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Change of notation:
m - N, - number of points where approximated functioavaluated

m - N, - number of points where gradient of the approxeéddunction is evaluated
n - N, - number of basis functions

Use of indices:

k — index of sampling points

i, ] — indices of components of approximation coeffits¢ components of right-hand side
vector and components of the system matrix in gystef equations

[, m- components of co-ordinate derivatives

t — components of gradients of the sampled (appraeid)dunction.

1 LINEARFITTING

1.1 Weighted Least Squaresin Function Approximation

We have values of some functidr{x), x OR™ , in N, points:

f (X )=V, kK=1,...N,. (1)
We would like to evaluate coefficients of lineandaination ofN, functions f,(x), ..., f,(x)
- Ny
f(x;a)=af (x)+a,f,(x)+..+a,f (x) =D af (x), )
j=1
such that
f(x)=f(x)=v Ok=1,...,N,, ©)

i.e. we want that the linear approximation (or @pgnation) agrees as much as possible with
values of f (x) in all pointsx, . We look for the best agreement in the weightedtlequares sense,

i.e. we minimize the function

8 =efe)= e () -) =] S, (xk)]—yka. @

with respect to parameters of approximatanw is them-dimensional vector of weights, which
weight significance of pointg; . Minimum is the stationary point qzﬁ(a) where



da 0 0I=LoN,. )
Derivatives ofgfa) are
df;a) :Zg[mé(iaj f, (xk)—ykJ f (xk)j (6)

Equation ) therefore gives the following system of equatiéor unknown coefficients, :

Nv

Nv
ZaiZ(Wffi (Xk) fi (Xk)) :Z(szyk fi (Xk)) ,1=1,...n (7
j=1 k=1 k=1
Coefficientsa can therefore be obtained by solving the lineatesy of equations
Ca=d, (8)
where
Nv
Ci = 2w (%) £ (x) (9)
k=1
and
Nv
d = Zwkz (%) Y (20)
k=1

The system of equation8)(for calculation of approximation coefficientsaalled anormal system
of equations. It can be shown that is positive-semidefinite. IfC has a full rankn then it is
positive-definite, and the system can be solved by the Choleskgriaation

C=V'V. (11)
(whereV is upper triangular) followed by the solutionsadbwer triangular system,

Viy=d, (12)
and an upper triangular system,

Va (13)

I
<



1.1.1  Solution of over-determined system of equationsby QR
decomposition

Here we point at the relation between the leastasguformulation 4), 8)and direct
solution of the over-determined system of equat{@hs

We can write introduce matrik and vectob such that

Ay =w f(x,) (14)
and
by = WY, . (15)
Then the equation
A(mxn) é(n><1) = b(le) (16)

reads component-wise as

Nb
Ok, > w f, (X, )& =Wy,
=1

or
Nb
Ok, w > & f, (x)=wyY, , (17)
[

which is exactly 8), if we take into accoungf and denote coefficients by instead ofa, .

Equation {6) (or L7) in component-wise notation) is an over-deteedisystem, therefore
we can not divide both sides of each equationvpiecause the this would affect the significance
of individual equations and therefore the solutftre system in this case does not have an exact
solution and therefore the relative significanceg@fiations is important).

Now, we can show that the systeb6) is in some sense equivalent to the sys&nirqis is
seen by observing that

C=A"A

(18)
d=A"b

i.e. the_least squares system of equati8h¢also referred to as thermal system of equations) is
obtained by left multiplying the over-determinedt®m (6) by A" .

It can be shown that we can obtain the solutiothefnormal systenBj by performing the
QR decomposition of the matr& form the systemi) [1]:




A(NVXNb) = Q(NVXNV) U NvxNb (19)

We denote by solution of the orthogonal syste@z =b, i.e.
z=Q"b , (20)

Matrix U is upper trapezoid (by the QR decomposition). We writtandz in block form,

Vv
(NbxNb) .
U(NVXNb) :!O ] (Vlk =0, > k) ) (21)
((Nv-Nb)xNb)
y
Z(Nv><1) = w : (22)
W (\v-nb)

Now it follows from C = ATA (taking into account the decomposition and thelform) that
C=ATA=V'V,

i.e.V_is a Cholesky factor of the normal mat@x=A"A . With QR factorization, we have avoided
calculation ofC and its Cholesky factorization. We can furtherfyehat

d=A"b=VTy . (23)

This means thay, which is the upper part of the transformedis the solution of the lower
triangular systemi2).

The least squares solution is therefore obtainedofding to 13)) by solving the least
squares system

Va=y . (24)

Advantage of using the QR factorization is that thatrix A is better conditioned than

AAT . If spectral sensitivity of matri@ equals% , then the spectral sensitivity A" =B is

n

2
(% j . In this expressiong;’ is the largest and” the smallest eigenvalue Bf
n

y(x.a)=> af (x). (25)



and therefore

d Y(Xi 'a) - _ A
da )= (26)
We see that
i - d y(xi 'a) (27)
W da,

Sometimes we define matriX so that

dy(x;,
X, =%=fi(xj)=ajAﬁ. (28)

112  Statistical background

We have a model that predicts a set of measureni@oggrvationsy;, which is dependent
on a set of unknown parameters

yi(a). (29)

In function approximation, we have a model for adiion of one or a set of independent
variables,

y.(a)=y(x ;a) (30)
From the point of view of parameter estimationstis the same a®9g) because independent
variablesx; are used just to distinguish between distinct measents (to index the measurements,

the same as indexn (29)), and actual functional relations are not dbtussed. In the least squares
formulation, parametei@sare estimated by minimizing the sum of squares,

min x* (a) = Z[MJ . (31)

i=1 g

Note that for linear models,
vi(a)=2a f; (32)

or in function approximation,



y(xia)=a, f, (x) @)

Both forms are equivalent, which can be easily seee writhe the second forn88) for x = x; .

1.1.2.1 Statistical background

The statistical background described here appl@dgeneral least squares fitting (also
nonlinear). For founding the least squares pro@sjwe must assume that measurement errors are
independently random and normally distributed:

1 A

o.2mr (34)

yi~

When fitting the parameters, we would like to fitite parameters that are “most likely” to be
correct. It isnot meaningful to ask e.g. “What is the probability that given paramstarare
correct™. However, the intuition tells us that the paramefer which the model data doesn’t look
like the measured data are unlikely.

We can ask the question “Given the particular $@acameters, what is the probability that
the specific data set could have occurred?’yIftake continuous values then we must say “the

probability thaty, + Ay occur”. If this probability is very small then wenclude that the parameter

under consideration are “unlikely” to be right. @ersely, the intuition tells us that the data stdoul
not be too unlikely to improbable for the correaidrl parameters.

In other words, we intuitively identify the probétyi of data given the parameters, as the
likelihood of the parameters given the dafhis is based on intuition and ahs no mathematica
background

We look for parameters that maximize the likelihadefined in the above way, and this
form of estimation is thenaximum likelihood estimation.

According to assumptior84), the probability of the data set is the prochicprobabilities

for individual data points:
m 1y (a)-vy )
P=[exp -=| L] (A 35
|'J p[ 2( . ]] y (35)

Maximizing this probability is equivalent to miniming negative of its logarithm,

iZ::—(yi (2)0—‘2)4)2 -minAy .

! The point is that there is just one model — theem one, and there is a statistical universeatd gets that are drawn
from that model.



Since the last term is constant, minimizing theagigum is equivalent to minimizin@dy).

Remark: The discussion is limited tgtatistical errors, which we can average away (in a
desired extent) if we take enough data. Measuresyastalso susceptibdgstematic errors, which
can not be annihilated by any amount of averaging

In equations §)-(10) and 14)-(16), regarding statistical argumentation, we musttke
weights to

W=t (36)
O-i

Let us now estimate the uncertainties of the esdchparameters. The variance associated
with a; can be found from

az(aj)=iaf(%J - (37)

from (8) we have

a = i[c*]jk d, :i[c*]jk {iL(ZX)} (38)

—S=y[ct], i) (39)

Uz(aj):iiV\/jkWu (iwj : (40)

i=1 g

The final term in brackets in the above equatiojuss C. Since this is inverse of W, the equation
reduces daV, i.e.

o*(a)=[c] . (a1)

Off diagonal elements oE™ arecovariances betweena, anda, :

Cov(aj ak) = [C'l]jk (42)

2 E.g. calibration of a measurement equipment caemk® on the temperature, and if we perform all mesasents at a
wrong temperature then averaging will not redueestystematic error.



1.1.2.2 Non-normal distribution of errors

In the case of non-normal errors, we often do tllewing things that are derived from the
assumption that the error distribution is normal:

+ Fit parameters by minimizing*

« Use contours of constadt y* as the boundary of the confidence region

* Use Monte Carlo simulations or analytical calculas to determine which contour
of A x? is the correct one for the desired confidencelleve

* Give the covariance matri€ as the “formal covariance matrix of the fit on the
assumption of normally distributed errors”
» InterpretC; as the actual squared standard errors of the paeastiomation

1.2 Weighted Least Squares Approximation of Function Values and
Gradients

Sometimes we have gradient information beside #laeg of a function in a given set of
points, and we want to construct an approximatioait tbest fits the specified values and the
gradients. In this section equations are derivedafgproximations that consider both value and
gradient data.

We have values of some functidi{x) and its gradients im points:

F(x)=y Of(x)=0,, i=1..N,. (43)
We would like to evaluate coefficients of lineandmination ofN, functions fl(x), ceer Ty, (x)
B Nb
f(x)=af,(x)+a,f,(x)+..+a,f (x) =Zaj f, (x), (44)
=1
such that
F(x) =% =(x) Ok=1...N, 0OF(x )=g, =07(x,) Ok =1...N,, (45)

In order to keep the generality of derivation, wal allow throughout the text that values and
gradients of the approximated functidr(x) are evaluated in different sets of points (whicaym

however partially or fully coincide). We will dereothek-th component 0§; by gik. The gradient
of the approximation is simply

0= a0 (x) (46)



We want that the linear approximation (or approxiorg agrees as much as possible with values of
f(x) and that its gradient agrees as much as possitiegvadients of f (x) in all pointsx; . We
look for the best agreement in the weighted legisdies sense, i.e. we minimize the function

Nv

ofa)= (48 (5(x)-w.))+ z[zw(ﬂ()g”

k=1 =1 gren 0%

Sle(aren) ] (Sl n |

with respect to parameters of approximat@mnw areN, weights that weigh significance of values
in points xx and W, Wi are Ng[N weights that weigh significance of individual gt

(47)

components irx, . Minimum is the stationary point afla) where

=0 0i=1, .., N,. (48)

& k=1 =1 (49)
Ng N Nb f af
+2kgz:l ;[Wkglz (;aj a_(xkg ) - gkgtja(xkg )J

Equation 48) therefore gives the following system of equadifor unknown coefficients, :



