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Change of notation: 

vm N→  - number of points where approximated function is evaluated 

gm N→  - number of points where gradient of the approximated function is evaluated 

bn N→  - number of basis functions 
 
Use of indices: 
k – index of sampling points 
i, j – indices of components of approximation coefficients, components of right-hand side 

vector and components of the system matrix in systems of equations 
l, m - components of co-ordinate derivatives 
t – components of gradients of the sampled (approximated) function. 
 

1 LINEAR FITTING 

 

1.1 Weighted Least Squares in Function Approximation 

 
We have values of some function ( )xf , R N∈x , in Nv points: 
 
 ( ) , 1,...,k k vf y k N= =x . (1) 

 
We would like to evaluate coefficients of linear combination of Nb functions ( )x1f , …, ( )xnf  

 

 ( ) ( ) ( ) ( ) ( )1 1 2 2
1

; ...
bN

n n j j
j

f a f a f a f a f
=

= + + + =∑x a x x x x% , (2) 

 
such that 
 

 ( ) ( ) 1, ...,k k k vf f y k N≈ = ∀ =x x% , (3) 

 
i.e. we want that the linear approximation (or approximation) agrees as much as possible with 
values of ( )xf  in all points kx . We look for the best agreement in the weighted least squares sense, 

i.e. we minimize the function 
 

 ( ) ( ) ( )( ) ( )
2

22 2 2

1 1 1

Nv Nv Nb

k k k k j j k k
k k j

w y y w a f yχ φ
= = =

  
= = − = −   

  
∑ ∑ ∑a a x x . (4) 

 
with respect to parameters of approximation ia . w is the m-dimensional vector of weights, which 

weight significance of points ix . Minimum is the stationary point of ( )aφ  where 



 

 
( )

0 1,..., b
i

d
i N

d a

φ
= ∀ =

a
. (5) 

 
Derivatives of ( )aφ  are 
 

 
( ) ( ) ( )2

1 1

2
Nv Nb

k j j k k i k
k ji

d
w a f y f

d a

φ
= =

  
= −   

  
∑ ∑

a
x x  (6) 

 
Equation ( 5) therefore gives the following system of equations for unknown coefficients ja : 

 

 ( ) ( )( ) ( )( )2 2

1 1 1

, 1, ...,
Nb Nv Nv

j k j k i k k k i k
j k k

a w f f w y f i n
= = =

= =∑ ∑ ∑x x x  (7) 

 
Coefficients a can therefore be obtained by solving the linear system of equations 
 
 dCa = , (8) 
 

where 
 

 ( ) ( )2

1

Nv

ij k i k j k
k

C w f f
=

=∑ x x  (9) 

 
and 
 

 ( )2

1

Nv

i k i k k
k

d w f y
=

=∑ x  (10) 

 
The system of equations ( 8) for calculation of approximation coefficients is called a normal system 
of equations. It can be shown that C is positive-semidefinite. If C has a full rank n then it is 
positive-definite, and the system can be solved by the Cholesky factorization 
 

 T=C V V . (11) 
 
(where V is upper triangular) followed by the solutions of a lower triangular system, 
 

 T =V y d  ,  (12) 
 
and an upper triangular system, 
 

 =V a y  . (13) 
 
 



1.1.1 Solution of over-determined system of equations by QR 
decomposition 

 
Here we point at the relation between the least squares formulation ( 4), ( 8)and direct 

solution of the over-determined system of equations ( 3).  
 
We can write introduce matrix A and vector b such that 
 
 ( )kj k j kA w f= x  (14) 

and 
 k k kw y=b . (15) 

 
Then the equation 
 
 ( ) ( ) ( )1 1m n n m× × ×=A a b%  (16) 

 
reads component-wise as 
 

 ( )
1

,
Nb

k j k j k k
j

k w f a w y
=

∀ =∑ x %  

or 
 

 ( )
1

,
Nb

k j j k k k
j

k w a f w y
=

∀ =∑ x%  , (17) 

 
which is exactly ( 3), if we take into account ( 2) and denote coefficients by ja%  instead of ja . 

 
Equation ( 16) (or ( 17) in component-wise notation) is an over-determined system, therefore 

we can not divide both sides of each equation by wk because the this would affect the significance 
of individual equations and therefore the solution (the system in this case does not have an exact 
solution and therefore the relative significance of equations is important). 

 
Now, we can show that the system ( 16) is in some sense equivalent to the system ( 8). This is 

seen by observing that 
 

 
T

T

=
=

C A A

d A b
  , (18) 

 
i.e. the least squares system of equations ( 8) (also referred to as the normal system of equations) is 
obtained by left multiplying the over-determined system ( 16) by TA . 

 
It can be shown that we can obtain the solution of the normal system ( 8) by performing the 

QR decomposition of the matrix A form the system ( 16) [1]: 
 



 ( ) ( ) Nv NbNv Nb Nv Nv ×× ×=A Q U  (19) 

 
We denote by z solution of the orthogonal system =Q z b , i.e. 
 
 T=z Q b  ,  (20) 

 
Matrix U is upper trapezoid (by the QR decomposition). We write U and z in block form, 
 

 ( )
( )

( )( )
( )0,

Nb Nb

ikNv Nb
Nv Nb Nb

v i k
×

×
− ×

 
 = = >
  

V
U

0
 , (21) 

 

 ( )
( )

( )
1

Nb

Nv
Nv Nb

×
−

 
=  
  

y
z

w
 . (22) 

 
Now it follows from T=C A A  (taking into account the decomposition and the block form) that 
 

 T T= =C A A V V  , 
 
i.e. V is a Cholesky factor of the normal matrix T=C A A . With QR factorization, we have avoided 
calculation of C and its Cholesky factorization. We can further verify that 
 

 T T= =d A b V y  . (23) 
 
This means that y, which is the upper part of the transformed z, is the solution of the lower 
triangular system ( 12).  

 
The least squares solution is therefore obtained (according to ( 13)) by solving the least 

squares system 
 
 =V a y%  . (24) 

 
Advantage of using the QR factorization is that the matrix A is better conditioned than 

TAA . If spectral sensitivity of matrix A equals 1

n

σ
σ , then the spectral sensitivity of T =AA B  is 

2

1

n

σ
σ

 
 
 

. In this expression, 2
1σ  is the largest and 2

nσ  the smallest eigenvalue of B.  

 
 
=========================== 
 
From ( 2) we can see that 
 

 ( ) ( )
1

,
Nb

i k k i
k

y a f
=

=∑x a x . (25) 



 
and therefore 

 

 
( ) ( )

i

ik
ik

k

i

w

A
f

ad

yd == x
ax ,

 (26) 

 
We see that 
 

 
( )

k

i

i

ik

ad

yd

w

A ax ,=  (27) 

 
Sometimes we define matrix X  so that 
 

 
( ) ( ) jijji

i

j
ij Af

ad

xyd
X σ=== x

a,
. (28) 

 

1.1.2 Statistical background 

 
We have a model that predicts a set of measurements (observations) yi, which is dependent 

on a set of unknown parameters ai: 
 
 ( )iy a . (29) 

 
In function approximation, we have a model for a function of one or a set of independent 

variables, 
 
 ( ) ( );i iy y=a x a  (30) 

 
From the point of view of parameter estimation, this is the same as ( 29) because independent 
variables xi are used just to distinguish between distinct measurements (to index the measurements, 
the same as index i in ( 29)), and actual functional relations are not actually used. In the least squares 
formulation, parameters a are estimated by minimizing the sum of squares, 
 

 ( ) ( )( ) 2

2

1

min
Nv

i i

i i

y y
χ

σ=

 −
=  

 
 
∑

a

a
a . (31) 

 
Note that for linear models,  
 

 ( )
1

Nb

k j j k
j

y a f
=

=∑a  (32) 

 
or in function approximation, 
 



 ( ) ( )
1

;
Nb

j j
j

y a f
=

=∑x a x  (33) 

 
Both forms are equivalent, which can be easily seen if we writhe the second form ( 33) for i=x x . 

 
 
 

 

1.1.2.1 Statistical background 

The statistical background described here applied for general least squares fitting (also 
nonlinear). For founding the least squares procedures, we must assume that measurement errors are 
independently random and normally distributed: 

 

 

2
1

21
~

2

i i

i

y

iy e
µ

σ

σ π

 −
−  
  . (34) 

 
When fitting the parameters, we would like to find the parameters that are “most likely” to be 
correct. It is not meaningful to ask e.g. “What is the probability that given parameters a are 
correct”1. However, the intuition tells us that the parameters for which the model data doesn’t look 
like the measured data are unlikely. 

 
We can ask the question “Given the particular set of parameters, what is the probability that 

the specific data set could have occurred?” If iy  take continuous values then we must say “the 

probability that iy y± ∆  occur”. If this probability is very small then we conclude that the parameter 

under consideration are “unlikely” to be right. Conversely, the intuition tells us that the data should 
not be too unlikely to improbable for the correct model parameters. 

In other words, we intuitively identify the probability of data given the parameters, as the 
likelihood of the parameters given the data. This is based on intuition and ahs no mathematical 
background! 

We look for parameters that maximize the likelihood defined in the above way, and this 
form of estimation is the maximum likelihood estimation.  

 
According to assumption ( 34), the probability of the data set is the product of probabilities 

for individual data points: 
 

 
( ) 2

1

1
exp

2

m
i i

i i

y y
P y

σ=

 − 
 = − ∆    

∏ a
 (35) 

 
Maximizing this probability is equivalent to minimizing negative of its logarithm, 
 

 
( )( ) 2

2
1

ln
2

m
i i

i

y y
m y

σ=

−
− ∆∑

a
 . 

                                                 
1 The point is that there is just one model – the correct one, and there is a statistical universe of data sets that are drawn 
from that model. 



 
Since the last term is constant, minimizing the equation is equivalent to minimizing ( 31). 

Remark: The discussion is limited to statistical errors, which we can average away (in a 
desired extent) if we take enough data. Measurements are also susceptible systematic errors, which 
can not be annihilated by any amount of averaging2. 

 
In equations ( 8)-( 10) and ( 14)-( 16), regarding statistical argumentation, we must set the 

weights to  
 

 
1

i
i

w
σ

=  . (36) 

 
Let us now estimate the uncertainties of the estimated parameters. The variance associated 

with ja  can be found from 

 

 ( )
2

2 2

1

m
j

j i
i i

a
a

y
σ σ

=

∂ 
=  ∂ 
∑  . (37) 

 
from ( 8) we have 
 

 
( )1 1
2

1 1 1

n m m
i k i

j kjk jk
k k i i

y f
a d

σ
− −

= = =

 
   = =     

 
∑ ∑ ∑

x
C C  (38) 

 
Since jkC  is independent of iy , 

 

 
( )1

2
1

j k i

jk
ki i

a f x

y σ
−

=

∂
 =  ∂ ∑
C  . (39) 

 
We write 1− =C W  Consequently, 
 

 ( ) ( ) ( )2
2

1 1 1

n n m
k i l i

j jk jl
k l i i

f x f x
a W Wσ

σ= = =

 
=  

 
∑∑ ∑  . (40) 

 
The final term in brackets in the above equation is just C. Since this is inverse of W, the equation 
reduces do Wjj, i.e. 
 

 ( )2 1
j jj

aσ − =  C  . (41) 

 
Off diagonal elements of 1−C  are covariances between ja  and ka : 

 

 ( ) 1,j k jk
Cov a a − =  C  (42) 

                                                 
2 E.g. calibration of a measurement equipment can depend on the temperature, and if we perform all measurements at a 
wrong temperature then averaging will not reduce the systematic error. 



 

1.1.2.2 Non-normal distribution of errors 

 
In the case of non-normal errors, we often do the following things that are derived from the 

assumption that the error distribution is normal: 
• Fit parameters by minimizing 2χ  

• Use contours of constant 2χ∆  as the boundary of the confidence region 

• Use Monte Carlo simulations or analytical calculations to determine which contour 
of 2χ∆  is the correct one for the desired confidence level 

• Give the covariance matrix C as the “formal covariance matrix of the fit on the 
assumption of normally distributed errors” 

• Interpret Cij as the actual squared standard errors of the parameter estiomation 
 

1.2 Weighted Least Squares Approximation of Function Values and 
Gradients 

 
Sometimes we have gradient information beside the values of a function in a given set of 

points, and we want to construct an approximation that best fits the specified values and the 
gradients. In this section equations are derived for approximations that consider both value and 
gradient data. 

 
We have values of some function ( )xf  and its gradients in m points: 
 

 ( ) ( ) , 1,...,
g gk k k k vf y f i N= ∇ = =x x g . (43) 

 
We would like to evaluate coefficients of linear combination of Nb functions ( )x1f , …, ( )

bNf x  

 

 ( ) ( ) ( ) ( ) ( )1 1 2 2
1

...
Nb

n n j j
j

f a f a f a f a f
=

= + + + =∑x x x x x% , (44) 

 
such that 
 

 ( ) ( ) ( ) ( )1, ..., 1, ...,
g g gk k k v k k k g gf y f k N f f k N≈ = ∀ = ∧ ∇ ≈ = ∇ ∀ =x x x g x% % , (45) 

 
In order to keep the generality of derivation, we will allow throughout the text that values and 
gradients of the approximated function ( )f x  are evaluated in different sets of points (which may 

however partially or fully coincide). We will denote the k-th component of g i  by gik. The gradient 
of the approximation is simply 
 

 ( ) ( )
1

Nb

j j
j

f a f
=

∇ = ∇∑x x  (46) 

 



We want that the linear approximation (or approximation) agrees as much as possible with values of 
( )xf  and that its gradient agrees as much as possible with gradients of ( )xf  in all points ix . We 

look for the best agreement in the weighted least squares sense, i.e. we minimize the function 
 

 

( ) ( )( )( ) ( )

( ) ( )

2
22 2

1 1 1

2 2

2 2

1 1 1 1 1

g g g

g

g

g g g

g

NgNv N

k k k k t k k t
k k t t

NNv Nb N Nb
j

k j j k k k t j k k t
k j k t j t

y
w y y w g

x

f
w a f y w a g

x

φ
= = =

= = = = =

  ∂
 = − + − =  ∂  

      ∂   
   − + −           ∂        

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

a x x

x x

  . (47) 

 
with respect to parameters of approximation ia . wk are Nv weights that weigh significance of values 

in points xk and 
gk lw  wk are gN N⋅  weights that weigh significance of individual gradient 

components in 
gkx . Minimum is the stationary point of ( )aφ  where 

 

 
( )

0 1, ..., b
i

d
i N

d a

φ
= ∀ =

a
. (48) 

 
Derivatives of ( )aφ  are 
 

 

( ) ( ) ( )

( ) ( )

2

1 1

2

1 1 1

2

2
g

g g g g

g

Nv Nb

k j j k k i k
k ji

N N Nb
j i

k l j k k t k
k t j t t

d
w a f y f

d a

f f
w a g

x x

φ
= =

= = =

  
= − +   

  

 ∂  ∂
+ −   ∂ ∂  

∑ ∑

∑ ∑ ∑

a
x x

x x

 (49) 

 
Equation ( 48) therefore gives the following system of equations for unknown coefficients ja : 

 


