new command, which includes
storage of the function argument list and position of the definition block. When the
newly defined command is encountered later during interpretation, its definition
block isinterpreted. Occurrences of arguments in the definition block are replaced by
actual arguments prior to interpretation. The replacement is made on a string basis,
so that the meaning of arguments is not prescribed by the definition of the new
function'™. In the definition block, the arguments must be marked by argument
names preceeded by the hash sign (‘#). The interpreter can in this way recognise
occurrences of arguments and replace them by actual arguments stated in the
argument block of the called command.

A clear example™ of how the function definition utility can be used is given
by the implementation of the for loop through the interpreter. This can be done in the
following way™:

1. function { for ( begin condition end body )
2. [

3. #begin

4. while { ( #condition )

5. [

6. #body

7. #end

8. 11}

9.1}

The function requires four arguments. begin is the code block interpreted
before the loop is entered. condition is the looping condition that is checked before
every iteration of the loop. It must be an expression that can be evaluated in the
expression evaluator. body is the code segment that is interpreted in the loop, and end
is the code segment that is interpreted after the loop. Using the newly defined
function for, the following code will print numbers from 1 to 5 to the standard
output:

for { ={i:1} i <=5 ={i:i+1}
{ wite { & “\n" } }

When the interpreter encounters the command for, it replaces formal
arguments in the definition block (lines 2 to 8 in the definition segment of the code)
with actual arguments and interprets the definition block. The resulting code that is
actually interpreted is then as follows:

Line numbers simply enable referencing portions of code. In the command file lines are not
numbered.
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={i: 1}

while { ( i<=5)

[
wite { $i “\n” }
={i:i+1}

1}

4.2.2  Expression Evaluator

The expression evaluator (succinctly referred to as the calculator)™® is an
independent shell module. Support to control of the interpretation flow is one of its
basic tasks, therefore the interpreter and the expression evauator are inseparably
connected.

The calculator contains a set of built-in mathematical functions and operators,
which can be arbitrarily combined with variables and numbers to form expressions.
The calculator system currently supports only scalar variables. The syntax for
forming mathematical expressionsis standard and is described in detail in [16].

The file interpreter commands = and $ serve for user interaction with the
expression evaluator.

The syntax of the = command is the following:

= { varnane: expression }

The expression is first evaluated by the calculator and its value is assigned to the
calculator variable named varname.

The $ commands calculator variables and functions in terms of expressions.
Definition of avariable has the following syntax:

$ { varname : expression }

The expression is not evaluated at execution of this command. It is assigned to the
variable as an expression that defines how the value of the variable is calculated. If
the value of any part of the defining expression is changed, this affects the value of
the variable. It is not even necessary that al calculator variables and functions that
appear in the expression are defined at the time the $ command is interpreted. The
value of the variable becomes defined as soon as al variables and functions
appearing in the expression are defined.

Definition of new expression evaluator functions have the following syntax:
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${ funcname[ argl, arg2, ... ] : expression }

The defining expression contains formal arguments argl, arg2. After the definition,
the function can be used in the same way as built-in expression evaluator functions.
Function evaluation consists of evaluation of the defining expression after
replacement of formal arguments by the values of actual arguments.

The definition of new calculator functions may, as definition of variables,
include variables and functions that are not yet defined. The use of functions = and $
isillustrated by the following example:

1. ${ a: cubesunib,c] }

2. ${cubesun x,y]: (x+y)"~3 }
3.5 b 1}

4. ={ c: 2}

5. wite { $%a }

The first line defines a new calculator variable a as cubesum[ b,c] . Neither the
variables b and ¢ nor the function cubesum are defined at the point of execution of
this line. The function of two variables cubesum is defined in line 2 as the third
power of the sum of its arguments. In line 3 the variable b is defined and assigned the
value 1, and in line 4 the variable c is defined and assigned the value 2. The value of
the variable a is defined after this because the values of al terms of its defining
expression are defined. The last line writes the value of the expression evaluator

variable a, which is cubesum(b,c) = (b+c)’ = (1+2)° =27.

New expression evaluator functions can also be defined using the interpreter
by the definefunction command™ with the following syntax:

definefunction { funcnane [defblock] }

Evaluation of a function defined in this way includes interpretation of its definition
block defblock. Additional calculator and interpreter functions, which can be used in
the definition block, facilitate definition of how the function is evaluated. The file
interpreter function return is used for fina specification of the value which the
function evaluates. Its syntax is

return { expression }

The function defined by the definefunction command is evaluated to the value of the
expression given at interpretation of the return command in the function definition
block.
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The function definition is also facilitated by two pre-defined expression
evaluator functions. numargs is evaluated to the number of actual arguments passed
at function evaluation while argument is evaluated to values of specific arguments
that are passed.

Use of the definefunction can be illustrated by the following example, where
an expression evauator function Sumation, which evauates to the sum of its
arguments, is defined*¥:

definefunction { Sumation

[

={retsum 0}
={i ndsum 1}
while { (indsum<=nurmargs|[ ])}

={retsum retsumrargumnent[indsum }
={i ndsum indsuml }

11}

return{retsumn

11}

Beside evaluation of condition expressions in branching and looping
interpreter commands, the expression evaluator can be used for evaluation of
numerical arguments of file interpreter commands. Any numerical argument can be
given, stated either in the direct form by specifying its value, or by an expression
evaluator variablein the form

$ var name

or by amathematical expression of the form
$ { expression }

The interpreter function that corresponds to the command called by such arguments,
use the expression evaluators to evaluate the appropriate values that replace variables
or expressions before arguments are used.

4.2.3 User Defined Variables

The shell uses a system of user defined variables (also referred to as shell
variables) for data storage. Individual algorithms and other utilities usually have their
own local data storage, but input and output data of built-in utilities should be
transferable to or from the system of user defined variables. In this way results of any
algorithm can be used in other algorithms. Since running of any algorithm or utility
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as well as access to user variables is arranged through a common user interface (i.e.
the command file interpreter), the necessary data transfer between different utilities
iseasily achieved.

The system of user-defined variables is considered as an individual module of
the shell, which provides data storage and transfer services. These services are
accessible through special interpreter and calculator commands for manipulating
variables and through the possibility of using variables of various types as input
arguments of interpreter commands. It must be noted that the calculator variables are
a part of a separate system and are not treated as shell variables. Transfer between
both systems is completely supported and in some cases calculator variables are used
for the same purpose as the user-defined variables.

The shell variables hold objects (elements) of different types: options,
counters, scalars, vectors, matrices, strings and files. Each variable can hold a
multidimensional table of elements of a specific type (Figure 4.4). The number of
dimensions of thistableisreferred to as the rank of the variable.

Element sub-table m[3
Matrix _&_

variable m
m[3,1,1]| m[3,1,2]| m[3,1,3]

mi222| |mza2| 23
V- T 4 323]

4

]

mi11| fa2| fmizaa

——

223

mz2) 221 23

Element sub-
table m[1,2]
atrix element m[1,2,2]
getmatrix[“m”,2,1,1,2,2]| | 1.1 | 1.2 | 13
—= 21| 22 ] 23

Figure 4.4: Example of amatrix variable that holdsa 3x2x3-
dimensional table of 2 by 3 matrices.

For each type of variable there is a set of interpreter and expression evaluator
functions for their manipulation, i.e. creation, initialisation, copying, moving, etc.
The following example shows how to create a matrix variable as shown in Figure
4.4.
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newnatrix { m[ 32 3] }
setmatrix { m[ 1 2 2]
23{ {1 1.11.21.3}{ 2 212223} }

The newmatrix command creates a matrix variable with a 3x2x3 - dimensional
table of elements, each of which is a matrix. Indices in square brackets specify
dimensions of the variable element table (note that these dimensions are not related
to dimensions of matrix elements of the variable). After creation, the matrix elements
are not initialised and contain no data. Values of specific elements are set by the
setmatrix command. Indices in square brackets in this case specify the matrix in the
variable element table whose values are set. In the above case, the element with
indices [L 2, 2] is set to the following 2% 3 matrix:

0.1 1.2 1.30

4.1
1 22 234 41

If the rank of the matrix variable (which is three in this case) was zero, then a
call to the newmatrix command would not be necessary since the setmatrix function
creates a zero rank variable automatically if it does not yet exist.

The expression evaluator functions can be used for accessing data stored in
variables. For each variable type there exist functions, which are evaluated as
dimensions of variable element tables or as components of variable elements. For
example, the getmatrixdim function evaluates a specific dimension of the variable
element table. The expression

getmatri xdi n{“ni, 2]

evaluates to the second dimension of the element table of the matrix variable m,
which is 2 in the case that mis defined as above (Figure 4.4).

The getmatrix function evaluates to the value of a specific component of a
specific matrix element. The expression

getmatrix[“ni, 2,1,1, 2, 2]

eval uates the component 2-1 of the element [L 2, 2] of the matrix variable m, which is
2.1 if the variable is defined as above. The first two indices specify the component
(row and column number, respectively) and the last indices specify the matrix
element of the variable element table.
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There are severa other functions for manipulation of matrix variables, and
analogous functions are implemented for other types of variables. A complete list of
these functions can be found in the corresponding manual!*”.

Some interpreter commands can operate on whole sub-tables of variable
elements. The notion of a sub-table is also illustrated in Figure 4.4. The matrix
variable m shown in the figure contains an element table of rank 3 and of dimensions
3x2x3. This table consists of two sub-tables of rank 2 and of dimensions 2x3,
each of which further consists of two sub-tables of rank 1 and dimension 3, each of
which contains 3 matrix elements.

Some shell variables are used for carrying specific data relevant for
optimisation. Such variables are referred to as variables with pre-defined meaning or
briefly pre-defined variables.

Of particular importance are those variables which are responsible for data
links between user definition of the direct analysis in the analysis block of the
command file and optimisation agorithms™® (Figure 4.3 and the surrounding
discussion). A list of these variablesis shown in Table 4.1.

The pre-defined variables are a part of the user-defined variables, therefore
al functions for manipulating variables are applicable to these variables. Some
additional commands are designed especially for easier handling of these variables.
Some general functions of the pre-defined variables operate in a dlightly different
way on pre-defined variables. This is especialy true for creation and initialisation
commands, which take into account known information regarding dimensions.
Dimensions of the pre-defined variables are often related to the characteristics of the
optimisation problem being solved, therefore the same dimensions can be shared
with more than one variable (Table 4.2). These characteristic dimensions have a
special storage space that is not a part of the variable system. Their values are
however directly accessible through the interpreter and expression evaluator
functiong”.

There are some other variables with pre-defined meaning™”, which support
common tasks related to the solution of optimisation problems. For example,
variables in Table 4.1 have equivalents with the suffix “opt” instead of “mom”,
which store optimum values of the corresponding quantities so that they can be
retained for further use. Vector variables meas and sigma are used for holding input
data for inverse problems, namely the measurements and their estimated errors. Pre-
defined file variables for holding commonly used files are aso defined, i.e. infile for
shell input file, outfile for shell output file, aninfile for ssimulation input file and
anoutfie for simulation output file. There are groups of interpreter and calculator
functions, which operate specifically on these variables. A set of output functions
operate on outpfile, and a set of general interfacing functions operate on infiile™?.

133



4.2. Function of the Shell

4. Optimisation Shell “Inverse”

Some functions of the interface module with the simulation programme operate on

aninfile and anoutfild??,

Table 4.1: Variables with pre-defined meaning, which are used for
transfer of input and output arguments of direct analysis between user
definition and the calling algorithm. The meaning of dimensionsis

shownin Table 4.2.

Variable name[ element table
dim.] (element dim.)

M eaning

Scalar variables

objectivemom [] <
[numobjectives] >

Value(s) of the objective function(s) at the current parameter
values.

constraintmom
[numconstraints]

Values of the constraint functions at the current parameter
values.

Vector variables

parammom [] (numparam)

Current values of parameters.

measmom [] (nummeas)

Current values of simulated measurements.

gradobjectivemom [] <
[numobjectives] > (numparam)

Gradient of objective function(s) at the current parameter values

gradconstraintmom
[numconstraints] (numparm)

Gradients of constraint functions at the current parameter
values.

gradmeasmom [nummeas]
(numparam)

Gradients of the simulated measurements at the current
parameter values.

Matrix variables

der2objectivemom [] <
[numobjectives] >
(numparam,hnumparam)

Second derivatives (Hessian) of the objective function(s) at the
current parameter values.

der2constraintmom
[numconstraints]
(numparam,numparam)

Second derivatives (Hessian) of the constraint functions at the
current parameter values.

der2measmom [nummeas]
(numparam,numparam)

Second derivatives (Hessian) of the simulated measurements at
the current parameter val ues.

Table 4.2: Characteristic dimensions of variables with a pre-defined

meaning.
Dimension Meaning
numparam Number of optimization parameters
numconstraints Number of constraint functions
Numobjectives Number of objective functions (usually equals 1)
Nummeas Number of measurements (applicable for inverse problems)
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4.2.4  Argument Passing Conventions

The file interpreter itself has nothing to do with interpretation of command
arguments. It only passes positions of command argument blocks to the
corresponding functions. Each individual function (shown in the user interface area
in Figure 4.3) is responsible for interpretation and treatment of its arguments. The
shell provides some general rules about argument passing, which represent a non-
obligatory recommendation and may be overridden by individual functions. This
freedom alows implementation of interpreter commands with arguments of types
and format adapted to specific tasks and not common for the shell. The shell user
interface can therefore be customised to a great extent.

The shell provides a set of functions for interpretation of specific supported
types of arguments. Within functions installed in the file interpreter system these
functions can be used for interpretation of arguments. Shell functions for
interpretation of arguments can be used as library functions and provide an
implementation interface, which enables new utilities to be built into the shell in
accordance with standard rules that apply for the shell. Such an implementation
interface plays an important role in ensuring openness and flexibility discussed in
section 4.1.2. Argument passing rules supported by the shell are briefly described
below, while a complete description can be found in [15].

Multiple arguments may be separated either by spaces or by commas.
Because some arguments (respectively strings that represent them) themselves
contain commas and spaces, it must be unambiguous for each argument to which
position it extends, which is a basic requirement for formatting conventions.

Objects of all types defined by the shell can be passed as arguments. Each
type has its own formatting conventions. For example, a matrix object given by (4.1)
can be given in one of the following forms:

1.23{ {1 1.11.21.3} { 2 221 2.22.3}}

223 {{11: 11} {12 1.2} {13 1.3}y {21 2.1} { 2 2:
2.2} {23 2.3} 1}

3.23{{1.11.21.32.12223}}

If we just want to specify a matrix with a given number of rows and columns without
specifying components, only dimensions need to be given followed by empty curly
brackets, e.g.

23{ 1}
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In commands that assign a matrix to an existing object, we can specify an arbitrary
number of its components without dimensions, e.g.

{ {11 1.1}y {22 2.2} {23 2.3} }

The setmatrix command mentioned in the previous section is an example of an
interpreter command that takes a matrix argument. For this function, the last format
can be used if the matrix element, which is being initialised by the setmatrix
function, already exists and is of correct dimensions. Since in all possible formats
specification of a matrix object is concluded by curly brackets (usually containing
components), it is unambiguous where the argument ends and where to expect the
next argument.

Other types of objects have similarly logical format conventions. String
objects must be specified in double quotes if they contain spaces. Special characters
that can not be represented in text files or can not be specified directly because of
formatting rules, can be specified by two character sequences consisting of a
backslash and specification character. For example, the newline character can be
represented by the sequence “\n”.

Variable arguments are specified by variable names not included in quotes.
Variables can contain more than one object of a specific type. Commands that
operate on individual objects therefore do not take variable arguments. Variable
arguments are typical for commands which create, copy or move a whole variable,
like for example the newmatrix command for creation of matrix variables, mentioned
in section 4.2.3.

Arguments that refer to variable elements are specified by a variable name
followed by element indices in square brackets. Indices specify element position in
the variable element table. Elements of zero-rank variables can be in some cases
specified only by variable name, but the name followed by empty square brackets is
always acceptable. Sub-tables of variable elements are specified in the same way as
individual elements. For example, the [2, 3] -th element of a matrix variable matl is

specified by
matl [2 3]

Numerical arguments can be specified by numbers, expression evaluator
variables (variable name following the dollar sign) or mathematical expressions
(stated in curly brackets following the dollar sign), as has been described in section
4.2.2. Indices in element specifications are also regarded as numerical arguments,
therefore this rule applies. If an expression evaluator variable a is defined and has a
value 2, the above specification of amatrix element can be written equivalently as

mat 1 [ $a ${a+1}]

136



4. Optimisation Shell “Inverse” 4.2. Function of the Shell

Objects of any type can also be specified by a reference to an existing object
of the same type in the shell variable system. A copy of that object is created in this
case and passed as an argument. Object specification must be included in curly
brackets following the hash sign, e.g.

#{ matl [4 1] }

specifies a matrix that is a copy of the element with indices [4,1] of the matrix
variable named mat1.

Finally, variable names in specification of variables, elements or sub-tables of
elements can be replaced by areference to an existing string element. For example, if
a zero rank string variable str is defined and its only element is the string “ mat1”,
then the following specification of the [23] -th element of a matrix variable matl is

adequate:

#{ str [ ]} matl [2 3]

425 Summary of Modulesand Utilities

A brief survey of modules that provide basic functionality needed for solution
of inverse and optimisation problems is given in this section. Figure 4.3 and the
surrounding discussion provides a basic explanation of the importance of individual
modules. A basic functionality of the shell islisted in Table 4.1.

The core of the shell is optimisation algorithms. Other utilities provide the
functionality needed for the definition of the problems to which optimisation
algorithms are applied. In this respect utilities that enable the definition of the direct
anaysis are the most important, which especially refers to interfacing with the
simulation environment. Open structure of the shell enables interfacing with any
simulation environment. An interface module®® for a finite element system
Elfent®¥ Y has already been implemented.

A generd file interface!®® enables interfacing with any programme for which
a special interface module is not implemented, through its input and output files.
These modules provide a set of basic utilities for manipulating text files, such as
searching for data, reading and updating data, copying data, etc.

Additional support for the definition of the direct analysis is offered by the
expression evaluator. It can be used in combination with the file interpreter
capabilities to specify how the quantities required by an optimisation algorithm are
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derived from basic results obtained by a numerical simulation. It can be regarded in
this respect that additional post-processing of results, which is not provided by the
simulation environment but is needed for formation of information required by
algorithms, istaken over by the shell.

Table 4.3: Principal modules of the optimisation shell inverse.

Optimisation module™ includes optimisation algorithms and other tools (e.g. tabulating utilities,

support for Monte Carlo simulations, etc.). It also includes utilities for definition of direct analysis,

including organisation of datatransfer between analysis definition and optimisation algorithms.
Fileinterpreter™ representstheshell userinterface. .

Flow control module includes implementation of branches and loops, a function definition utility,
and some other flow control utilities.

errors such as parenthesis mismatches can be detected by this tool. Arguments are also checked for
some basic interpreter commands (e.g. for flow control commands).

checking and changing values of variables between execution, etc.

Expression evaluator (calculator)’® evaluates mathematical expressions which appear in
argument blocks of file interpreter commands.

Variable handling modulé*” includes basic operations on variables such as creation and deleting,
copying, initialisation, etc.

General file interfacd™ provides a set of functions for interfacing simulation and other
programmes.

Interfacing modules provide tools for interfacing specific simulation programmes, which includes
execution control and data exchange functions.

Miscellaneous utilities module® include various auxiliary utilities, for example utilities for
interaction with the operating system.

Various auxiliary utilities® can be used to control the solution process or
provide additional support to the interfacing module. The most important are output
commands, which enable the user to output any information of interest to the
terminal or shell output file. Other utilities enable control of execution and CPU time
and interaction with the file system (changing directories, deleting files, etc.).

The file interpreter!™ represents a user interface, which provides access to
the shell utilities. Accessibility of the shell functionality through the file interpreter is
the basis of flexibility, which enables the shell to be applied to a large variety of
problems. The ability of installing new file interpreter commands is a basis of
openness of the shell as regards the possibility of implementing new tools that
interact with the existing functionality. An open library provides an implementation
interface for building in new tools in accordance with the shell concepts. A part of
this library consists for example of functions for interpretation of arguments of file
interpreter commands.
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Instruments for checking the shell execution and correctness of user
definition of the problem are a significant part of the shell. A user interface
implemented as a file interpreter imposes a high level of flexibility on one hand, but
on the other hand definition of problems with such an interface is prone to errors.
This is especialy true when alack of high level commands is experienced and must
be overcome by using programming capabilities of the shell user interface to alarge
extent.

Table4.4: A list of debugger commands with brief descriptions.

? prints a short help. e expr evauates the expression expr by the

g finishes the debugging process.

s executes the next file interpreter’ s command.

S executes the next file interpreter’'s command;
commands that execute code blocks are executed as
single commands.

n num. Executes the next num commands.

N num executes the next num commands; functions
that contain code blocks are executed as single
commands.

X num executes the code until num levels lower lever
of execution is reached. Default value for numis 1.

c executes the code until the next active break
command is reached.

ab id activates all breaks with the identification
number id (“*” means all identification numbers).

sb id suspends al breaks with the identification
number id (“*” means all identification numbers).

pb prints information about active breaks.

tb id prints status of breaks with identification
number id.

v shift prints a segment of code around the current
viewing position shifted for shift lines.

vr shift prints a segment of code around the line of
interpretation shifted for shift lines.

va linenum prints a segment of code in the interpreted
filearound the line linenum.

nv numl num2 sets the number of printed lines
before and after the centerline when the code is
viewed.

expression evaluator. If expr is not specified the user
can input expression in severa lines, ending with an
empty line.

w expr adds expression expr to the watch table.
Without the argument, values of al expressionsin the
watch table are printed.

dw num removes the expression with serial number
num from the watch table.

aw switch with switch equal to zero turns automatic
watching off; otherwiseit turnsit on.

pw prints all expressions in the watch table.

r comblock interprets comblock by the file interpreter.
If comblock is not specified the user can input
commands in severa lines, ending with an empty
line.

rd comblock does the same as r, except that the code
is also debugged.

rf filename sets the name of the file into which the
user’s commands will be written, to filename.

Breaks are set in the command file by function
break, whose argument (optiona) is break
identification number, e.g.

break { 3}

The shell contains two tools, which facilitate location of errors®”. The syntax
checker detects some common and obvious syntax errors such as misspelling of
commands and mismatched brackets. It can be applied to check the command file
before the shell is run. The debugger (Table 4.4) enables tracing an execution of the
shell. It enables step by step interpretation of the command file between which the
state of the calculator and shell variables can be inspected or changed. The debugger
is a useful tool not only for detection of logical errorsin the command file, but also
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for detection of unexpected results of various built-in tools or stand-alone programs
which are employed in problem solution.

426 A Simple Example

A simple examplé®® is shown in order to highlight the shell function
discussed in previous sections. The example shows how the following problem can
be solved by the shell:

minimise x> +y*
X,y
(4.2
subject to y=(x-3)° Oy=17-x2

The objective and the two inequality constraint functions are

f(xy)=x"+y*
a(xy)=y-(x-3f (4.3
c,(x y)=x+y-17

The command file which makes the shell solve this problem is the following:

1. setfile{outfile quick.ct}

2. *{ (bjective and constraint functions: }
3. ${f[x,y]: x"2+yn4 }
4. ${gl[x,y]: -((x-3)"6-y) }
5. ${g2[x,y]: -(17-x"2-y) }
6. *{ Objective function derivatives: }
7. ${dfdx[x,y]: 2*x }
8. ${dfdy[x,y]: 4*y"3}

9. *{ First constraint function derivatives: }

10. ${dgldx[x,y]: -(6*(x-3)"5) }

11. ${dgldy[x,y]: 1}

12. *{ Second constraint function derivatives: }
13. ${dg2dx[x,y]: 2*x }

14. ${dg2dy[x,y]: 1}

15. setvector{paramom 2 {} }
16. newscal ar{obj ectivenont
17. newscal ar{constrai ntnon 2]}

18. analysis
19. {
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20. ={x: getvector["paramoni, 1]}

21. ={y: getvector["paramoni, 2]}

22. setscal ar{obj ectivemom ${f[x,y]} }
23.:‘ setvector{ gradobjectivenom

24. 9 { ${dfdx[x,y]} ${dfdy[x,y]} }

25. 5 }

26. » setscalar{constraintrmoni1] ${gl[x,y]} }
27. Q‘ setvector{ gradconstrai ntmonf 1]

28. @ { ${dgldx[x,y]} ${dgldy[x,y]} }
29. « }

30. setscal ar{constrai ntnon{ 2] ${g2[x,y]} }
31. setvector{ gradconstrai ntnoni 2]

32. { ${dg2dx[x,y]} ${dg2dy[x,y]} }

33. }

34. }

35. setvector{parammom{ 0 0 } }
36. anal yse{}

37. optfsgpo{ 1 2 0 0 0 0.00001 0.00001 300 1
38. {2{15-3}}

39. { 2{}}
40. {2 {11
41. '}

The setfile command in line 1 creates the shell output file outfile where
functions will write their reports and error reports, and connects this file with the
physical file named “quick.ct”.

Lines 3 to 14 contain some preliminary definitions of new expression
evauator functions, which will be used later in the analysis block. These are the
objective (line 3) and both constraint functions (lines 4 and 5), derivatives of the
objective function with respect to the first (line 7) and the second (line 8) parameter,
and derivatives of the first (lines 10 and 11) and the second (lines 13 and 14)
constraint function with respect to both parameters.

In lines 15 to 16 we create variables with pre-defined meaning parammom,
objectivemom and constraintmom. The aim of this is merely to specify the relevant
characteristic dimensions of the problem. These are stored in internal variables of the
shell and are used when creating pre-defined variables whose dimensions are by
definition equal to these characteristic dimensions. By creating vector parammom,
the number of parameters numparam is defined, by creating scalar objectivermom the
number of objective functions numobjectives is defined and by creating scalar
variable constraintmom the number of constraints numconstraints is defined. No
values are assigned to these variables. The same effect as creating parammom would
have been obtained for example by creating paramopt, and creating vector
gradconstraintmom could replace both creating vector parammom and scalar
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constraintmom, since both numconstraints and numparam are relevant for this
variable.

Lines 20 to 33 form the analysis block, which represents the definition of the
direct analysis and is interpreted at every anaysis run. This block specifies how
relevant quantities such as the objective and constraint functions and their derivatives
are evaluated at a specific set of optimization parameters.

In lines 20 and 21 the current values of parameters are stored in expression
evaluator variables x and y. These values are obtained during optimisation from
vector parammom where they are put by the general analysis function, called by the
algorithm that requests execution of adirect analysis.

In lines 22 to 33 the relevant quantities are evaluated and stored into the
appropriate pre-defined variables where the calling algorithm can obtain them. The
value of the objective function is stored into scalar objectivemom (line 22), its
gradient is stored into vector gradobjectivemom (lines 23 to 25), values of the
constraint functions are stored into scalar variable constraintmom (lines 26 and 30),
and their gradients to vector variable gradconstraintmom (lines 27 to 29 and 31 to
33) Auxiliary functions, which were defined in lines 3 to 14 of the initiaisation part
are used, called with the current parameters stored in calculator variables x and y
(lines 20 and 21). In more realistic cases this part would include running some
numerical simulation at the current parameters, the necessary interfacing with the
simulation programme (for updating ssimulation input and reading results) and
possibly some housekeeping for deriving final values from the simulation results.

A test anadysis at parameters [0,0]T is run in line 36 by the analyse

command. This command takes parameter values from the pre-defined vector
parammom; whichisset in line 35.

Finaly, the problem is solved using the command fsgp0O, which runs the
feasible sequential quadratic programming optimization algorithm (lines 37 to 41).
This function requires nine numerical arguments, namely the number of objective
functions, the number of non-linear inequality constraints, the number of linear
inequality constraints, the number of non-linear equality constraints, the number of
linear equality constraints, the final norm requirement for the Newton direction, the
maximum allowed violation of nonlinear equality constraints at an optimal point, the
the maximum number of iterations, information on whether gradients are provided or
not, and three vector arguments, namely the initial guess and lower and upper
parameter bounds.

Suppose that the above command file has been saved as “quick.cm” and that
the shell programme is named “inverse”. We can run the shell by
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i nverse quick.cm

which solves the problem (4.2). The report including final results can then be
checked in the file “quick.ct”.

4.3 Selected | mplementation | ssues

4.3.1 Programming Language and Style

The present section discusses some basic implementation issues, which
influence the shell function, effectiveness and economy of its development.

As regards computer programming, the same operations can usualy be
implemented in a number of different ways. It is the function of a programme that
matters the most, however there can be big differences in programme efficiency and
fina development cost between different implementations of the same system.
Awkward implementation usually results in unexpected bugs and unnecessary
problems with inefficiency, which can never be completely disclosed at the testing
stage.

Careless programming frequently results in a rigid system, which serves its
purpose well, but it is hard to introduce changes and add new functionality. For
complex systems it is impossible to predict all requirements that can possibly arise
from application needs. System design can therefore not be completely planned in
advance and it is particularly important that it is easy to introduce changes in the
system and expand its functionality.

Since the implementation style has a strong influence on the overall quality of
the system and economy of its development, it deserves specia attention. The
desired system properties often impose conflicting implementation demands,
therefore it is difficult to set generaly applicable implementation rules. What is
appropriate depends on what should be achieved.

A common conflicting situation in programming is induced when the need for
maximum efficiency arises simultaneously with the requirement to make the system
open and accessible to different developers. The last demand is achieved if the
system is logically structured and its function implemented through small closed
units. Such implementation leads to a certain overhead of function calls and
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allocation of data, which could otherwise be reused, which to some extent affects the
programme efficiency. The loss of efficiency is in some cases negligible and can be
sacrificed without hesitation. In other cases a compromise must be accepted after
consideration of solutions that are acceptable in view of openness and till have a
lesser impact on efficiency.

Knowing programming rules means being aware of the effects of different
programming approaches. Implementation of complex systems is to a large extent
the art of making good compromises. This requires a significant amount of planning,
sometimes in a very abstract sense because situations in which the system might be
exposed can be foreseen only to alimited extent.

The optimisation shell Inverse is programmed in ANSI C!21%9 This is an
extension of the traditional Ritchie's CI*® It is implemented in more or less an
invariant way on all modern platforms and is currently one of the most portable
programming languages’. C is a terse and logical language with a small set of
keywords and powerful set of operators which support low level access to computer
capabilities. It still provides all facilities typical for high level languages, such as
structured data types.

Unlike many other programming languages C does not impose unnecessary
restrictions which do not arise from the computer architecture. Many of these
restrictions imposed by other languages are in some cases extremely difficult to
overcome. C completely supports dynamic memory allocation. Arrays can have
variable length. Thisisfor example not the case in Pascal, which makes it difficult to
handle matrix operations in a modular way. Function addresses are treated in a
natural way in C and can be assigned to variables. This enables the fully dynamic
treatment of function calls, which can in some languages be achieved only by
passing function addresses through function arguments (as in FORTRAN) or not at
all (asin Pascal). A favourable feature for programmers who wish to have a complete
understanding of code function is that function arguments are aways passed by
value. Effects equivalent to passing by reference in some other languages are
achieved by passing a pointer to a variable instead of the variable itself. In many
other languages this is done implicitly, so that the language rules hide to a great
extent what is actually happening. Having complete insight in the code function
therefore requires a deeper knowledge of the programming language, which is not
true for C. A similar example is pointer arithmetic, which closely follows native
computer logic.

An often heard argument against the use of C in numerical applicationsis that
programmes written in C are slower than for example programmes written in
FORTRAN. The author of this text is not aware of any theoretical arguments or

! Experience show that in practice there are minor differences between various implementations of
ANSI C. However, the number of particularitiesis small and they can be kept under control.
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comparable tests which would support such statements. It is however possible to use
C for specific tasks in an inefficient way, which is less usual in other programming
languages because of their restrictions. This simply means that it is less likely in
some languages that an unskilled programmer would implement specific tasks in an
inefficient way. A typical example is unnecessary overuse of dereference inside
iterative parts of the code, for example in matrix operations.

C does not directly support object oriented programming in a way as C++
does®. Object oriented programming was introduced to support more human-like
formulation of ideas in programming languages and a more open structure of
programmed modules. An especially strong feature of object oriented programming
is that commonality between different ideas can be made explicit by using
inheritance. Therefore it is possible to relate similar ideas in a natural way, which
makes the code clearer. There are some examples in the shell where advantages of
object oriented programming could be used. Such situations are however not typical
and use of plain C does probably not represent a great loss in terms of development
efficiency.

The shell consists of a number of hierarchically arranged modules. Modules
represent closed units, which provide a given kind of functionality and make it
available to other parts of the programme. The design of a module includes definition
of related data types and a complete set of operations that can be performed on these
types. This leads to a given functionality, which represents realisation of some a
given ideain the programming sense.

Programming in amodular way allows concentration on one type of problems
at atime. Solutions are provided independently of other problems. An important gain
of such an approach is that functionality can be tested independently for small and
well defined units, which significantly reduces testing complexity. Modular
programming in C significantly reduces the possibility of memory handling errors,
which are among the most problematic and common errors in C. Such errors can be
avoided if al memory allocation and deallocation is performed by functions provided
by the appropriate modules, which are designed so that they exclude the possibility
of common errors such as accessing memory through bad pointers, releasing the
same pointer severa times, etc.

4.3.1.1 Example: the Stack Module

A typical example is the stack module. This module introduces stacks of
objects and provides a complete set of operations on such data structures. Objects on

! 1t is possible that this common opinion was influenced by inefficiency of the C compilers at the early
stage of the language development.
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stacks are represented by their pointers, which are of type void *, so that any type of
objects can be stored on such stacks.

The module does actually not provide only the push and pop utility, which
are typical for stacks in a common sense, but also insertion of an object to a given
position, deletion of an object on a given position, sorting of objects according to a
specified criterion, etc.

The stack typeis defined in the following way:

typedef struct{
int n,r,ex;
void **s;

} _stack;

typedef _stack *stack;

Type stack is defined as a pointer to a structure of the type _stack. It is
common in the shell that objects are presented by pointers of a given type. Another
commonly accepted ruleisthat all pointers are initialised to NULL. This pre-defined
value (which is essentialy 0 on al modern systems) is used as an unambiguous
indication that the specific object is not allocated.

Structure member (or field) sisthe array of pointers, which holds objects that
are on the stack. The structure also contains three integers. n is the number of objects
that are on the stack, r is a number of allocated pointers in the array, and ex is an
auxiliary field which defines the excess of memory allocated for the table s when it
runs short of space to hold objects that are added to the stack. The possibility of
allocating more memory that is currently needed alows that the array s is not
reallocated every time anew objectsis added to the stack.

All possible operations on stacks are provided by the functions which are
defined in the module. These functions take care that the stack type is always used in
a prescribed way, which excludes the possibility of errors. Internal rules that ensure
proper function are hidden to the user of the module, which will be shown on some
specific functions provided by the module. The user must only be aware of module
functionality and some general rules for using the module.

The basic operations on any type of complex objects are creation and
deletion. Stack objects are created by function newstack, which is declared as

stack newstack (int excess);

The function creates a new stack object and returns a pointer to it. It takes an
integer argument, which specifies the value of the field ex of the created stack. The
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function also allocates the table of pointers s so that it can hold ex pointers. r is set to
excessand nto O.

Deletion of a stack object is achieved by the function deletestack, which is
declared as

voi d di spstack(stack *st);

The function requires a pointer to stack, which must be the address of the stack to be
deleted. This enables the function to set the value of the deleted stack to NULL after
performing other necessary operations on it (note that arguments in C are passed by
value). In this way other functions that would operate on the same stack can detect
that the stack no longer exists. The function dispstack first releases the memory used
by the field s (if it is allocated). Then it releases the memory used by the structure
itself. This memory was dynamically allocated by the newstack function and can be
used by other objects after it is released. The dispstack function checks if the
memory to be released is allocated (this is detected through pre-defined value NULL,
which is generaly used for pointers that are not initialised). This excludes the
possibility of trying to release the same pointer twice, which is an error that on most
systems causes abnormal programme termination. The user of the stack module does
not need to take care of the possibility of such errors, because all necessary
mechanisms are built into functions provided by the stack module. The only concern
isthat all pointers to objects are initialised to NULL before they are used. Thisis a
genera rule of safe C programming and is strictly obeyed in shell devel opment.

The dispstack functions does not affect objects that are on the stack. If
pointers to these objects reside only on the stack that is being deleted, these objects
must be deleted prior to deletion of the stack, otherwise the memory occupied by
them is not accessible any more and is a permanent waste untill the end of
programme execution. Deletion of objects on the stack can be performed explicitly
by deleting objects one by one. The module also provides a function for deletion of
all objects at atime, which is declared as

voi d di spstackval spec(stack st,void (*disp) (void **));

This function requires two arguments. The first argument is the stack (a pointer)
whose elements will be deleted. The second argument (disp) is the function which is
used for deletion of each individual object. The function deletes all objects on the
stack by caling function disp with their addresses as arguments. disp must be a
function that is equivalent to dispstack for the type of objects that reside on the stack.
It is also supposed that the function sets the pointer value to NULL after the object
pointed to by that pointer is deleted.

There aso exists the function dispstackallspec which does deletion of objects
contained in a stack and the stack itself. Its declaration differs from declaration of
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dispstackval spec in that the address of the stack must be passed as the first argument
rather than the stack itself, because this is required for deletion of the stack. The
declaration of the function is the following:

voi d di spstackal | spec(stack *st,void (*disp) (void **));

It is appropriate to give an implementation note at this stage. The
dispstackallspec function could be implemented in the following very simple way:

voi d di spst ackal | spec(stack *st,void (*disp) (void **))

{
di spst ackval spec(*st, di sp);
di spstack(st);

}

Functions dispstackvalspec and dispstack perform all that is necessary for the
function dispstackallspec. However, by implementing the function this way we have
two additional function calls inside the function. From the point of view of efficiency
it is better that bodies of both functions are explicitly repeated within the function, so
that these two calls are avoided while other code that is executed remains the same.
This will make the appearance of the function more complex, which is not important
since the user of the stack module will typically not interfere with the function
definition but only with its declaration. Also the compiled programme that uses the
module will be of a dlightly larger size, but this is not problematic because the code
of the function body appears only in one place within the programme, while the
function will be typically called many times. The effect on efficiency is in this case
more important than the effect on the code size.

Basic operations on stacks are push and pop. Push adds an objects on the top
of the stack, while pop takes an object from the top. Their declarations are

voi d pushstack(stack st, void *el);

and

voi d *popst ack(stack st);

Both functions require the stack on which the operation is performed as the first
argument. The second argument of the push function is the object (a pointer), which
is pushed to the stack. The function adds this pointer to the table s of the stack after
the last object on it and increments the field n which holds the number of occupied
places. If the table of pointers s does not contain enough space to hold a new
element, it isreallocated. Existing objects that are aready on the stack are kept in the
new table. The number of elements for which sis alocated is always written in the
field r, which excludes the possibility of mistakes. Whenever the table is reallocated
or deleted by any function of the module, the r field is updated.
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Function popstack picks the last object on the stack and returns it as a pointer
of undefined type (void *). This pointer can be assigned to any variable which is of
the same type as the object obtained from the stack. It is the user’s responsibility to
ensure that the types match. The type agreement could be more easily ensured in
object oriented languages such as C++, in a sense that errors regarding type
compatibility would be detected during compilation time. In practice this has not
shown to be a serious problem, because stack objects are usualy used in a limited
scope where it is not hard to mix up pointer types.

The popstack function also decrements the value of the n field of the stack. It
does not set the value of the last pointer in the array s to NULL, because since n is
reduced, that pointer is out of the range and can never be accessed. When an object is
picked from the stack, the array of pointersis larger than necessary. If the difference
between the number of pointers which the array can hold (indicated by the field r)
and the actual number of pointers on the stack (indicated by the field n) is larger than
the value of the field ex, sis reallocated so that its physical size matches the number
of objectswhich it holds.

Beside the above mentioned functions, the stack module contains many other
functions, which allow the user of the module to perform the necessary operations.
Among important functions provided are searching for an object with certain
properties and sorting of objects on the stack according to a provided comparison
operator.

The aim of this brief description of a module is to show the role of such
closed modules in construction of the programme. A module consists of data types
and a full set of operations on these types, which together represent implementation
of someidea. In the case of the stack module the underlying ideais abstract and very
general. It implies that multiple objects of a given type can be arranged in a stack, so
that objects can be taken from the top or added to the top of the stack, sorted,
searched for, etc.

The module hides all implementation details that are not relevant for use of
the module. In other words, its user does not need to know much more about the
module than what it is used for and how it is used. For a programmer who wants to
use stack functionality it is not important what the structure of the stack object is. It
is important for example that there exists a function for pushing a new object to a
stack, that the objects on the stack can be sorted and that searching for objects on a
sorted stack is much quicker than searching on unsorted stacks. The user must be
aware of the underlying ideas, but on an abstract level which has nothing to do with
implementation inside the module. Implementation of the module functions can be
changed (e.g. in order to improve efficiency or eliminate bugs) without changing
function declarations, which represent the implementation interface and the only
interaction point of the user with the module. Introducing changes inside a well

149



4. Optimisation Shell “Inverse” 4.3. Selected Implementation | ssues

designed module therefore does not affect any portion of code where this module is
used. The same reasoning as for function applies to data types, which can be
extended without affecting any portion of the code outside the module. The only
consequence of such changesis that the programme must be recompiled.

The advantage of such closed modulesis also that their function can be tested
in a very limited scope, which makes it easier to find bugs before the module is
actually used. Modules prevent unnecessary code replication. When similar ideas
arise on different places, the same implementation is used everywhere. This implies
also that bugs are likely to show on more than one place, which makes their detection
easier. When for example a bug in the stack module is detected through errors in a
part of the code where the idea of stacks is used, the bug is eliminated once (in the
module) and this corrects the function of any portion of code where the same ideais
used. This can be especialy beneficial for bugs which show in rare and random
occasions.

The idea of stacks as described above is very basic. The stack module has
therefore alow rank in programme hierarchy and is used in many other modules. For
example, stacks are used to hold shell variables, calculator variables, operators and
functions, interpreter functions, etc. Stacks are often used for holding multiple input
or output arguments of the same type, but variable number. For example, a function
that finds all occurrences of a given string in afile returns string positions on a stack.

In many modules the idea of stacks arises within a broader context, which
form the basis of the module. More complex derived data types therefore include
stack objects as fields in their structure. All operations provided by the stack module
can be performed on these fields, which means that an existing idea aready
implemented in a closed module is incorporated as a part of a broader idea. The new
type inherits properties of stacks in a way, which resembles some concepts of object
oriented programming.

The concept of inheritance can also be observed in a reverse way. We can
have stacks of objects of different types, e.g. a stack of matrices or a stack of vectors.
Various objects are implemented through completely different structures and sets of
functions that can operate on them. Different objects are also deleted in different
ways, and when we want to delete a whole stack of objects, this procedure must
inherit specifics of deletion of the objects of a given data type. The mechanism of
deletion of a stack of objects has already been described above in connection with
the function dispstackval spec and dispstackall spec.

Figure 4.5 shows the organisation of the main shell modules.

150



4. Optimisation Shell “Inverse” 4.3. Selected Implementation | ssues

FSQP
algorithm

Matrix and vector
operations

Shell functionality

Nonlinear
programming

Shell
Variables
Simulation General file
interface interface
File operations

Expression
evaluator

Fileinterpreter

Figure 4.5: Organisation of shell modules. Arrows show
dependencies. The scheme is not complete.

4.3.2 Filelnterpreter and Open Library

All shell functionality is accessed through file interpreter commands. The file
interpreter therefore deserves specia attention. Core data type of the file interpreter
isthe _ficomtype, which isfundamentally defined as follows:

typedef struct{
/* syntax definition */
char stopint;
/* support to flow control */
stack functi ons;
FILE *fp;
char *fil enane;
long fromto;
/* support to user defined functions */
i nt which;
fifunction func;

| ong pos, begi n, end, ar gpos;

/[* tenporary files */
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FI LE *in;
FI LE *out;
ssyst syst;

. I* support to definition of calculator functins */
. /* support to tracing of calling sequence */

char debug, check;
licomlint;

. [* support to debugging */

} _ficom

Only the most important fields are written. Comments indicate the missing
groups of fields. File interpreter is an object of type ficom, which is a pointer to the
above structure and is defined as

typedef _ficom*ficom
Interpretation is performed by the function fileinterpret, which is declared as

void fileinterpret(ficomcom;

Its only argument is an object of the type ficom, which actually represents the
interpretation and is also referred to as the interpretation object. More than one
interpretation can be independently performed within a programme, provided that
there is more than one interpretation object. The corresponding object must be
initialised before the interpretation begins. Memory for its structure must be
allocated and the file name (field filename) and scope of interpretation (fields from
and to) must be set.

An object of the type ficom holds all data relevant for interpretation. Beside
the state of interpretation (e.g. current position of interpretation and information
about the executed command) it also holds data which instructs the interpreter how to
perform interpretation (e.g. in debugging mode or not). Function fileinterpret, which
performs the interpretation, therefore does not need any local variables. This function
is sometimes referred to simply as the interpreter, although thisterm isin its broadest
meaning used for the whole interpreter module.

The field stopint tells the interpreter to exit interpretation if the field value is
different from zero. This field is set by some functions or automaticaly if the
interpreter hits the end of the interpreted code.

The field fp is the file pointer of the interpreted file. The interpreter and
functions called by the interpreter accesses the interpreted file through this pointer.
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The name of the interpreted file is stored in the field filename. It is used by the
interpreter to open the file if it is not yet open. It is aso used by some other
functions, for example by those which report errors.

The interpreter can be used for interpretation of a part of a command file.
Fields from and to hold the beginning and the end of the block which should be
interpreted (zero values indicate that the whole file should be interpreted).

Interpreter commands are installed on the field functions, which is a stack.
Objects on this stack are of the type fifunction. Such an object holds a command
name and address of the function that corresponds to the command. When the
interpretation object is initialised, its own commands such as looping and branching
commands are installed on this stack. The shell installs additional commands through
which its functionality can be accessed before it runs the interpreter. The fifunction
typeis defined in the following way:

typedef struct{

char *nane;

void (*action) (ficom;

voi d (*checkaction) (ficom;
} _fifunction;

typedef _fifunction *fifunction;

Field name is the name of the installed interpreter command, action is the function
that corresponds to the command, and checkaction is the function that checks the
syntax of command arguments. The last function can be executed only when the
syntax checker isrun.

Fields which, func, pos, begin, end and argpos are set by the interpreter and
contain information about the command that is currently being interpreted. which is
the position of the interpreted command on the stack functions, func is the
corresponding object on this stack, and other fields are positions in the interpreted
file. pos is the position of the command, begin and end define the position of the
command argument block and argpos is an auxiliary field used by functions which
correspond to interpreter commands. These functions use the field at interpretation of
command arguments. argpos is set to the same value as begin by the interpreter.

While interpretation takes place, the interpreter searches for commands in the
command file. When another command is found, the interpreter sets the field pos to
its position and finds the corresponding object (i.e. the object with the command
name) on the stack functions. Such an object represents the definition of the
command and contains the address of the function that corresponds to the command
(see the declaration of fifunction above). The interpreter sets the field which to the
position of the object on the stack and the field func to the object itself, or reports an
error if the corresponding object does not exist. It then finds the position of the

153



4. Optimisation Shell “Inverse” 4.3. Selected Implementation | ssues

command argument block (which is enclosed in curly brackets) and sets the fields
begin, end and argpos to the appropriate values. Finally it calls the function, which
corresponds to the command and whose address can be accessed through the field
func (i.e. func->action). This function takes the interpretation object as argument.
This gives the function access to relevant information concerning the interpretation,
especiadly information about command argument block, which is needed for
interpretation of arguments.

The interpreter module provides some basic command such as commands for
controlling execution flow and some input and output commands. Fields in and out
hold input and output files of the interpreter. It is not necessary that these files are
defined during interpretation. The shell installs its output file to the field out when
that file becomes defined (which is on user command in the command file). This way
the output commands which are defined in the interpreter module use the same file as
the commands which are additionally installed by the shell.

The expression evaluator offers a similar example. This module is similar to
the interpreter module in that severa independent expression evaluators (with their
own private set of user defined variables and functions) can exist in a programme at
the same time. This is however not the case in the optimisation shell because there is
no need to have more evauators. Some basic file interpreter commands need the
expression evaluator for evaluation of branching and looping conditions. It is
represented by the field syst. The commands that need the expression evaluator
access its function through this field. It is of the type ssyst, which has a similar
meaning for an expression evaluator as the type ficom has for an interpreter. The
optimisation shell initialises the expression evauator and instals it in the file
interpreter before it starts interpretation of the command file. Other functions of the
shell that use the expression evaluator therefore use the same object as the file
interpreter.

Initialisation of the expression evaluator prior to file interpretation is not
compulsory. If none of the commands that need the expression evaluator is ever
used, then the interpreter can run without it. Such a situation can actually occur if an
interpreter is used for some specific purpose where the expression evaluator is not
needed. This illustrates the flexibility of modules such as the file interpreter. The
expression evaluator is a complex system that needs substantial memory in order to
function, therefore it is beneficia if the interpreter may not use it when this is not
necessary.

Fields check and debug hold instructions for the file interpreter. If check is
nonzero, then the command file is just checked for syntax errors rather than
interpreted. The interpreter can only find errors which concern its function and rules.
This excludes errors in command arguments since the interpreter itself has nothing to
do with interpretation of arguments. The interpreter allows functions to be installed
that check argument syntax for commands that are installed on its system. These
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functions are specified in the checkaction field of the object of the type fifunction
(see its declaration above). Such objects are a representation of installed command
on the stack field functions of the file interpreter object. If for a specific command
the field checkaction is not NULL then the interpreter runs this function to check
command arguments. The only argument of the function is the interpreter object
itself, through which the checking function can find al necessary data, including the
position of the argument block and the file pointer through which the command file
IS accessed.

If the debug field is nonzero, the interpretation is performed in the debug
mode. A number of control parameters are used for telling the interpreter how to
function, e.g. how many commands to interpret at atime or how many interpretation
levelsto exit. After interpretation of a specified portion of the code, control is passed
to the user. A line interpreter is run in which the user inputs instructions for the
interpreters through a command line. Basic debugger commands that can be used in
this place are summarised in Table 4.4. Functions that carry out debugger commands
are installed on the line interpreter system. Some of these functions give instructions
to the interpreter through the appropriate fields on the interpreter objects. Such
instructions are, for example, that only one command or a group of commands must
be interpreted, or that a certain number of interpretation levels must be left. Other
functions perform concrete actions, for example change the definition of the
expression evaluator variables and functions or print variable values. In the
debugger, the user can also run arbitrary interpreter commands. In debugger it is
therefore possible to check directly the effect of changes in the command file on
function of the shell.

Shell functions that correspond to interpreter commands usually just extract
arguments and call other functions to perform algorithms and other tasks. Such atwo
stage arrangement is evident from Figure 4.3. Its advantage is that the shell side of
the implementation is separated from the module which is a source of a specific kind
of functionality. Different modules can therefore be developed independently. The
functions that correspond to interpreter commands take care of proper incorporation
of functionality provided in the shell system. The most basic task in this respect is
data exchange between the shell and module functions. This is done through
arguments of interpreter commands in accordance with argument passing
conventions, which were described in section 4.2.4.

Argument passing mechanisms are facilitated by a set of shell functions for
interpretation of command arguments and for interaction with the shell variable
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system. These functions are a part of the shell open library®, which represents an
implementation interface for incorporation of any kind of functionality within the
shell.

Functions of the shell open library are mostly used for implementation of
interpreter functions, which correspond to interpreter commands and provide
interface between the shell and the incorporated modules (Figure 4.6). Library
functions hide unnecessary implementation details. They also provide a certain level
of invariability with respect to changes in the shell structure and especially with
respect to changes in incorporated modules. This implies that the shell itself can be
treated as a module when new functionality is incorporated.

Figure 4.6 schematically shows the operation of an agorithm incorporated in
the shell. A part of this scheme can be recognized in Figure 4.3. Relations between
the incorporated algorithm, shell interpreter, interpreter function that provides an
interface between the shell and the algorithm, and library functions which facilitate
implementation of this interpreter function, are shown in more detail.

The implementation interface facilitates incorporation of new utilities in
compliance with the shell conventions, but does not impose these rules a priori.
Designers of new modules are given freedom to introduce individual rules for use of
specific utilities. Interaction with the shell structure, function and philosophy is
possible on different levels. For example, it is not necessary to use shell functions for
interpretation of command arguments of specific types. Low leve library functions
enable more basic interaction with the file interpreter, such as direct access to the
command file and position of the argument block. For specific commands individual
rules can be set for interpretation of their arguments. Such low level interaction
enables the introduction of additional concepts in the shell if they are necessary for a
given functionality. For example, a hew data type can be introduced together with
complete support as offered for existing data types. Rules for passing objects of that
type through command arguments can be imposed through functions that interpret
arguments of that type and are added to the shell library.

! The term open library is used because functions in this library are designed for broader use. Many
functions of modules which congtitute the shell have global linkage, but only functions of the open
library are designed for use outside the shell development team. These functions are designed with
special emphasis on simplicity of use and invariability with respect to changes in the structure of the
shell and its constitutive modules.
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Figure 4.6: Incorporation of module functionality in the shell. Dashed
lines show data connections. Continuous arrows indicate calling
sequences.

The design of the implementation interface with the properties described
requires some effort, especially careful planning, which sometimes includes
formulation of ideas in a rather abstract way. The effort required for ensuring
openness and flexibility can be justified if the shell is viewed as a general system
designed for use and development by a broader community. Application to practical
problems gives rise to many subproblems of a heterogeneous nature. Implementation
of appropriate optimisation tools therefore by far exceeds merely the scope of
implementation of effective optimisation agorithms. It requires an integrated
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approach to the development of an optimisation system, which facilitates
incorporation of expertise from different fields. Support to distributed development
with sufficient implementation freedom and ability of introducing new concepts in
the shell is essential from this point of view.

4.3.3  Incorporation of Optimisation Algorithms

Optimisation algorithms are the principal constituent of the shell
functionality. Their incorporation in the shell follows similar rules as incorporation
of other utilities, which was described in the final part of the previous section. There
are some specifics, some of which are supported by functions in the shell open
library, which are used specifically for incorporation of optimisation algorithms.

Each incorporated optimisation algorithm has a corresponding file interpreter
function, which is instaled on the function stack (field functions) of the
interpretation object at the initialisation of the optimisation shell. Instalation is
performed by calling the open library function instfintfunc in a special portion of
code, which is compiled and linked with the shell. Function instfintfunc takes the
name of the installed file interpreter command and the address of the installed file
interpreter function as arguments.

The interpreter function is an interface between the shell and the incorporated
algorithm. This function is executed by the shell interpreter whenever it encounters
the command installed together with the function (Figure 4.6). It reads command
arguments and passes them to the optimisation algorithm which it calls. Reading of
command arguments is performed by the appropriate open library functions.

The interpreter functions that correspond to optimisation agorithms normally
provide a few additional things. It is a shell convention that the results of an
optimisation algorithm are stored in specific pre-defined variables' (section 4.2.3).
For example, optimal parameters are stored in the vector variable paramopt and
optimal value of the objective function is stored in the vector variable objectiveopt.
These values are normally output argument of the function which represents a given
optimisation algorithm. It is the job of the appropriate file interpreter function to
store these values in the appropriate places. Thisis performed by using the shell open
library functions, which are designed for setting specific pre-defined variables.

Support to the above mentioned convention provides an evident example of
what is needed for incorporation of a given functionality in the shell. The open

! This is a non-obligatory rule, which makes use of agorithm results by other utilities possible. A
genera rule is that if an algorithm does not follow this convention, this must be indicated in the
appropriate manual.
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library should in principle provide all necessary utilities, therefore a specific
knowledge regarding the open library is a prerequisite. This requires some
knowledge about the shell function, which however does not exceed the knowledge
required for using the shell. In some particular cases additional knowledge is needed
in order to incorporate the functionality in compliance with standard conventions.
This knowledge does also not exceed the user level. The shell open library as an
implementation interface complies with the requirements for interaction with the
shell on a modular basis. The functions through which the shell functionality is
accessed hide the implementation details and provide an interface which is invariant
with respect to changes in the shell.

The above considerations are also instructive from the point of view of the
implementation freedom. The shell and its implementation interface does not strictly
imply the convention regarding storing agorithm results to specific pre-defined
variables. Besides, implementation of the algorithm allows introduction of new rules
that concern use of the incorporated functionality. For example, the optimisation
algorithm might return the number of performed iterations in addition other results.
The appropriate interpreter function could be implemented so that it would
automatically store this result to some specific shell variable. This would introduce a
new rule and would actually assign a meaning to that particular variable. The
example is not characteristic because it would be much more elegant to assign the
number of iterations to a variable specified by a command argument. However, it is
possible that incorporation of some important sets of functionality (e.g. shape
parametrisation) will be most conveniently implemented by introducing some
additional general rules and new groups of pre-defined variables. This is fully
supported by the shell implementation interface.

Optimisation algorithms iteratively require performance of the direct analysis,
which include evaluation of the objective function and other quantities. Algorithms
are usually implemented as functions, which take the function that performs a direct
analysis as an argument. The file interpreter function that correspond to an
optimisation algorithm must call such a function and provide the analysis function
(i.e. its address) as an argument. Figure 4.3 and the surrounding discussion indicate
how the optimisation algorithm in connection with the shell internal analysis function
operates in practice, while section 4.3.2 and especially the discussion around Figure
4.6 explain how the algorithm is invoked through the shell interpreter command. An
open question remains how different analysis functions with different sets of
arguments are provided. It is clear that an open library can not contain all possible
anaysis functions, since the range of possible variantsis practically unlimited.

Solution of this problem follows from the general arrangement regarding
transfer of current optimisation parameters and results of the direct analysis between
an optimisation algorithm and the direct analysis (section 4.1.3). There is a common
function which performs a direct analysis for any kind of agorithm. It performs
interpretation of the analysis block of the command file, which contains user
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definition of the direct analysis. The common analysis function takes no arguments.
A specific analysis function must be defined for each optimisation agorithm. This
function is actually called by the agorithm and is specified as an argument at
algorithm call in the corresponding file interpreter function. It calls the common
anaysis function and besides writes optimisation parameters and reads analysis
output data from the appropriate pre-defined shell variables. The common analysis
function is provided by the open shell library as well as functions for setting and
reading the pre-defined variables.

The shell library includes some most common analysis functions with
different argument lists. These functions can sometimes be used directly in a cal to
an agorithm or are called in another intermediate function which covers
particularities of the algorithm. Particul arities arise in various ways. Some agorithms
require derivatives and others do not. Some al gorithms solve unconstrained problems
and therefore do not require values of constraint functions. Different algorithms
require analysis data in different form. Some of them use derived structures for
representation of matrices and vectors, while some of them use arrays of numbers
with separate arguments for specification of array dimensions. Algorithms are aso
progranmed in different languages with different calling and argument passing
conventions, which must be accommodated by using intermediate functions.

The most difficult example is when an agorithm uses two or more separate
direct analysis functions, e.g. one for evaluation of the objective function and its
derivatives and the other for evaluation of constraint functions and their derivatives.
Such example is the FSQP algorithm, which is currently the principal optimisation
algorithm of the shell. The shell typically calls one common analysis function for a
given set of optimisation parameters. The agorithm calls first the function for
evaluation of the objective function and its derivatives and then the function for
evaluation of constraint functions and their derivatives. The first function must
execute the common analysis function, store the constraints related quantities to a
temporary location and return the objective function and its derivatives to the
algorithm. The second function must simply pick the values and derivatives of
constraint functions from the temporary location and return these quantities to the
algorithm.

For a genera optimisation system it is essential that it includes various types
of optimisation algorithms, since any algorithm can handle effectively only a given
set of problems. Various mathematical fields relevant for the development of
optimisation algorithms are still developing. It is therefore important that different
algorithms developed in different environments can be easily incorporated in the
system.

On the other hand such distributed development is not economic because it
leads to unnecessary replication of work. In practice this also means replication of
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code and therefore a large executable programme. Another consequence is rigidity of
code where individual solutions can not be easily combined and applied in more
complex algorithms because of obstacles related to different programming
methodol ogies.

In the shell development several negative effects of disconnected
development of algorithms have already appeared. By now several agorithms have
been implemented such as the smplex method, Powell’s direction set method, the
Fletcher-Reeves conjugate direction method, and some variants of the penalty
methods (refer to chapter 3). These algorithms were programmed in a disconnected
way and were many times incorporated in the shell in a nonmodular way. The
disadvantage which soon showed was that changes in the shell affected interface
between the shell and algorithms. It was difficult to follow permanent changes with a
selection of algorithms, which showed the need for a more modular approach.

Unsystematic approach to development has usually a direct impact on code
flexibility. In arigid code it is difficult to change particular details and experiment
with different variants of algorithms, which plays an important role in development
of efficient algorithms. An evident example in this respect is offered by use of
different line search agorithms, especially with respect to termination criteria
Exactness of line searches effects the overall efficiency of different methods in
different ways, therefore it is important to allow different termination criteria. The
basic idea of the line search algorithm is however independent of this and the
algorithm can be programmed in such a way that its core is not affected much by
application of different termination criteria. From the view of preventing code
replication a good idea would be to implement line search agorithms in two levels.
The first level function would contain actual implementation of a line search and
would permit choosing between different termination criteria. Two or more higher
level functions would be just interfaces for use of the first level function with one or
another termination criterion. Algorithms would use these functions with respect to
criteria which are better for a specific agorithm. Implementation of higher level
functions contributes to clarity of code because their declarations are terse and do not
show functionality which is not used in a given place. Implementing common
operations only once on a lower level makes it easier to maintain the system and to
introduce improvements. In the present example the interpolation can be improved
only in the common low level line search function. The improvement affects all
derived higher level functions without affecting the way how these functions are
used in agorithms. Such a hierarchical system of functions must however be
implemented with care. It causes some excess in function calls, therefore it must be
checked if this has a significant effect on code efficiency.

Because of the reasons specified above, a more systematic approach to
development of a modular optimisation library for the shell has been initiated. Stress
is placed on the hierarchical structure of algorithms and utilities for the solution of
various sub-problems, on invariant and easy to use implementation interfaces for
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these utilities and on exploitation of commonality on the lower level as much as
possible. This should enable easier derivation and testing of different variants of
algorithms while keeping complexity under control and preventing unnecessary code
replication.

Generality of such alibrary was also taken into consideration as an important
design aspect. In this respect it is important to accept some compromises with taking
into account the purpose for which the library will be used. For example, it seems
unlikely that in problems to which the shell will be applied, any special structure of
linear algebra sub-problems that arise could play a crucia role. When the outline of
the module for matrix operations was set, dealing with matrices of a special structure
was not taken into account. Much stress was placed on the design of a clear and easy
to use implementation interface and on dealing with characteristics which often play
an important role in optimisation algorithms (e.g. testing positive definiteness of
matrices). The basic design of the module for matrix operationsis outlined in [29].

For an optimisation library designed for incorporation in the shell, many
aspects which are not directly related to algorithms are relevant. This includes some
general aspects of synchronous function within a broader system, such as error
handling and output control. The library will provide flexible access to these
functions with possibility of their adjustment to the system in which the library
functions will be used. Considering straightforward incorporation of developed
algorithms in the shell is important also from the point of view that the shell can
provide a good testing environment.

4.3.3.1 Example: Incorporation of an Optimisation Algorithm

A complete procedure of incorporating an optimisation algorithm in the shell
is shown in an example. This should more evidently illustrate the properties of the
shell implementation interface described above. The Nelder-Mead simplex algorithm
was chosen to illustrate the procedure. It isimplemented by a C function declared as

void mnsinmp(matrix sinp, vector val, double tol, int *it, int
maxit, vector *paropt, double *val opt, double func(vector x),
FILE *fp)

Matrix argument simp is the matrix of simplex apices (input and output),
vector argument val is the vector of function values in the simplex apices, tol is the
tolerance in function value (convergence criterion — input), it is the number of
iterations (output), maxit is the maximum allowed number of iterations (input),
paropt is the vector of optimal parameters (output), valopt is the optimal value of the
objective function (output), func is the address of the function that performs the
direct analysis, and file argument fp is the file in which results are written. matrix and
vector are derived types which represent matrices and vectors. Similarly as there
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exists a module for manipulating stack objects described in section 4.3.1.1,
corresponding modules exist for manipulation of objects of these two types.

First the analysis function, which will be passed as argument func of the
algorithm function, must be defined. The function must take a vector argument
(optimisation parameter) and return a floating point number (value of the objective
function). It can be defined in the following way:

doubl e ansi np(vector x)

{

set par ammon( X) ;

anal ysegen( );

return getobjectivenonm0);

}

The function first sets the shell vector variable parammom (the current
parameter values by convention) to its argument x, which is passed by the calling
algorithm. This is done by the open library function setparammom. Then the
common analysis function analysegen is called, which performs interpretation of the
analysis block of the command file, which is the user definition of the direct analysis.
The function then returns the value of the scalar variable objectivemom (value of the
objective function by convention), which is obtained by the library function
getobjectivemom. Thisvalueis set at interpretation of the analysis block.

The interpreter function which will run the algorithm can now be defined. It
is assumed that the algorithm will be run by the interpreter command optsimp with
the following argument list:

optsi mp(sinp val tol maxit)

where simp is amatrix argument (initial ssimplex), val is a vector argument (function
values in the initial simplex), and tol (tolerance) and maxit (maximum number of
iterations) are scalar arguments. It is assumed that the initial ssimplex and function
values in its apices are provided by the user and passed as command arguments. The
interpreter function can be defined as follows:

doubl e fi_optsinp(ficomfcom
{

mat ri x si mp=NULL;

vector val =NULL, paropt=NULL;
doubl e val opt, tol, maxit;
int it;

/* Extract interpreter command argunetns: */
readmat ar g(fcom &si np) ;
readvecar g(fcom &val ) ;
readscal arg(fcom & ol );
readscal arg(fcom &axit);

/* Run the algorithm */
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m nsi np(sinp,val ,tol, & t, maxit, &ar opt, &al opt, ansi np, f com
>out )

/* Set pre-defined shell variables paranmopt and objectiveopt,
whi ch represent optimal parameters and optimal val ue of the
obj ective function, respectively: */

set par anopt ( paropt) ;

set obj ecti veopt (val opt);

/* rel ease | ocal variables: */

di spmatri x( &si np);

di spvector (&val);

di spvect or (&paropt);

}

Comments in the above code explain its function to a large extent. The
function takes a single argument, which is the interpretation object described in
section 4.3.2 and through which all information regarding command file
interpretation can be accessed. The function first extracts arguments which are
passed through the argument block of the corresponding interpreter commands. Open
library functions of extraction of different types of command arguments are used.
These functions take the interpretation object as the first argument, since the
command argument block is accessed through it. Each of these functions sets the
field fcom->argpos to the position after the last extracted argument, so that the next
function can begin argument extraction on the right place. The second argument of
these functions is always the address of the variable in which the argument value is
stored. All interpreter command arguments are in this case input arguments of the
algorithm. In general there could also be other types of arguments, for example
specifications of the shell variables where specific algorithm data should be stored.

The simplex algorithm is then called. The last argument of the call but oneis
the direct analysis function ansimp, which was defined above. The last argument is
the file interpreter output file, which in the shell coincides with the shell output file.

The agorithm performs minimisation of the objective function and returns
optimal parameters in the vector paropt and optimal value of the objective function
in the number valopt (both are local variables). These values are then copied to the
appropriate pre-defined shell variables, so that they are accessible for further use by
other algorithms and utilities. This is done by the appropriate library functions.
Finally, the dynamic storage which was alocated within the function is released.

After the file interpreter function is defined, the appropriate command can be
installed in the file interpreter system. Thisis done by the following line of code:

instfintfunc ( “optsinp”, fi_ optsinmp );

instfintfunc is another function of the shell open library, which installs a file
interpreter command on its function definition stack. Its first argument is the name of
the command, which will be used in the shell command file. The second argument is
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the address of the function which is run by the file interpreter when the
corresponding command is encountered. The above code must be added in the
specific source file, which is compiled and linked with the optimisation shell. This
code is executed at shell initialisation.

4.3.4 Parallelisation

Parallel execution of code represents an attempt at exceeding practical limits
imposed by the capability of available computers, which are often very restrictive for
demanding numerical applications. Parallelisation of the optimisation shell'®¥ is the
fina implementation issue discussed in this text. It is instructive because
paralelisation usually requires considerable rearrangement in the code structure. In
the shell a different philosophy of parallel execution is transferred to the algorithmic
level, which enables continuity of the described shell concepts and coexistence of the
paralel and sequential schemes. The shell provides support for straightforward
incorporation of parallel algorithmsin asimilar way as sequential algorithms.

The parallel interface has been built using the MPI (Message Passing
Interface)® library and the LAM (Local Area Multicomputer)®¥ environment. This
enables a system to be implemented on a wide range of architectures, including
shared and distributed memory multiprocessors as well as arbitrarily heterogeneous
clusters of computers connected inaLAN (Local Area Network).

Direct anayses are treated as basic operations that can be executed
simultaneously. The parallel scheme is implemented as a master-slave architecture
(Figure 4.7). The master process controls execution of optimisation algorithms while
slave processes perform simulations. Several slave processes run simultaneously on
different processing units performing simulations for different sets of optimisation
parameters. Both master and slave processes are actually optimisation shells with
complete functionality, but their execution differs due to different functions.

The master process is responsible for the process management and keeps
track of the slave processes status. All actions of the slave processes are triggered by
the master, so every change of the slave status is conditional on the master request.
The master process also registers the execution times of direct analyses. This
information is used for the so-called load balancing in the case when the master can
choose between severa slaves that are available for execution of anew task.
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Figure 4.7; Paralel optimisation scheme!®. The main optimisation
shell controls the optimisation process while the slave shells interact with
simulation programs and execute direct anal yses.

The direct analysis is performed in three parts. The first part is executed by
the master process, which sends the analysis request and appropriate data (e.g.
parameter values) to a slave. The second part is executed by a slave process, which
runs the ssimulation, collects results and evaluates appropriate quantities, which are
then sent back to the master. The third part is executed by the master process. The
guantities sent by the slave process are received and transferred to the calling
optimisation algorithm.

Each part of the function evaluation is performed by its own function, which
interprets a specific pre-defined block in the master or slave command file. This
enables not only automatic exchange of parameter values and analysis results, but
also arbitrary data exchange between the master and slave processes. The parallel
interface provides file interpreter commands for this task.

Optimisation algorithms can use the first and third functions, which transfer
data between agorithms and function definition in the appropriate command files.
These two functions are an equivalent to the common analysis function in the
sequential scheme. In order to enable proper task distribution, the first function must
not only accept the parameter values, but aso return to the algorithm identification of
the slave process to which the analysis request has been sent. Similarly, the third
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function must return the identification of the process that performed the task. The
first function must check whether there is any slave process ready to accept the task.
The third one must check if slave processes have finished any task and, if necessary,
wait for the next available results.

The master process interprets a command file in the same way as a sequential
scheme. Every action is a consequence of a function call in the command file. The
behaviour of slave processesis different since these processes only respond to master
requests. When a dlave process is spawned, it interprets its command file without
exiting and then waits for the master process requests. The interpretation of the
command file is a part of initialisation, while later on every action is triggered by a
master process request. The communication between the master and slave processes
is synchronised!®®. To make the described functionality more clear, the course of a
direct analysisis desctibed below.

Figure 4.8 shows how a direct analysis is executed on the master (the left-
hand side of the figure) and a dave (the right-hand side) process. Times of
characteristic events are marked by to through tos in the order in which these events
follow each other. The time scale is not proportional.

When the agorithm requires execution of a direct analysis and a dave
process which is ready to accept atask exists, the master process sends a task request
to that process (t; to tg). The dave isin the waiting state at that time, which is known
to the master because it keeps track of slave processes status. The slave reestablishes
such a state every time after it completes an action requested by the master (tp and tos
in the figure).

The master notifies the dlave of the request by sending it the
“BEGIN_DATA” message. After the receipt of this message the slave accepts the
data sent by the master and stores it to the appropriate location. The master is
sending the contents of its variables to the slave. The slave stores these contents in
the variables of the same names (note that both master and dave are actualy
complete optimisation shells). Data packages carry complete information regarding
the position of the data in the system of shell variables. Interpretation of the
“analysis’ block of the master command file (t3 to t4) is a part of sending a task
request to the slave. In this block the user can send arbitrary data from the master
system of user defined variables by using appropriate file interpreter commands.
After that, standard data, i.e. the vector of parameter values parammom, is sent
automatically (ts to tg). The “END_DATA” message is then sent to the slave. After
its receipt (t;) the dave stops accepting data from the master and expects the
“START_AN” message. Its receipt invokes the slave process anaysis function (tg to
t14), which includes interpretation of the “analysis’ block of the slave command file
(t10 to t12). Normally this part corresponds to the actual performance of the direct
analysis, while other parts simply take care of the proper data transfer between the
master and the slave.
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Figure 4.8: Course of adirect analysisin the parallel scheme™.

After sending the task, the master can continue to perform the agorithm with
available data, send parallel tasks to other slaves and accept results from them. The
slave sends the “BEGIN_RES’ message to the master after it finishes the analysis
(t4). The message is buffered until the master is ready to accept results (t11).
Depending on the state of the agorithm this can happen in two ways. The master can
just check if such message has been sent by any of the daves. If thisis the case, it
accepts the results (t1s to to4); otherwise it continues to do other operations and
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repeats the check later. The other situation occurs when the master can not do
anything until it obtains results of at least one direct analysis. This typically happens
when all available slaves are busy and the master has already treated all results which
have arrived. In this case the master blocks its execution until the message
“BEGIN_RES’ isreceived from any of the slaves.

Receipt of results is somehow a reversed process to that of sending a task.
After a receipt of the “BEGIN_RES’ message the master accepts data sent by the
dave until the receipt of the “END_RES’ message. The slave sends this message
after sending the standard data (t;; to tig), e.g. the value of the objective and
constraint functions and their gradients. After that, the master interprets the
“completion” block of its command file (t2; to ty) where the user can send requests
for additional data to the dave. The dave waits for such requests and sends back the
requested data (to to tp3) until it receives the “GOT_RES’ message. The master
sends this message after interpretation of the “completion” block. For the dave its
receipt means that it has finishes the task. It reestablishes the waiting state (t»s5) and is
able to accept further task requests.

The shell provides various mechanisms for process management and load
balancing. Processes can be controlled, enabled and disabled by the user during the
runtime®”. This enables better performance to be achieved for a given kind of
algorithm and controlled use of computational resources.

The parallel scheme does not significantly affect the concepts of the shell,
neither from the user point of view nor from the view of the implementation interface
for incorporation of new tools.

Parallel algorithms are incorporated in the shell in asimilar way as sequential
algorithms. There are two fundamental differences. The direct analysis now consists
of two parts, executed at different times while other analyses can be run in between.
A specia function executes each part. These functions are caled by the algorithm
and must be provided as arguments at the call to the algorithm in the appropriate file
interpreter function. They are referred to as the calling analysis function and the
returning analysis function. They are specific for each agorithm, while each of them
cals the appropriate common analysis function (calling or returning, respectively).
The second difference is that calling and returning analysis functions return the
identification number of the process which performs the appropriate analysis. Thisis
necessary for the algorithm in order to connect specific analysis results (which are
received in unpredictable order) with the corresponding optimisation parameters.
Both differences are fundamentally conditioned by the nature of parallel execution
and therefore do not represent an unnecessary excess in complexity.
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S |ILLUSTRATIVE EXAMPLES

5.1 Inverse Estimation of the Hardening Curve from the
Tension Test

511 TheTension Test

The tension test (Figure 5.1) is widely used for the mechanical testing of
materials. However, accurate estimation of plastic material properties is difficult due
to the non-uniform stress and strain distribution in the necking zone (Figure 5.2).
Because of this phenomenon, it is not possible to determine the hardening parameters
directly by measuring elongations at different loads. In order to determine true stress
the Bridgeman correction is often applied which requires additional measurements of
contractions at the narrowest part of the deformed sample and curvature of the
neck™. The approach is based on the assumptions that the contour of the neck is the
arc of acircle and that strains are constant over the cross section of the neck.

In the present section an inverse approach to estimation of hardening
parameters is considered!? ™!, This approach does not incorporate idealisations in the
form of a priori assumptions on the stress or strain field. The material behaviour is
modeled by avon Mises elasto-plastic material model ™.

/9]0

o
—
A8

P15

62

225

Figure 5.1: Sample geometry.
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2182, 044
2000, 456
1218, 868
1637, 281
1455, 693
1274108
1042, 517
910, 9232
723, 3414
E47, 7528
266, 1657
134, 5773
2,330034

C =1271MPa
n=0.0886

Figure5.2: Longitudinal stress distribution obtained by numerical
simulation. Exponential hardening law with C =1271MPa and

n=0.0886 was assumed. The elongation is 8mm.

5.1.2 Estimation of an Exponential Approximation

An exponential hardening law is assumed to approximate the relationship
between the effective stress and effective strain:

g=Ce" . (5.1)

The unknown parameters C and n need to be derived from measured forces at
certain elongations of the samples. Two series of measurements were performed for
two different steel grades. The geometry of the samplesis shown in Figure 5.1, while
the experimental data are given in Table 5.1 and Table 5.2 for each series. Graphic
presentation of the same data for the first sample of each seriesis given in Figure 5.3.

Table 5.1: Experimental datafor the first series.

Elongation Force [N], Force [N], Force [N],
[mm] sample 1 sample 2 sample 3

3 65900 68800 66800

4 67800 69900 67800

5 68650 70600 68700

6 68900 70600 68700

7 68850 69200 68400

8 68000 66600 68200
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9 65800 61300 65100
10 61800 54100 59300
Table 5.2: Experimental datafor the second series.
Elongation Force [N], Force [N], Force [N],
[mm] sample 1 sample 2 sample 3
3 86000 85800 84700
4 87500 86300 85600
5 87800 86500 86400
6 86500 85900 84500
7 81700 84600 80900
8 74800 78200 72600
Force [N]
85000 series 2, sample 1
80000
75000 T
70000 series 1, sample 1
% \I
4
L 5 6 7 8 9 10

Elongation [mm]

Figure5.3: Measured data for the first sample of each series.

Solution of the problem was found by searching for the parameters which give
the best agreement between measured and respective numerically calculated
guantities. The agreement can be defined in different ways, but most commonly used
is the least-square concept, mostly because of its statistical background®?1%!. The
problem is solved by minimising the function

x*(c.n)= i - Fiz(c’ i ,

o,

(5.2)
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where Fi(m) are measured forces at different elongations, F (C,n) are the respective
quantities calculated with the finite element model by assuming trial values of
parameters C and n, g; are the expected errors of appropriate measurements and N
is the number of measurements.

The scatter of experimental data for the same series which is evident from
Table 5.1 and Table 5.2 is mainly due to differences in samples rather than
experimental errors. This has an effect on the estimated parameters C and n. The
results are summarized in Table 5.3 and Table 5.4.

Table5.3: Calculated parameters C and n for thefirst series.

samplel | sample2 | sample3
C[ M pa] 1271 1250 1258
n 0.1186 0.1010 0.1132

Table5.4: Calculated parameters C and n for the second series.

samplel | sample2 | sample3
C[M Pq] 1492 1511 1462
n 0.08422 0.09269 0.08318

It seems that the applied numerical model simulates the bahaviour of the
investigated material adequately. This is indicated?? by the fact that the obtained

minimal values of the function XZ(C,n) were never much greater than one, assuming

that the measurement errors (g;in (5.2)) are one percent of the related measured
values.

51.3 Estimation of a Piece-wise Linear
Approximation

The flow stress of the material is aresult of different hardening and softening
phenomena which interact during plastic deformation. This interaction is often so
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complex that it is difficult to predict the form of the hardening curve 6(5). In such

cases it would be desirable to find an approximation of the hardeining curve without
making any preassumptions regarding its form. This can be donein severa ways. In
this work, an approach where points of the hardening curve defining a piece-wise
linear approximation are sought is considered.

The experimental measurements used for estimation of the piece-wise linear
approximations are summarized in Table 5.5 and Figure 5.4. The data are for the first
sample of the first series, but with 16 measurements instead of eight used for
evaluation of exponential approximation.

Table5.5: Experimental data used to obtain a piece-wise linear
approximation of the hardening curve.

Elongation [mm] Force [N]
2 62200
2.5 64400
3 65900
35 67000
4 67800
4.5 68200
5 68650
55 68800
6 68900
6.5 69000
7 68850
7.5 68600
8 68000
8.5 67100
9 65800
9.5 64000
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Force[N]
69000 |

68000 |
67000 |
66000 |
65000 |
64000 |
63000 }

3 4 5 6 7 8 9
Elongation [mm]

Figure 5.4: Measurements used for calculating a piecewise
approximation of the hardening curve (measurements are for the first
sample of thefirst series).

The points on the hardening curve were obtained by minimising the function

m_eg(~ ~ —_ 1\
USRS VLR TCY RS

: (53

where parameters G; are values of the curve 6(5) at arbitrary equivalent strains g; .
The yield stress was known from experiments.

Approximations of the hardening curve with 4, 6, 8 and 10 points were
caculated. The results are shown in Figure 5.5 to Figure 5.8. The exponential
hardening curve with parameters C =1271M Pa and n = 01186 (as obtained by the
inverse analysis assuming the exponential hardening law) is drawn in each figure for
comparison. It is evident from these graphs that calculated piecewise linear
approximations are in relatively good agreement with the calculated exponential
approximation.
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7(MPa)

1200

1100

1000

Exponential law
e———e Piece-wise linear

900

0.1 0.2 0.3 0.4 0.5 0.6 0.7
E

Figure 5.5: Comparison between exponential and piece-wise linear (4
points) approximations of the hardening curve.

a(MPa)
1200
1100
1000
Exponential law
900 [ ———o Piece-wise linear
/' 0.1 0.2 0.3 0.4 0.5 0.6 0.7

3

Figure 5.6: Comparison between exponential and piece-wise linear (6
points) approximations of the hardening curve.
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1200 |(MPa)

1100
1000
900 [ Exponential law ]
o———e Piece-wise linear
800

0.1 0.2 0.3 0.4 0.5 0.6 0.7
E

Figure 5.7: Comparison between exponential and piece-wise linear (8
points) approximations of the hardening curve.

1200
1100
1000
900 Exponential law
800 e———e Piece-wise linear
¢ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

3

Figure 5.8: Comparison between exponential and piece-wise linear
(10 points) approximations of the hardening curve.

514 Numerical Tests

A number of numerical tests were performed to investigate the stability and
uniqueness of the inverse solutions for the exponential approximation of the
hardening curve.
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Severa inverse analyses were performed with very different initial guesses
and they always converged to the same results. This is the first indication that the

problem is not ill-posed. Further examination was made by plotting the )(2 function

(Figure 5.9 and Figure 5.10). A distinctive minimum can be recognised in these
figures without indication of possible existence of several local minima.

2

X

500
400

300

100 \
0.11 0

Figure 5.9: Dependence of function x> on parameter n at measured
datafor sample 1 of series 1. Parameter C is set to 1271 MPa

.12 0.13 0.14 0.15

Parameter n

Figure 5.10: Dependence of function x? on both parameters for the
same measured data asin Figure 5.3.
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To test the stability of the solutions, a Monte Carlo simulation™ was
performed. It was assumed that the correct values of both parameters were known.
For this purpose, the previously calculated values for the first sample of the first
series were taken, namely C=1271 MPa and n=01186 (see Table 5.1). With

these values the so called “exact measurements’ Fi(o) were obtained with the same
finite element model used for the inverse analysis of the real measurements. The

“simulated measurements’ Fi(m) were successively obtained by adding random

errors r; to the “exact measurements’. Errors were distributed normally as

o .20
ap__1 expél— i % (5.4)

dri J2m 25°

where 5 is the standard deviation of distribution. This distribution is often used to
simulate measurement errors which do not have a clearly defined originl?.

For each set of “simulated measurements’ parameters C and n were calcul ated.
Three different setsof 5 were chosen so that ratios

R = ‘j—o‘ (5.5)

were uniform within each set. Fifty numerica experiments were performed for
R =001, twenty for R=01 and twenty for R=0001. Then average values zZ and
dispersions S, of the searched parameters were calculated for each set, according to

_ 1k
Z= EZ z (5.6)
and

szié(- 2)? . (5.7)

The results are summarized in Table 5.6. Figure 5.11 shows the distribution of
calculated parametersat R=001.
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Figure5.11: Results of the Monte carlo smulation for R= 001.

Table 5.6: Results of Monte Carlo simulations. Average values and dispersions of

calculated parameters at different R

R=0,001 R=001 R=01
C 1271.4 1271.8 1287
Sc 0.58 4.9 69
n 0.118628 0.11867 0.1163
Sh 0.00016 0.0015 0.014

515 Concluding Remarks

The above example illustrates the applicability of the inverse approach in
parameter identification. Inverse identification can become a useful tool for
estimation of those parameters which are difficult to obtain with analytical treatment
of experimental results due to the complexity of the phenomena involved. An
important advantage of the approach is that parameters are derived by using the same
numerical model which is then applied in direct simulations.

It is necessary to take the appropriate precautions when the approach is used.
It is especially necessary to make sure that the inverse problems is well conditioned
and has a unique solution. If measurement errors can be estimated, then statistical
tests can be used to verify the adequacy of the applied model and estimated
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parameters. It is wise to use the estimated parameters in additional tests where
simulation results are compared with measurements.

5.2 Shape Optimisation of Cold Forging Processes

Two simple examples are included to illustrate the applicability of the
optimisation techniques in the design of forming processes. In the first example a
pre-form of a cold forged workpiece is optimised in order to obtain the desired final
form. In the second example the shape of the tool in the first stage of atwo stage cold
forging process is optimised with the same objective. These examples explain the
methodol ogy which could be applied in the optimisation of real processes.

52.1  Optimisation of Preform Shape

In the present example an axisymmetric workpiece is upset by flat tools
(Figure 5.1) with a constant stroke. The optimisation objective is to achieve a
prescribed shape of the free boundary of the workpiece by changing the initial shape
of this boundary. The Von Mises elasto-plastic material model was used for the
workpiece while the tool was modelled as a rigid body. The coulomb friction law
was used to model the contact condition between the die and the tool. Because of
symmetry the process was modelled in two dimensions.

Figure 5.12: The forming Process.
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The initial height (h=100 mm) of the workpiece was reduced by 40 per cent.
The desired shape of the free edge was specified by a function prescribing the
dependency of x position on y position of the nodes on the free boundary, i.e.

x, =f») i=1.,N, (5.8)

where N is the number of nodes on the free boundary. Two different final shapes
were prescribed:

f)=R=13h (5.9)

and

— 7Y, 7Y,
f(y)= R+COSE40mm E:OSElSOmmE (5.10)

The problem was solved by minimisation of the following objective function:

X (p) = i((x () - T (v, (P)))* - (5.12)

p is the vector of optimisation parameters which describe the initial free boundary
shapeand x and y, arethefinal positions of these nodes.

The initia free boundary shape was parametrised by polynomia Lagrange
interpolation'®!

x=P(p,y) (5.12)

on a given number of control points equidistantly distributed in the y direction
between the lowest and the highest point of the workpiece (including the extreme
points). The x coordinates of the control points represented optimisation parameters
p,. Optimisation parameters (i.e. coefficients of the interpolation polynomial)

determined the initial positions of nodes on the free boundary:

x° = P(p, yio), i=1..,N, (5.13)

The Lagrangian interpolation is defined with'®!
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L(Py, Poyeees P Y) = i pL(y), (5.14)

where

(y_ pl)"'(y_ pk—l)(y_ pk+1)"'(y_ pM) (5.15)

L (psoons Py Y) =
o N (pk - pl)"'(pk - pk—l)(pk - pk+l)"'(pk - pM)

and M is the number of parameters. The control points lie on the interpolation

polynomal, therefore parameters which are the x coordinates of these points have a

geometrical interpretation.

Table 5.1 summarises the optimisation results. The results are shown
graphically in Figure 5.13 and Figure 5.14. The quantity

e

< Nx >=
N

(5.16)

was introduced in order to make comparison of the results more evident.

Table5.7: Results of optimisation for required flat boundary defined
by (5.9) and for the required curved boundary defined by (5.10) for
different numbers of parameters.

Flat boundary required | Curved boundary required
X Imm?  <Ax>[mm] | x[mm?] <Ax>[mm]
0,1072244 0,0125943 24,6340628 0,1908951
0,0114715 0,0041194 0,4628830 0,0261675
0,0000310 0,0002143 0,4060472 0,0245084
0,0000033 0,0000700 0,2874089 0,0206194
0,1152899 0,0130594
0,0209804 0,0055710

~No s wn<Z
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T — HHmmm M=3
- -
¥?=1.072e-1 | <Ax>=1.259%-2 ¥?=1.147e-2 | <Ax>=4.119e-3
T M=4 T —C
= -

¥?=3.1le-5 <Ax>=2.143e-4 ¥x>=3.3e-6 <Ax>=7.0e-5

Figure 5.13: Comparison of solutions for the required flat free
boundary defined by (5.9). Theinitial finite element mesh is depicted on
the left hand side and the mesh after the forming process on the right
hand side of each graph.

LTI =2 T —e

=
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¥2=4.060e-1 <Ax>=2.451e-2 ¥?=2.874e-1 <Ax>=2.062e-2
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A

¥?=1.153e-1 <Ax>=1.306e-2 ¥?=2.098e-2 <Ax>=5.571e-3

Figure 5.14: Comparison of solutions for the required curved free
boundary defined by (5.10).

The above results were obtained with a friction coefficient ¢ =0.1 between

the tool and the workpiece. The friction coefficient plays an important role in the
process, therefore its influence was analysed. Figure 5.15 shows the simulation of the
process with different friction coefficients, where the optimal initial shape of the
optimisation problem with a required flat boundary was adopted as the initial
geometry of the workpiece. Figure 5.16 shows the optimal initial shapes for this
problem with different values of the friction coefficient.

==
===

=0 T —r—t
=

i

I w=0.2 ]

==
E==|

ssissE=ss

Figure 5.15: Simulation of the process with different values of
friction coefficient . The process starts with the optimal initial shape

for ¢ =0.1 and required flat free boundary.
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Figure 5.16: Solution of the optimisation problem with different
friction coefficients .

5.2.2  Shape Optimisation of a Tool in a Two Stage
Forging

In the previous example the shape of the forged workpiece was optimised
with the aim of achieving the desired final shape. In multi stage forging processes the
shape of the workpiece is obtained by the preceeding operation in the forging
sequence. This situation is illustrated by the following example where the tool shape
for the first of the two forging operations is optimised in order to achieve the desired
final shape of the workpiece.

The optimised process is outlined in Figure 5.17. In the first stage the
axisymmetric workpiece is forged by a tool with curved boundary. In the second
stage the workpiece is forged by aflat tool with the stroke corresponding to the final
height reduction of 40 per cent. The same material model as in the previous example
was assumed.
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R
2
1
= o cylinder radius r=50 mm
"""""" QI cylinder height: h=50 mm
\Pj tools radius R=75 mm
tool 1 height: h;=30 mm
uj allowed parameter range: Ap=15mm
=
M u;: contact surface control point y coordinates
1 v;: free surface control point x coordinates
pi: tool 1 control point x coordinates
r (correspond to optimisation parameters)

Figure 5.17: Outline of the optimised process.

The objective of optimisation was to find such a shape of the first tool that
both the contact surface and free boundary of the workpiece are flat after the second
stage. Thiswas achieved by minimisation of the following objective function:

D(p)=Dup)vp) =D, +0, =y UL S LD 57
where
a=y Y 5.18
u= 2 M, ( . )
V= ivﬁ] (5.19)

M is the number of control points (nodes) on the contact surface of the workpiece, N
is the number of control points on the free surface of the workpiece, and the meaning
of other quantities is evident from Figure 5.17. The dependence of u, and v, on

optimisation parameters p was suppressed for clarity.
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The shape of the contact surface of the first tool was parametrised with 3™
order splines in such a way that optimisation parameters correspond to y coordinates
of the equidistant control points defining the splines.

In order to avoid physically infeasible situations, the range of parameters p.
was limited to an interval of the height A p (Figure 5.17). This was achieved by
introducing new variables” t. and defining the transformation F that maps t, to p,,
in the following way:

pi = F(t|) :%(pmin + pmax) +%(pmax - pmin) arCtg(ti)’ (520)

where p,;, and p,, are lower and upper bounds for parameters p,, respectively.
The transformation F maps the interval (—o,0) to (P, Pra ). The objective
function defined in the space of parameterst,, i.e.

D(t)=D(p(t)). (5.21)

was minimised with respect to these parameters. Results are summarised in Table
5.8. Parameters p, in the table are scaled with respect to h, =30mm. Five shape

parameters were used, while py denotes the tool stroke. The first row of the table

contains results for the process performed with the flat tool in the first stage. The
second row contains results for the optimised shape with a constant stroke in the first
stage (20 mm). The third row contains results for the case where the stroke of the
tool in the first stage is taken as the sixth parameter. The corresponding forging
sequences are shown in Figure 5.18 to Figure 5.20

Table5.8: Optimal parameters and values of the objective function.

P1 P2 Ps Pa Ps Ps Dy D, D

1 1 1 1 1 1 2/3 1.063E-4 | 7.927E-3 | 8.033E-3
0.506 0.992 0.991 0.539 | 0.509 2/3 1.67E-04 | 2.61E-04 | 4.28E-04
3 0.506 0.991 0.992 0832 | 051 0.832 1.30E-04 | 1.49E-05 | 1.44E-04

N
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Figure 5.18: Forging process with aflat tool.

L

Figure 5.19: Forging process with an optimised tool shape and a
prescribed stroke.

i

i
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T
T
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Figure 5.20: Forging process with an optimised tool shape, where the
stroke was taken as a parameter.
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523 Optimisation of Heating Parametersfor Hot
Forming Operation

In the present example a two stage forming process is considered. In the first
stage (heating, Figure 5.21) an axisymmetric billet with length L=30 mm and radius
r=10 mmwith initial temperature 20 C is heated at x=L with a heat flux F, for time
t, while the surface at x=0 is kept at the initial temperature. Other surfaces are
insul ated.

In the second stage (forming, Figure 5.22) the billet is deformed in such a
way that the prescribed displacement at x=L is u,=-2 mm and at x=0 is u,=0. Other
surfaces are free. The deformation is modelled by an ideal elasto-plastic material
model where the flow stress depends on temperature. No heat transfer is assumed in
the second stage.

Materia properties are summarised in Table 5.9 and Table 5.10. Figure 5.21

and Figure 5.22 show the discretised configurations of the specimen before and after
heating and forming. Only half of the domain is represented due to symmetry.

1170.013

LT LN
!ETD.DDTJ
— B932. 1846

—1 T87.I751

€31 .3657
595 . 54
439. 53970
402 . 62TE
307.7z82
2ll.81@8
115.2054
20, 0000

Figure 5.21: Temperature distribution after heating. The heat flux
F,=3.500 W/m? is applied for t,=10s.
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Figure 5.22: Effective stress distribution in the deformed specimen
after forming. Displacement of the right surfaceis ux=-2 mm.

Table5.9: Materia properties.

Thermal conductivity (K) 30 W/mK
Heat capacity (C) 500 Jkg K
Density (p) 7850 kg/m®
Y oungs modulus (E) 210000 MPa
Poissons ratio (v) 0.3

Table5.10: Yield stress as afunction of temperature.

Temperature [°C] Yield stress[MPd]
20 700
100 620
200 560
300 540
400 510
500 500
600 390
700 200
800 180
900 150
1000 120
1100 90
1200 60

195



5. lllustrative Examples 5.2. Shape Optimisation of Cold Forging Processes

The aim is to find optimal heating parameters defined by heat flux F, and
heating time t,, so that the difference between the required and computed shapes of
the specimen after forming is minimal. The objective function to be minimised is
expressed in terms of the differences of the required and computed node coordinates
in the interval 20mm < x < 28mm. The choice of heating parameters is constrained by
a maximum permissible temperature of the specimen T1ax=1200°C. The constraint is
presented in Figure 5.23.

6 1087

5 105

4 108

3 108

2 108

15 20
t[z]

Figure 5.23: Constraint imposed on the choice of heating parameters.
Contours show maximum temperature of the specimen as a function of
applied heat flux and heating time. Spacing between contoursis 100°C

The constraint isimplied by adding a penalty term in the objective function:
D(p) = Z =y"(P)f +Cexp(T(P) ~T,m)) (5.22)

p:[FO,th]t is the vector of optimisation parameters. The noda coordinates

prescribed by the required final shape are denoted by upper index p and the nodal
coordinates calculated at given values of optimisation parameters are denoted by
upper index m. The temperature at the right-hand end of the billet after heating is
denoted by T(p).
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The heat flux and heating time can only have positive values. Thisis ensured
by applying atransformation function that maps parameters from [-co, 0] to [0,0]:

P =G(q) = Aexp(Bg;), i =12. (5.23)

The billet deformation after the forming depends on the billet temperature
distribution, which is calculated according to the following equation!®1?2;

_Fx_8Fl & (-)" _K@n+)?*7°t . [2n+1)7x
T F ) = 7 2 Han+ 02 2P0 car )%’”EK 2l E(S'%

Temperature distributions for three different heating regimes are presented in Figure
5.24.

Figure 5.24: Temperature distributions along the x axis for three
different heating regimes.

Different temperature distributions result in different shapes of the billet after
the forming. Shapes that correspond to temperature distributions from the Figure
5.24 are presented in Figure 5.25.
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Figure 5.25: Deformed shapes of the specimen after forming for three
different heating regimes from Figure 5.24.

The required shape of the billet after both stages of forming was prescribed
by the following function:

3
1+ 25000exp(-2(x — 20)) -

yP(X)=r + (5.25)

Optimisation was done by the inverse shell using the nonlinear simplex
method. Optimal solution was found in 34 iterations. The required shape and the
shape achieved with optimal parameters are shown in Figure 5.26.
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Figure 5.26: Required and optimal shape of the billet at optimal
parameter values Fo = 3628674.9 W/m? and topt = 7.99 s. Vaue of the
objective function at these parameters was D(Popt) = 0.1448.
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The optimisation shell tabulating utilities were employed to sample the
objective function in the neighbourhood of optimal parameters. Sampled data was
plotted by Mathematica. Figure 5.27 shows 19x17 points diagram of the objective
function without the penalty term. In Figure 5.28 the constraints, the optimisation
path and the optimal solution are also shown.

Figure 5.27: Objective function without the penalty term.
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Figure 5.28: Contours of the objective function with temperature
constraint and optimal solution.
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5.3 Optimal Prestressing of Cold Forging Dies

The final example considered is an industrial case and is related to
prestressing of cold forging dies which are subject to low cycle fatigue.

Cold forging dies are subjected to high operational loads which often lead to
fatigue failure. To prevent or reduce excessive growth of fatigue cracks the dies are
used in a prestressed condition which must be designed in such a way that plastic
cycling and tensile stress concentrations in the die are minimised™®. This can be
achieved by optimising the geometry of the interface between the stress rings and die
inserts. Prestressing of an axisymmetric die™¥ which can be simulated in two
dimensions is considered first. Then a three dimensional prestressing exampl e
IS presented.

5.3.1 Optimisation of the Geometry of the Outer
Surface of an Axisymmetric Die

Prestressing is used in cold forging technology to increase the service life of
tooling systems. In conventional approaches the interference between the stress ring
and the die insert is uniform resulting in small variations of fitting pressure
distributions. However, the introduction of high strength stripwound containers®
allows relatively high variations of the fitting pressure which can be optimised.

Figure 5.29: Prestressing of the die insert.

In the approach proposed in [6] a non-uniform fitting pressure distribution is
obtained by modifying the geometry of the interference which is parametrised as
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presented in Figure 5.30. By optimising the position and geometry of the grooveit is
possible to achieve high compressive stresses in the inlet radius (Figure 5.29) and
therefore reduce damage and eventual crack propagation in thiscritical part of the die
insert during use.

Figure 5.30: Geometric design of the interference at the die-ring
interface.

The tooling system was discretised by the finite element method as presented
in Figure 5.31. Both the tool and the ring were considered elastic and Coulomb’s
friction law was assumed at their interface. The prestressed conditions were anal ysed
so that the die insert and the ring overlap at the beginning of the computation.
Equilibrium is then achieved by an incremental-iterative procedure by updating the
contact penalty coefficient.

Two objectives of the optimisation procedure were applied: to position the
minimum of the axial stress acting in the inlet radius close to node 6 (see Figure
5.31) and to make this minimum as numerically large as possible. Optimisation was
performed as minimisation of the objective function which was designed to measure
the violation of our objectivesin the following way:

F(abar,82) = K(f,(abar,02) +old(abar,az),  (5.26)

where fm(a, b, Ar, Az) is a measure of the distance between node 6 and the point on

the inlet radius where minimum axial stress is calculated, o'%)(a,b,Ar, A7) is the

axial stress at node 6 and K is a weighting factor which weights the importance of
the two objectives. If the second term in (5.26) is omitted, the problem does not have
a unigue solution. There is more than one set of parameters for which the minimum
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axial stress appears exactly in node 6. Therefore the objective function was designed
with both terms. The results obtained with K =1000 and K =100 are given in
Table5.11 and Table 5.12, respectively.

These two nodes are fixed in
vertical direction

Figure 5.31: Numerical discretisation of the tooling system.

After the optimisation a parameter study has been performed to assess the
stability of the problem. It has been found that the problem is well posed, so that the
optimisation approach presented can be applied. The only restriction is the initial
guess which should be chosen so that the axial stresses in the inlet radius are
compressive.

Table5.11: Results of optimisation with K =1000.

a[mm] b [mm] Ar [mm] | Az[mm]
Initial guess 6 8 0.3 -4
Final solution 497 6.15 0.319 -7.01
Final value of F -1511
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Table 5.12: Results of optimisation with K = 100.

a[mm] b[mm] | Ar[mm] | Az[mm]
Initial guess 6 8 0.3 -4
Final solution 5.79 7.11 0.308 -5.28
Fina value of F -1855

5.3.2 Evaluation of Optimal Fitting Pressureon the
Outer Die Surface

In the present example the fitting pressure distribution at the interface
between the die insert and the stress ring (Figure 5.32) was optimised.

In order to reduce the appearance of cracks, the spherical part of the stress
tensor at the critical locations is to be minimised by varying the fitting pressure
distribution at the interface between the die insert and the stress ring. The following
two constraints were taken into account:

* The normal contact stress distribution at the interface between die insert and
stress ring must be compressive.

* The effective stress distribution at al points within the prestressed die must be
below the yield stress.

Critical locations

Figure 5.32: A prestressed cold forging die with indicated critical
locations where cracks tend to occur.
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The fitting pressure distribution was represented by 220 parameters
corresponding to a subdivision of the contact surface into 20 vertica and 11

circumferential units A, (Figure 5.33). Index k which associated the optimisation
parameter (i.e. the pressure) p, with the corresponding A, is computed as
k=(j-1)a1+i.

Because of symmetry only one half of the die was simulated (Figure 5.33).
The objective function was defined as the spherical part of the stress tensor at the
critical location, i.e.

6(p)==0i"(p). (5.27)

The first constraint was enforced by using transformations where instead of
optimisation parameters p a new set of variables t is introduced. The following
transformations are applied:

P =a 9. g, =€e*. (5.28)

In the above equation a is a scalar variable which satisfies the second
constraint. Once the optimisation problem is solved for t the optimal set of
parameters p is derived by using equation (5.28).

Sensitivities of the objective function with respect to optimisation parameters
were calculated according to the adjoint method (chapter 3) in the finite element
environment, as well as the objective function. They are shown in Figure 5.33. These
calculations were used in the optimisation procedure. The obtained optimal pressure
distribution is shown in Table 5.13 and in Figure 5.34. Figure 5.35 shows the
prestressing conditions and the effective stress distribution for the optimally
distributed fitting pressure.

Table 5.13: Optimal set of parameters p®™ defining the fitting
pressure distribution.

93.22| 89.60| 85.38| 82.11|80.36| 83.31| 92.85| 105.13| 121.88| 136.91| 147.27

101.00{ 97.53|90.23| 82.95|81.88| 87.34| 102.07| 121.50 151.92| 174.00| 185.89

116.63| 103.89| 91.26| 81.00| 77.90[ 90.44| 119.19| 160.50| 209.39| 246.51| 270.45

129.90| 108.10| 86.25| 66.13| 60.13| 79.96| 135.44| 209.61| 297.44| 357.58| 398.65

138.26| 103.64| 64.15| 27.40| 7.03| 43.68| 124.26| 257.59| 409.57| 526.52| 600.05

O O B WIN| P —

129.25( 85.72| 27.50 0.55( 0.30 0.58| 102.36| 328.85| 582.39| 764.12| 859.46
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5.4 Further Examples

A number of other problems were solved by the presented optimisation shell.
In the work done by Musil™ friction parameters were estimated from the results of
the spike forming test (Figure 5.36). A block sample was pressed between two
cylinders and a plate. Torque and the two components of the force acting on the
cylinders were measured at different stages to provide input for inverse analysis.

deformed
specimen

Figure 5.36: Experimental set-up and numerical simulation of the
spike forming test.
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Another inverse parameter identification is described in the work done by Goran
Kugler!™ where the dependence of the heat transfer coefficient between two bodies
in contact on the normal contact stress is estimated. A hotter cylindrical specimen
was symmetrically pressed by cooler dies. The temperature in a few sampling points
within the dies was measured at different times.

These two examples illustrate the applicability of the inverse approach to
identification of model parameters which are difficult to estimate by other methods.
The parameters of physical models that describe contact phenomena which take
place during hot working operations are especially difficult to quantify. Due to high
contact stresses and temperatures it is hard to make in situ measurements. It is
however possible to design experiments in which conditions similar to those in the
real process are reestablished and where accurate indirect measurements can be
performed. The estimated parameters can be used to calibrate numerical simulation
of the real process.

A shape optimisation example which is close to real-life problems in meta
forming was solved by Damijan Markovi¢!™. A pre-form shape was optimised in
order to obtain optimal die filling and material flow. The problem is outlined in
Figure 5.37, while the results of a numerical simulation are shown in Figure 5.38.

Initial geometry

]
Preform shape = ? @
Final geometry @

1

=

Figure 5.37: Two stage forging process where the pre-form shape is
to be optimised.
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Figure 5.38: Numerical ssimulation of atwo stage forging process.

An interesting example which demonstrates a stand-alone use of the
optimisation shell was designed by Jelovek!*®. Equilibrium arrangements of a given
number of equally charged particles in a planar circular region were obtained by
minimisation of the total potential energy with respect to particle positions. Different
arrangements were obtained by different initial guesses. Expressions defining the
objective and constraint functions and their derivatives can be expressed analytically

and were evaluated by the optimisation shell. Sample results are shown in Figure
5.39.
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w=382. 14

w=380. 51

w=384. 55

Figure 5.39: Three different equilibrium arrangements of 27 charged
particlesin acircular region!*®. The corresponding random initial
configurations are shown on the left. Relative potential energy of the
equilibrium states is indicated on the right.
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6 CONCLUSIONSAND FURTHER WORK

In the present work a shell for solution of optimisation and inverse problems
in conjunction with simulation programmes was presented. Emphasis was placed on
the open and flexible structure of the shell, which makes it general with respect to the
variety of problems to which it can be applied as well as the simulation systems with
which it can be used.

The shell was combined with a general finite element system Elfen and
applied to selected problems related to metal forming. This provided a good test for
the adequacy of the shell concepts from the point of view that a complex simulation
system was successfully utilised for solution of optimisation problems involving
non-linear and path dependent responses, coupling of phenomena, frictional contact
and large deformations. Experience justified the initial idea of the optimisation
system consisting of a set of independent tools for solution of individual
subproblems. The shell offers a framework for connecting such tools in a common
system where they can be combined in the solution of complex optimisation
problems. Once these tools are linked with the shell, the necessary interaction
between them is established and they can be employed for the solution of
optimisation problems as a part of a synchronised solution environment.

One of the basic guidelinesin shell design wasthat it should not impose any a
priori restrictions regarding the type of optimisation problems to which it is
applicable. It was however assumed throughout that the shell will be applied to
problems where evaluation of the objective or constraint functions (and eventually
their derivatives) includes an expensive numerical simulation. This assumption
allowed the file interpreter to be used as a user interface, thus the focus was on
openness and flexibility of the interface rather than its speed.

The assumption regarding computationally demanding numerical simulations
also dictates demands for the optimisation algorithms incorporated in the shell. In
most cases the time needed for algorithm housekeeping operations is insignificant
and the number of direct analyses necessary for finding the solution should therefore
be regarded as principal the measure of effectiveness of the algorithm.

The shell design aims at building a general optimisation system applicable to
a wide variety of problems. To make this goal achievable, the shell must provide a
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flexible framework for implementation and testing of new utilities, which must be
accompanied by use in practice. Such a broad scope implies a number of demands,
which can not be met instantly but are a matter of systematic long term devel opment.
The last section in this text is therefore devoted to assessment of possible further
development of the shell. This assessment is based on appreciation of the current
state and practical experience, which gives indication regarding which development
tasks will be among the most important in the future.

6.1 Further Work Related to the Optimisation Shell

Development tasks can be divided in two groups. The first group includes
developments related to the shell structure and concepts, while the second group
includes devel opment and incorporation of modules with given functionality.

Development of a complete open library is currently regarded as a primary
development task. Such a library will enable incorporation of modules developed in
different places. It must provide a condensed standard set of simple to use functions,
which still enable sufficient interaction with constituent units of the shell. A large
portion of the library has aready been implemented and must be equipped by
appropriate documentation. Other parts of the library will be developed
simultaneously with introduction of additional functionality and final definition of
additional concepts. Another important task is definition of rules for adding functions
for direct access to module functionality to the shell library. The current arrangement
anticipates access to module functionality through the user interface, while the
framework for making this functionality available for direct use in other modules has
not yet been set up.

The file interpreter will probably undergo substantial changes. Experience
has shown that use of the current implementation is sometimes difficult and prone to
errors. In order to suppress this deficiency, the syntax will have to be modified,
probably towards the syntax of some common high level language such as C. This
will require partial revision of the interaction between the interpreter, the expression
evauator and the variable system. This will also affect the syntax checker and
debugger, which alone need some improvements to become a more reliable tool for
detection and elimination of errorsin command files.

A great deficiency of the shell is that it does not have a sufficiently general
common system for processing and presentation of results. Such a system should
enable, for example, the storing of the complete information about the optimisation
path for later presentation in a standard way. This should be accompanied by
appropriate visualisation tools. Currently the optimisation path can be written to a
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file by using the appropriate output command in the analysis block of the command
file.

The need for a modular and hierarchical library of optimisation algorithms
has been indicated by practical experience. The basis of such a library is currently
being set up, while its development is a long term task which will be strongly
affected by simultaneous experience gained by use in practice. One argument for
development of such a library is the observation that more complex optimisation
methods often incorporate more basic algorithms for the solution of subproblems. A
well structured hierarchical library can therefore significantly facilitate devel opment
of increasingly sophisticated algorithms devel oped for specia purposes. The need for
development of specia purpose algorithms is always present in an optimisation
system such as the shell. A readily available example which supports this statement
is establishing a recurrent interaction between an optimisation algorithm and a finite
element simulation in such a way that a finer mesh is used in simulation as the
solution of the optimisation problem is approached. This can save time since a coarse
mesh is used far from the solution where high accuracy of simulation results is not
crucia.

There is another argument which supports development of optimisation
algorithms simultaneously with development of the shell. The resulting library will
include some facilities which are usually not a part of existing optimisation libraries,
but are important for incorporation in the shell system in compliance with its
concepts. Such facilities will enable e.g. use of a common system for reporting errors
and a common system for presentation of results.

Development of the optimisation library will induce the need for a suitable
testing environment. By now algorithms were tested either on practical examples or
on test problems defined through the command file. In the future this should be
supplemented by a system of standard test functions pre-defined in the shell. Such a
testing suite will make comparison of different agorithms for similar problems
easier. The test problems will be designed with features which are expected to be
difficult for specific algorithms.

Development of a general shape optimisation module will begin in the near
future. It will increase the applicability of the shell because shape plays an important
role in almost all branches of engineering design. This module will include tools for
definition of parameter dependent transformations of shape and appropriate functions
for transformation of discrete sets of points as well as continuous domains. Module
functions will act on the geometrical level, therefore it will be possible to combine
module functionality with existing functionality already implemented in individual
simulation systems.

More specific tasks will be related to further effective utilisation of
simulation systems. A direct interface with the finite element system Elfen has now
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been implemented. This interface is currently on a very basic level and includes
access to programme data structures and basic control over its execution. Higher
level functions will be added in the future, which will enable e.g. direct use of built-
in post-processing capabilities such as integration of derived quantities over surfaces
and volumes. Use of the programme for solution of optimisation problems will be
facilitated by introduction of optimisation entities. These are objects, which include
the definition of geometrical entities that are involved in definition of the
optimisation problems, specification of data needed by the shell and specification of
operations which will be performed on this data.

Use of the shell for practical purposes will in certain cases impose stronger
requirements with respect to simplicity of use. Such requirements will be met by
building templates, which will utilise the shell for solution of specific sets of
problems. These templates will represent upgrades of the shell user interface by
trading a certain level of generality for the required user friendliness. Various
facilities will be employed in building such templates, e.g. high level specia purpose
commands implemented in the shell, portions of code for the shell file interpreter
prepared for accomplishing pre-defined combinations of tasks, and pre and post
processing utilities integrated in the simulation environment which will be utilised
for the solution of problems.
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