

 Centre for computational continuum mechanics

1

Inverse identification of parameters of
numerical models

PROFORM project - internal report

Igor Grešovnik
February 2005

1 EXPERIMENTAL DETERMINATION OF MODEL PARAMETERS 2

1.1 IMPORTANCE OF PARAMETER IDENTIFICATION... 2
1.2 INVERSE IDENTIFICATION OF MODEL PARAMETERS... 3

2 NUMERICAL OPTIMISATION TECHNIQUES .. 5

2.1 INTRODUCTION... 5
2.2 HEURISTIC M INIMISATION METHODS AND RELATED PRACTICAL PROBLEMS........................... 6
2.3 SIMPLEX METHOD.. 10
2.4 BASIC MATHEMATICAL BACKGROUND .. 15

2.4.1 Basic Notions.. 17
2.4.2 Conditions for Unconstrained Local Minima... 21
2.4.3 Desirable Properties of Algorithms and Notion of Conjugacy..................................... 22

2.5 NEWTON-LIKE METHODS.. 27
2.5.1 Quasi-Newton Methods .. 29
2.5.2 Invariance Properties... 34

2.6 CONJUGATE DIRECTION METHODS... 37
2.6.1 Conjugate Gradient Methods ... 38

2.7 FURTHER REMARKS.. 42

 1. Experimental determination of model parameters

2

1 EXPERIMENTAL DETERMINATION OF MODEL
PARAMETERS

1.1 Importance of parameter identification

When we want to use numerical simulation as a decision support tool for

analysis and optimization, the produced results must be accurate and reliable enough.
In order to satisfy this basic requirement, we must possess a physical model that
adequately describes the phenomena in question and numerical tools capable of
reproducing approximations that are in good agreement with physical models.

Beside the laws that are regarded basic physical principles, such physical

models can include simplified description of complex systems that can be derived
from more basic principles, or are just assumed on the basis of experiments. An
example of this are basic principles of thermodynamics, which were confirmed
experimentally long before their validity could be anticipated by statistical
thermodynamics, which starts from somehow more fundamental description as
macroscopic models do. Although statistical thermodynamics can state macroscopic
relations only in terms of averaging over microscopic states, for systems with large
degrees of freedom deviations are small enough that we can consider continuous
models valid in most practical situations.

In many practical situations we are forced to bridge large gaps between

fundamental principles and physical models that are useful for simulation. As an
example, the ideal gas equation can be derived by treating gas molecules as colliding
rigid bodies whose radius is much smaller than average free path, and it is accurate
enough in given situations. When it is not, it may be extremely difficult to derive a
single point of the state equation, even if the dependence of two- and multi-
molecular potential could be exactly calculated. In this case, fundamental
assumptions on sole existence of state equation together with some regularity

 1. Experimental determination of model parameters 1.2. Inverse identification of model parameters

3

assumptions can be supplemented by experimental data in order to build a physical
model used for, say, simulation of a jet engine stage.

The remaining task is to experimentally determine enough points on the state

surface in order to build its accurate enough interpolation. A problem arises when
some fundamental components of the physical model can not be measured directly,
as can be the case with viscosity. Most typically these components are related to
material properties, but in simplified models they can also include boundary
conditions (e.g. heat flux through the engine wall) or unknown but constant
influence from system neighbourhood. These models must be established from
experiments by using indirect techniques.

1.2 Inverse identification of model parameters

Indirect techniques involves inference of model parameters on the basis of
measuring something else in a controlled experiments. To make this possible, we
must first insure that measurement outcome uniquely depends on parameters to be
determined, i.e.

 () ()afy =m , (1.1)

()my being measurements and a unknown parameters of the model. This dependence
is calculated by numerical simulation of the actual experiment that incorporates the
physical model whose parameter we are trying to determine. Model parameters
would in principle be obtained by solving the above equation, i.e. effectively
applying inverse of f to measurement data (hence the name inverse techniques).
Needless to say, this would require precise consistence of our model (including
numerical calculation) with the physical reality and the ability to sample measured
data exactly. None of this is true in practice and we can at most find estimation of
parameters that is statistically the best according to measurements.

In order to accomplish this task, we define a measure of inconsistency of the

model assuming given parameters with the experimental data. The estimate of model
parameters is obtained by minimizing this discrepancy over all possible parameter
values. Most often we define the discrepancy measure in the least square sense, i.e.

 () () ()
∑

=

 −==
m

i
i

i

m

i yy
F

1

2
)(

2

σ
χ a

aa , (1.2)

 1. Experimental determination of model parameters 1.2. Inverse identification of model parameters

4

thus

 ()aa Fminarg* = , (1.3)

In (1. 0, ()aiy represent the values of corresponding measurements iy ,

calculated by using numerical model of the experiment assuming specific values for
model parameters. Such a definition has a statistical background. If measurements
are distributed normally with corresponding standard deviations iσ and the model

exactly represent reality then *a maximizes the likelihood that actual parameters are
equal to *a . The distribution of values of F is the chi-square distribution of order

nm−=ν where m is the number of measurements and n the number of unknown
parameters, with mean value ν and standard deviation 2ν . This fact can serve
statistical validation of the model itself by repeating the experiment. In practice we
have to deal with imperfect models, and providing additional degrees of freedom in
model vector a can provide means of fitting the model to observations in lack of
physical arguments. This must be undertaken with extreme caution because
everything can be fitted by sufficiently loose model, but such a model looses the
ability of prediction and has no sense. To avoid this, system (1. 0 must be sufficiently
over-determined by capturing enough independent empirical information.

Simulated measurements ()aiy are defined implicitly through solution of

model equations with a model ultimately defined by a. A software architecture that
will enable the solution of the parameter identification problems defined e.g. as (1. 0
is proposed in[1]-[2]. The computational shell Inverse[3] is constructed to enable
incorporation of simulation environment in such a scheme. Beside a good numerical
model, reliable algorithms for solving the resulting minimization problems are
significant for successful practical application. Basics of such algorithms are outlined
in the following sections.

 2. Numerical Optimisation Techniques 2.1. Introduction

5

2 NUMERICAL OPTIMISATION TECHNIQUES

2.1 Introduction

In general, optimisation problems can be stated as problems of minimisation
of some function of the design parameters x, subjected to certain constraints, i.e.:

minimise () nf RI, ∈xx

subject to () Eici ∈= ,0x (2.1)

and () Ijc j ∈≥ ,0x ,

where f(x) is the objective function and ci(x) and cj(x) are constraint functions1.
Design parameters are also referred to as optimisation variables. The second line of
(2. 0 represents the equality constraints of the problem and the third line represents
the inequality constraints. We have introduced two index sets, set E of the equality
constraint indices and set I of the inequality constraint indices. The above problem is
also referred to as the general nonlinear problem. Most of optimisation problems can
be expressed in this form, eventually having multiple objective functions in the case
of several conflicting design objectives.

Points x’, which satisfy all constraints, are called feasible points and the set of

all such points is called the feasible region. A point x* is called a constrained local
minimiser (or local solution of the above problem) if there exists some
neighbourhood Ω of x* such that () ()'* xx ff ≤ for all feasible points *',' xxx ≠Ω∈ .
Such a point is called a strict local minimiser if the < sign is applied in place of ≤ ; a
slightly stronger definition of isolated local minimiser, which requires the minimiser
to be the only local minimiser in some neighbourhood. Furthermore, x* is called the
global solution or global constrained minimiser if () ()'* xx ff ≤ for all feasible
points x’. This means that a global minimiser is the local solution with the least value
of f.

Since the objective and constraint functions are in general nonlinear, the

optimisation problem can have several constrained local minimisers x*. The goal of

1 Number of optimisation variables will be denoted by n throughout chapter 2.

 2. Numerical Optimisation Techniques 2.2. Heuristic Minimisation Methods and Related Practical Problems

6

optimisation is of course to comply with the objective as much as possible, therefore
the identification of the global solution is the most desirable. However, this problem
is in general extremely difficult to handle. Actually there is no general way to prove
that some point is a global minimiser. At best some algorithms are able to locate
several local solutions and one can then take the best one of these. These methods are
mostly based on some stochastic search strategy. Location of problem solutions is of
a statistical nature, which inevitably leads to an enormous number of function
evaluations needed to locate individual solutions with satisfactory accuracy and
certainty. These methods are therefore usually not feasible for use with costly
numerical simulations and are not included in the scope of this work. Currently the
most popular types of algorithms for identifying multiple local solutions are the
simulated annealing algorithms and genetic algorithms, briefly described in [12].

2.2 Heuristic Minimisation Methods and Related Practical
Problems

In the subsequent text the unconstrained problem is considered, namely

minimise () nf RI, ∈xx (2.2)

Throughout this chapter it is assumed that f is at least a 2CI function, i.e. twice
continuously differentiable with respect to x. Every local minimum is a stationary
point of f, i.e. a point with zero gradient[4]:

 () () 0*** ===∇ gxgxf . (2.3)

Minimisation can therefore be considered as a solution of the above equation, which
is essentially a system of nonlinear equations for gradient components

 () ()
ni

x

f
g

i
i ...,1,0 ==

∂
∂= x

x . (2.4)

This is essentially the same system that arises in finite element simulation[37] and can
be solved by the standard Newton method, for which the iteration is

 () () ()() ()kkkk xgxx
11 −+ ∇−= . (2.5)

 2. Numerical Optimisation Techniques 2.2. Heuristic Minimisation Methods and Related Practical Problems

7

The notation () ()()kk xgg = is adopted throughout this work.

The method is derived from the Taylor series[33],[35] for g about the current
estimate x(k):

 ()() () () ()2δδδ Okkk +∇+=+ ggxg (2.6)

Considering this as the first order approximation for g and equating it to zero we
obtain the expression for step δ which should bring the next estimate close to the
solution of (2. 2)1:

 () ()kk gg −=∇ δ .

By setting () () δ+=+ kk xx 1 we obtain the above Newton Iteration.

The Newton method is known to be rapidly convergent[5], but suffers for a

lack of global convergence properties, i.e. the iteration converges to the solution only
in some limited neighbourhood, but not from any starting point. This is the
fundamental reason that it is usually not applicable to optimisation without
modifications. The problem can usually be elegantly avoided in simulations, either
because of some nice physical properties of the analysed system that guarantee
global convergence, or by the ability of making the starting guess arbitrarily close to
the equilibrium point where the equations are satisfied. This is, for example,
exploited in the solution of path dependent problems where the starting guess of the
current iterate is the equilibrium of the previous, and this can be set arbitrarily close
to the solution because of the continuous nature of the governing equations. Global
convergence can be ensured simply by cutting down the step size, if necessary.

In practice, this is usually not at all case in optimisation. The choice of a good

starting point typically depends only on a subjective judgment where the solution
should be, and the knowledge used for this is usually not sufficient to choose the
starting point within the convergence radius of Newton’s method, especially due to
the complex non-linear behaviour of f and consequently g. Modifications to the
method must therefore be made in order to induce global convergence2, i.e.
convergence from any starting guess.

1 Notation () ()xxg f∇= , () ()()kk ff x= , () ()()kk xgg = , etc. will be generally adopted throughout this

text.
2 Herein the expression global convergence is used to denote convergence to a local solution from any
given starting point. In some of the literature this expression is used to denote convergence to a global
solution.

 2. Numerical Optimisation Techniques 2.2. Heuristic Minimisation Methods and Related Practical Problems

8

One such modification arises from considering what properties the method
must have in order to induce convergence to the solution. The solution x* must be a
limiting point of the sequence of iterations. This means that the distance between the
iterates and the solution tends towards zero, i.e.

 0lim * =−
∞→

xxk
k

. (2.7)

This is satisfied if the above norm is monotonically decreasing and if the sequence
has no accumulation point other than x*. When considering the minimisation
problem and assuming that the problem has a unique solution, the requirements for a
decreasing norm can be replaced (because of continuity of f) by the requirement that

()kf are monotonically decreasing. By such consideration, a basic property any
minimisation algorithm should have, is the generation of descent iterates so that

 () () kff kk ∀<+1 . (2.8)

This is closely related to the idea of line search, which is one of the

elementary ideas in construction of minimisation algorithms. The idea is to minimise
f along some straight line starting from the current iterate. Many algorithms are
centered on this idea, trying to generate a sequence of directions along which line
searches are performed, such that a substantial reduction of f is achieved in each line
search and such that, in the limit, the rapid convergence properties of Newton’s
method are inherited.

An additional complication which limits the applicability of Newton’s

method is that the second derivatives of the objective function (i.e. first derivatives of
its gradient) are required. These are not always directly available since double
differentiation of numerical models is usually a much harder problem than single
differentiation. Alternatively the derivatives can be obtained by straight numerical
differentiation using small perturbation of parameters, but in many cases this is not
applicable because numerical differentiation is very sensitive to errors in function
evaluation[34],[36], and these can often not be avoided sufficiently when numerical
models with many degrees of freedom are used. Furthermore, even if the Newton
method converges, the limiting point is only guaranteed to be a stationary point of f,
but this is not a sufficient condition for a local minimum, since it includes saddle
points, which are stationary points but are not local minimisers.

The most simple algorithm that incorporates the idea of line search is

sequential minimisation of the objective function in some fixed set of n independent
directions in each iterate, most elementarily parallel to the coordinate axes. The
requirement for n independent directions is obvious since otherwise the algorithm
could not reach any point in nRI . The method is called the alternating variables
method and it seems to be adequate at a first glance, but turns to be very inefficient

 2. Numerical Optimisation Techniques 2.2. Heuristic Minimisation Methods and Related Practical Problems

9

and unreliable in practice. A simple illustration of the reasons for this is that the
algorithm ignores the possibility of correlation between the variables. This causes the
search parallel to the current search direction to destroy completely the property that
the current point is the minimiser in previously used directions. This leads to
oscillatory behaviour of the algorithm as illustrated in Figure 2.1.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 2.1: Oscillatory behaviour, which is likely to occur when using
sequential minimisation in a fixed set of directions.

Another readily available algorithm is sequential minimisation along the

current direction of the gradient of f. Again this seems to be a good choice, since the
gradient is the direction of the steepest descent, i.e. the direction in which f decreases
most rapidly in the vicinity of the starting point. With respect to this, the method is
called the steepest descent method. In practice, however, the method suffers for
similar problems to the alternating variables method, and the oscillating behaviour of
this method is illustrated in Figure 2.2. The theoretical proof of convergence exists,
but it can also be shown that locally the method can achieve an arbitrarily slow rate
of linear convergence[4].

The above discussion clearly indicates the necessity for a more rigorous

mathematical treatment of algorithms. Indeed the majority of the up-to-date
algorithms have a solid mathematical background[4]-[10], [29] and partially the aim of
this section is to point which are the most important features in the design of fast and
reliable algorithms.

 2. Numerical Optimisation Techniques 2.3. Simplex Method

10

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 2.2: Oscillatory behaviour, which can occur when performing
sequential line searches along the steepest descent directions.

2.3 Simplex Method

One minimisation method that does not belong within the context of the
subsequent text is the simplex method[15], [29],[4]. It has been known since the early
sixties and could be classed as another heuristic method since it is not based on a
substantial theoretical background.

The simplex method neither uses line searches nor is based on minimisation

of some simplified model of the objective function, and therefore belongs to the class
of direct search methods. Because of this the method does not compare well with
other described methods with respect to local convergence properties. On the other
hand, for the same reason it has some other strong features. The method is relatively
insensitive to numerical noise and does not depend on some other properties of the
objective function (e.g. convexity) since no specific continuity or other assumptions
are incorporated in its design. It merely requires the evaluation of function values. Its
performance in practice can be as satisfactory as any other non-derivative method,
especially when high accuracy of the solution is not required and the local
convergence properties of more sophisticated methods do not play so important role.
In many cases it does not make sense to require highly accurate solutions of
optimisation problems, because the obtained results are inevitably inaccurate with
respect to real system behaviour due to numerical modeling of the system (e.g.

 2. Numerical Optimisation Techniques 2.3. Simplex Method

11

discretisation and round-off errors or inaccurate physical models). These are
definitely good arguments for considering practical use of the method in spite of the
lack of good local convergence results with respect to some other methods.

The simplex method is based on construction of an evolving pattern of n+1

points in nRI (vertices of a simplex). The points are systematically moved according
to some strategy such that they tend towards the function minimum. Different
strategies give rise to different variants of the algorithm. The most commonly used is
the Nelder-Mead algorithm described below. The algorithm begins by choice of n+1
vertices of the initial simplex (() ()1

1
1

1 ,..., +nxx) so that it has non-zero volume. This

means that all vectors connecting a chosen vertex to the reminding vertices must be
linearly independent, e.g.

 () ()()∑
=

+ ≠−⇒≠∃
n

i
iii

1

1
1

1
1 00 xxλλ .

If we have chosen ()1

1x , we can for example obtain other vertices by moving,
for some distance, along all coordinate directions. If it is possible to predict several
points that should be good according to experience, it might be better to set vertices
to these points, but the condition regarding independence must then be checked.

Once the initial simplex is constructed, the function is evaluated at its

vertices. Then one or more points of the simplex are moved in each iteration, so that
each subsequent simplex consists of a better set of points:

Algorithm 2.1: The Nelder-Mead simplex method.

After the initial simplex is chosen, function values in its vertices are evaluated:
() ()() 1...,,1,11 +== niff ii x .

Iteration k is then as follows:
1. Ordering step: Simplex vertices are first reordered so that

() () ()k
n

kk fff 121 ... +≤≤≤ , where () ()()k
i

k
i ff x= .

2. Reflection step: The worst vertex is reflected over the centre point of the

best n vertices (() ()
∑

=

=
n

i

k
i

k

n 1

1
xx), so that the reflected point ()k

rx is

 () () () ()()k

n
kkk

r 1+−+= xxxx

Evaluate () ()()k

r
k

r ff x= . If () () ()r
n

k
r

k fff <≤1 , accept the reflected point and go to

 6.

 2. Numerical Optimisation Techniques 2.3. Simplex Method

12

3. Expansion step: If () ()kk
r ff 1< , calculate the expansion

 () () () ()()kk

r
kk

e xxxx −+= 2

and evaluate () ()()k

e
k

e ff x= . If () ()k
r

k
e ff < , accept ()k

ex and go to 6. Otherwise

accept ()k
rx and go to 6.

4. Contraction step: If () ()k
n

k
r ff ≥ , perform contraction between ()kx and the

better of ()k
n 1+x and ()k

rx . If () ()k
n

k
r ff 1+< , set

 () () () ()()kk
r

kk
c xxxx −+=

2

1

(this is called the outside contraction) and evaluate () ()()k

c
k

c ff x= . If () ()k
r

k
c ff ≤ ,

accept ()k
cx and go to 6.

If in contrary () ()k
n

k
r ff 1+≥ , set

 () () () ()()k
n

kkk
c 12

1
+−−= xxxx

(inside contraction) and evaluate ()k

cf . If () ()k
n

k
c ff 1+< , accept ()k

cx and go to 6.

5. Shrink step: Move all vertices except the best towards the best vertex, i.e.

 () () () ()() 1...,,2,
2

1
11 +=−+= nikk

i
kk

i xxxv ,

and evaluate () ()() 1...,,2,' +== niff k

i
k

i v . Accept ()k
iv as new vertices.

6. Convergence check: Check if the convergence criterion is satisfied. If so,
terminate the algorithm, otherwise start the next iteration.

Figure 2.3 illustrates possible steps of the algorithm. A possible situation of

two iterations when the algorithm is applied is shown in Figure 2.4. The steps allow
the shape of the simplex to be changed in every iteration, so the simplex can adapt to
the surface of f. Far from the minimum the expansion step allows the simplex to
move rapidly in the descent direction. When the minimum is inside the simplex,
contraction and shrink steps allow vertices to be moved closer to it.

 2. Numerical Optimisation Techniques 2.3. Simplex Method

13

x1

xe

x3

xr

xr

x3 x3

xr

xc

xc

x3

Figure 2.3: Possible steps of the simplex algorithm in two dimensions
(from left to right): reflection, expansion, outside and inside contraction,
and shrink.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x3
(1)

x2
(1)= x3

(2)

xr
(2) x1

(1)= x2
(2)

xe
(3)

xe
(2)= x1

(2)

xr
(3)

Figure 2.4: Example of evolution of the simplex.

There are basically two possibilities for the convergence criterion. Either that

function values at vertices must become close enough or the simplex must becomes
small enough. It is usually best to impose both criteria, because either of them alone
can be misleading.

 2. Numerical Optimisation Techniques 2.3. Simplex Method

14

It must be mentioned that convergence to a local minimum has not been

proved for the Nelder-Mead algorithm. Examples have been constructed for which
the method does not converge[15]. However, the situations for which this was shown
are quite special and unlikely to occur in practice. Another theoretical argument
against the algorithm is that it can fail because the simplex collapses into a subspace,
so that vectors connecting its vertices become nearly linearly dependent.
Investigation of this phenomenon indicates that such behaviour is related to cases
when the function to be minimised has highly elongated contours (i.e. ill conditioned
Hessian). This is also a problematic situation for other algorithms.

The Nelder-Mead algorithm can be easily adapted for constrained

optimisation. One possibility is to add a special penalty term to the objective
function, e.g.

 () () () () ()∑∑
∈∈

+ +−+=
Ii

j
Ii

in ccfff xxxx 1
1

' , (2.9)

where ()1

1+nf is the highest value of f in the vertices of the initial simplex. Since

subsequent iterates generate simplices with lower values of the function at vertices,
the presence of this term guarantees that whenever a trial point in some iteration
violates any constraints, its value is greater than the currently best vertex. The last
two sums give a bias towards the feasible region when all vertices are infeasible. The
derivative discontinuity of the terms with absolute value should not be problematic
since the method is not based on any model, but merely on comparison of function
values. A practical implementation is similar to the original algorithm. f is first
evaluated at the vertices of the initial simplex and the highest value is stored. Then
the additional terms in (2. 0 are added to these values, and in subsequent iterates f is
replaced by f’ .

Another variant of the simplex method is the multidirectional search

algorithm. Its iteration consists of similar steps to the Nelder-Mead algorithm, except
that all vertices but the best one are involved in all operations. There is no shrink step
and the contraction step is identical to the shrink step of the Nelder-Mead algorithm.
Possible steps are shown in Figure 2.5. The convergence proof exists for this
method[15], but in practice it performs much worse than the Nelder-Mead algorithm.
This is due to the fact that more function evaluations are performed at each iteration
and that the simplex can not be adapted to the local function properties as well as the
former algorithm. The shape of the simplex can not change, i.e. angles between it
edges remain constant (see Figure 2.5). The multidirectional search algorithm is
better suited to parallel processing because n function evaluations can always be
performed simultaneously.

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

15

x1

x3

x2

xr
(3)

xr
(2)

x1

x3

x2

xr
(3)

xr
(2)

x1 xc
(2)

xc
(3)

x3

x2

Figure 2.5: possible steps in the multidirectional search algorithm:
reflection, expansion, and contraction.

2.4 Basic Mathematical Background

Construction of optimisation methods described further in this section is

based on some model of the objective function and constraints. Such treatment of the
problem arises to a large extent from the fact that locally every function can be
developed into a Taylor series[33] about any point 'x :

 () ()()∑
∞

=

=+
0

''

!n

n
n

xf
n

h
hxf , (2.10)

where ()() ()xf
x

xf
n

n
n

∂
∂= and nn ⋅⋅⋅⋅= ...321! . This expression itself does not have a

significant practical value. A more important fact is that

 () 0lim =

∞→
hRn

n
 (2.11)

and

 () 0lim

0
=

→
hRn

h
, (2.12)

where

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

16

 () () ()hShxfhR nn −+= ' (2.13)

and

 () ()()∑
=

=
n

i

n
n

n xf
n

h
hS

0

'

!
. (2.14)

This means that if we use only a few terms in the Taylor series, the error that we
make tends to zero both when we increase the number of terms without limit for
some fixed h, and when we take a fixed number of terms and decrease the step h
towards zero. This follows from the result[33]

 () ()
()() 10,

!1
'1

1

<<+
+

= +
+

θθhxf
n

h
hR n

n

n . (2.15)

The above equation also holds if function f is only 1CI +n . This means that

every sufficiently smooth function can be locally approximated by a simple
polynomial function, which is sometimes more convenient for theoretical treatment
than the original function.

A similar development is possible for a function of n variables[33]:

() ()
()

()nim

m

i
n

i

n
n

nnni

hhhR

xxxf
x

h
x

h
x

h
i

xxxfhxhxhxf

...,,,

,...,,...
!

1

...,,,...,,,

2

1
21

2
2

1
1

''
2

'
1

'
2

'
2

'
1

∑
=

+

∂
∂++

∂
∂+

∂
∂

+=+++

, (2.16)

where

() ()

() nihxhxf

x
h

x
h

n
hhR

innn

m

n
nnm

...,,1,10,...,,

...
!1

1
...,,

111

1

1
11

=<<++

∂
∂++

∂
∂

+
=

+

θθθ

. (2.17)

In view of the beginning of this discussion, we can consider numerical

optimisation as the estimation of a good approximation of the optimisation problem
solution on the basis of limited information about the function, usually objective and
constraint function values and their derivatives in some discrete set of points. The
goal is to achieve satisfactory estimation with as little function and derivative

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

17

evaluations as possible. Now we can use the fact that general functions can be locally
approximated by simpler functions. Besides, functions of simple and known form
(e.g. linear or quadratic) are completely described by a finite number of parameters.
If we know these parameters, we know (in principle) all about the function, including
minimising points.

There exists a clear correspondence between the above considerations and the

design of optimisation algorithms. One thing to look at when constructing algorithms
is how they perform on simple model functions, and proofs of local convergence
properties based to a large extent on properties of the algorithms when applied to
such functions[4]-[10].

Heuristically this can be explained by considering a construction of a

minimisation algorithm in the following way. Use function values and derivatives in
a set of points to build a simple approximation model (e.g. quadratic), which will be
updated when new information is obtained. Consider applying an effective
minimisation technique adequate for the model function. Since the model
approximates the function locally, some information obtained in this way should be
applicable to making decision where to set the next iterate when minimising the
original function. In the limit, when the iterates approach the minimum, the model
function should be increasingly better approximation and minima of the successively
built models should be good guesses for the subsequent iterates.

In fact many algorithms perform in a similar manner. The difference is

usually that models are not built directly, but the iterates are rather constructed in
such a way that the algorithm has certain properties when applied to simple
functions, e.g. termination in a finite number of steps. This ensures good local
convergence properties. In addition some strategy must be incorporated which
ensures global convergence properties of the algorithm. The remainder of this section
will consider some mathematical concepts related to this. First, some basic notions
will be introduced, and then some important algorithmic properties will be discussed.

2.4.1 Basic Notions

Quadratic model functions are the most important in the study of
unconstrained minimisation. This is because the Taylor series up to quadratic terms
is the simplest Taylor approximation that can have an unconstrained local minimum.
Keeping the terms up to the second order in (2. 0 gives the following expression for a
second order Taylor approximation:

 () () () ()[]hxhxhxhx '2'''

2

1
ffff TT ∇+∇+≈+ , (2.18)

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

18

where

 () ()
T

nx

f

x

f

x

f
f

x

xgx

∂
∂

∂
∂

∂
∂==∇ ...,,,

21

is the function gradient and

 () () () ()xxGx ff T∇∇==∇2

is the Hessian matrix1 of the function, i.e. matrix of function second derivatives,

 ()[] () ()xxGx
ji

ijij xx

f
f

∂∂
∂==∇

2
2 . (2.19)

Notation () ()xxg f∇= and () ()xxG f2∇= will be used throughout this text.

The idea of a line in nRI is important. This is a set of points

 () sxxx αα +== ' , (2.20)

where RI∈α is a scalar parameter, x’ is any point on the line and s is the

direction of the line. s can be normalised, e.g. with respect to the Euclidian norm, i.e.

∑
=

=
n

i
is

1

2 1.

It is often useful to study how a function defined in nRI behaves on a line.

For this purpose, we can write

 () ()() ()sxx ααα +== 'fff . (2.21)

From this expression we can derive direction derivative of f, i.e. derivative of the
function along the line:

1 In standard notation Operator ∑

= ∂
∂=∇∇=Λ=∇

n

i i

T

x1
2

2
2 _ is the Laplace operator. However, in most

optimisation literature this notation is used for the Hessian operator, and so is also used in this text.

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

19

() ()()() sx T

i i
i

i i

i f
x

f
s

x

f

d

dx

d

df α
αα

α ∇=
∂
∂=

∂
∂= ∑∑ .

This can be written as

 s
s

Tf
d

df

d

df ∇==
α

. (2.22)

In a similar way the curvature along the line is obtained:

()

∑ ∑∑∑

∑

= = ==

=

∂∂
∂=

∂∂
∂

=
∂
∂==

n

i

n

i

n

j ji
ji

n

j ji

j
i

n

i i
i

xx

f
ss

xx

f

d

dx
s

x

f
s

d

d

d

df

d

d

d

fd

1 1 1

2

1

2

1
2

2

α

αααα
α

and so

 ()ss
s

f
d

fd

d

fd T 2
2

2

2

2

∇==
α

. (2.23)

A general quadratic function can be written in the form

 () cq TT ++= xbGxxx
2

1
, (2.24)

where G is a symmetric constant matrix, bT a constant vector and c a constant scalar.
The gradient of this function is

 () bGxx +=∇q (2.25)

and the Hessian matrix is

 () Gx =∇ q2 , (2.26)

where the rule for gradient of a vector product

 () () () () ()xvvxuuuvvuvu ==∇+∇=∇ ,;TTT

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

20

was applied.

We see that a quadratic function has a constant Hessian and its gradient is an

affine function of x. As a consequence, for any two points the following equation
relating the gradient in these points is valid:

 () () ()'"'" xxGxx −=∇−∇ qq . (2.27)

If G is nonsingular, a quadratic function has a unique stationary point

(() 0' =∇ xq):

 bGx 1' −−= , (2.28)

which is also a minimiser if G is positive definite (see section 2.4.2). Taylor
development about the stationary point gives another form for a quadratic function

 () () () '''

2

1
cq

T
+−−= xxGxxx , (2.29)

where '''

2

1
Gxx Tcc −= .

In this text a term linear function1 will be used for functions of the form

 () bl T += xax , (2.30)

where aT is a constant vector and b a constant scalar. Such functions have a constant
gradient

 () ax =∇l (2.31)

and zero Hessian

 () 02 =∇ xl . (2.32)

1 Mathematically this is an affine function. Linear functions are those[33] for which

() () ()yxyx bfafbaf +=+ for arbitrary x and y in the definition domain and for arbitrary constants a

and b. Affine functions are those for which () cf −x is a linear function, where c is some constant.

However, in the optimisation literature affine functions are often referred to simply as linear and this
is also adopted in this text.

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

21

2.4.2 Conditions for Unconstrained Local Minima

Consider first a line through some point x*, i.e. () sxx αα += * . Let us define a
scalar function of parameter α using values of function f on this line as

() ()()αα xff = . If x* is a local minimiser of ()xf , then 0 is clearly a local minimiser

of ()αf . From the Taylor expansion for a function of one variable about 0 then it
follows[4] that f has zero slope and non-negative curvature at 0=α . This must be
true for any line through x*, and therefore for any s. From (2. 0 and (2. 0 it then
follows

 0* =g (2.33)

and

 ssGs ∀≥ 0*T , (2.34)

where the following notation is used: ()** xff = , () ()xxg f∇= , ()** xgg = ,

() ()xxG f2∇= , and ()** xGG = . This notation will be used through this text, and

similarly ()() ()kk ff =x , etc.

Since (2. 0 and (2. 0 are implied by assumption that x* is a local minimiser of f,

these are necessary conditions for x* being a local minimiser. (2. 0 is referred to a first
order necessary condition and (2. 0 as a second order necessary condition. This
condition states that the Hessian matrix is positive semi-definite in a local minimum.

The above necessary conditions are not at the same time sufficient, i.e. these

conditions do not imply x* to be a local minimiser. Sufficient conditions can be stated
in the following way[4]:

Theorem 2.1:

Sufficient conditions for a strict and isolated local minimiser x* of f are that f
has a zero gradient and a positive definite Hessian matrix in x*:

 0* =g (2.35)

and

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

22

 00* ≠∀> ssGsT (2.36)

There are various ways how to check the condition (2. 0. The most important
for practical purposes are that[30],[32] G is positive definite, the Choleski factors of the
LLT decomposition exist and all diagonal elementsiil are greater than zero, and the

same applies for diagonal elements iid of the LDLT decomposition. This can be

readily verified on those algorithms which solve a system of equation with the
system matrix G in each iteration, since one of these decompositions is usually
applied to solve the system.

Some algorithms do not evaluate the Hessian matrix. These can not verify the

sufficient conditions directly. Sometimes these algorithms check only the first order
condition or some condition based on the progress during the last few iterations. It
can usually be proved that under certain assumptions iterates still converges to a
local minimum. Algorithms should definitely have the possibility of termination in a
stationary point, which is not a minimum (usually in a saddle point with indefinite
Hessian matrix). Some algorithms generate subsequent approximations of the
Hessian matrix, which converge to the Hessian in the limit when iterates approach a
stationary point. The condition can then be checked indirectly on the approximate
Hessian. More details concerning this will be outlined in the description of individual
algorithms.

2.4.3 Desirable Properties of Algorithms and Notion of
Conjugacy

A desired behaviour of an optimisation algorithm is that iterates move
steadily towards the neighbourhood of a local minimser, then converge rapidly to this
point and finally that it identifies when the minimiser is determined with a
satisfactory accuracy and terminates.

Optimisation algorithms are usually based on some model and on some

prototype algorithm. A model is some approximation (not necessarily explicit) of the
objective function, which enables a prediction of a local minimiser to be made.

A prototype algorithm refers to the broad strategy of the algorithm. Two basic

types are the restricted step approach and the line search approach, described in
detail in the subsequent sections. There it will be also pointed out that the ideas of
prototype algorithms are usually closely associated with global convergence.

Local convergence properties of an algorithm describe its performance in the

neighbourhood of a minimum. If we define the error of the k-th iterate

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

23

 () () *xxh −= kk , (2.37)

it may be possible to state some limit results for h(k). An algorithm is of course
convergent if () 0→kh . If a limit

()

()
apk

k

k
=

+

∞→ h

h 1

lim (2.38)

exists where 0>a is some constant, then we say that the order of convergence is p.
This definition can also be stated in terms of bounds if the limit does not exist: the
order of convergence is p if

()

()
apk

k

≤
+

h

h 1

 (2.39)

for some constant 0>a and for each k greater than some klim. An important cases are
linear or first order convergence

()

() a
k

k

≤
+

h

h 1

 (2.40)

and quadratic or second order convergence

()

()
a

k

k

≤
+

2

1

h

h
. (2.41)

The constant a is called the rate of convergence and must be less than 1 for

linear convergence. Linear convergence is only acceptable if the rate of convergence
is small. If the order and rate are 1, the convergence is sublinear (slower than all

linear convergence). This would be the case if kk 1=h .

When the order is 1, but the rate constant is 0, the convergence is superlinear

(faster than all linear convergence), i.e.

()

() 0lim
1

=
+

∞→ k

k

k h

h
. (2.42)

Successful methods for unconstrained minimisation converge superlinearly.

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

24

 Many methods for unconstrained minimisation are derived from

quadratic models. They are designed so that they work well or exactly on a quadratic
function. This is partially associated with the discussion of section 2.4.1: since a
general function is well approximated by a quadratic function, the quadratic model
should imply good local convergence properties. Because the Taylor series about an
arbitrary point taken to quadratic terms will agree to a given accuracy with the
original function on a greater neighbourhood than the series taken to linear terms, it
is preferable to use quadratic information even remote from the minimum.

The quadratic model is most directly used in the Newton method (2. 3), which

requires the second derivatives. A similar quadratic model is used in restricted step
methods. When second derivatives are not available, they can be estimated in various
ways. Such quadratic models are used in the quasi-Newton methods.

Newton-like methods (Newton or quasi-Newton) use the Hessian matrix or

its approximation in Newton’s iteration (2. 3). A motivation for this lies in the
Dennis-Moré theorem, which states that superlinear convergence can be obtained if
and only if the step is asymptotically equal to that of the Newton-Raphson method[4].

The quadratic model is also used by the conjugate direction methods, but in a

less direct way. Nonzero vectors () () ()nsss ...,,, 21 are conjugate with respect to a
positive definite matrix G, when

 () () jis jTi ≠∀= 0Gs . (2.43)

Optimisation methods, which generate such directions when applied to a

quadratic function with Hessian G, are called conjugate direction methods. Such
methods have the following important property[4]:

Theorem 2.2:

A conjugate direction method terminates for a quadratic function in at most n
exact line searches, and each ()kx is a minimiser of that function in the set

 () ()

∈+= ∑
=

k

j
j

j
j

1

1 RI,; αα sxxx (2.44)

The above theorem states that conjugate direction methods have the property

of quadratic termination, i.e. they can locate the minimising point of a quadratic
function in a known finite number of steps. Many good minimisation algorithms can
generate the set of conjugate directions, although it is not possible to state that

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

25

superlinear convergence implies quadratic termination or vice versa. For example,
some successful superlinearly convergent Newton-like methods do not possess this
property.

It is useful to further develop the idea of conjugacy in order to gain a better

insight in what it implies. We can easily see that ()is are linearly independent. If for
example ()js was a linear combination of some other vectors ()ks , e.g.

 () ()
∑

≠

=
jk

k
k

j ss β ,

multiplying this with () Gs Tj would give

 () () 0=jTj Gss ,

which contradicts the positive definiteness of G.

We can use vectors ()js as basis vectors and write any point as

 () ()
∑

=
+=

n

i

i
i

1

1 sxx α . (2.45)

Taking into account this equation,(2. 0 and conjugacy, the quadratic function from the
theorem can be written as1

 () () () () ()****

2

1

2

1 ααααα −−=−−= GSSxxGxx TT
q . (2.46)

We have ignored a constant term in (2. 0, which has no influence on further
discussion, and written the minimiser *x of q as

 () () ()
∑+= i

i sxx *1* α ,

and S is a matrix whose columns are vectors ()is . Since ()is are conjugate with
respect to G, the product STGS is a diagonal matrix with diagonal elements id , say,

and therefore

1 Notation []Tnαααα ...,,, 21= is used. Vectors denoted by Greek letters are not typed in bold, but it

should be clear from the context when some quantity is vector and when scalar.

 2. Numerical Optimisation Techniques 2.4. Basic Mathematical Background

26

 () ()∑
=

−=
n

i
iii dq

1

2*

2

1 ααα . (2.47)

 We see that conjugacy implies a coordinate transformation from x-space to
α -space in which G is diagonal. Variables in the new system are decoupled from the
point of view that ()αq can be minimised by applying successive minimisations in

coordinate directions, which results in a minimiser *α corresponding to *x in the x
space. A conjugate direction method therefore corresponds to the alternating variable
method applied in the new coordinate system. Enforcing conjugacy overcomes the
basic problem associated with the alternating variable method, i.e. the fact that
minimisation along one coordinate direction usually spoils earlier minimisations in
other directions, which is the reason for oscillating behaviour of the method shown in
Figure 2.1. Since a similar problem is associated with the steepest descent method,
conjugacy can be successfully combined with derivative methods.

A side observation is that eigenvectors of G are orthogonal vectors conjugate

to G. A quadratic function is therefore minimised by exact minimisation along all
eigenvectors of its Hessian. Construction of the conjugate direction methods will
show that there is no need to know eigenvectors of G in order to take advantage of
conjugacy, but it is possible to construct conjugate directions starting with an
arbitrary direction.

Another important issue in optimisation algorithms is when to terminate the

algorithm. Since we can not check directly how close to the minimiser the current
iterate is, the test can be based on conditions for a local minimum, for example

 () ε≤kg , (2.48)

where ε is some tolerance. Sometimes it is not easy to decide what magnitude to
choose for ε , since a good decision would require some clue about the curvature in
the minimum. The above test is also dependent on the scaling of variables. Another
difficulty is that it can terminate in a stationary point that is not a minimum. When
second derivative information is available, it should be used to exclude this
possibility.

When the algorithm converges rapidly, tests based on differences between

iterates can be used, e.g.

 () () ixx i
kk

ii
∀≤− + ε1 (2.49)

or

 2. Numerical Optimisation Techniques 2.5. Newton-like Methods

27

 () () ε≤− +1kk ff . (2.50)

These tests rely on a prediction how much at most f can be further reduced or

x approached to the minimum.

The test

 () ()kkTk gHg
2

1
, (2.51)

where H is the inverse Hessian or its approximation, is also based on predicted
change of f.

Finally, the possibility of termination when the number of iterations exceeds

some user supplied limit is a useful property of every algorithm. Even when good
local convergence results exist for a specific algorithm, this is not necessarily a
guarantee for good performance in practice. Function evaluation is always subjected
to numerical errors and this can especially affect algorithmic performance near the
solution where local convergence properties should take effect.

2.5 Newton-like Methods

Newton-like methods are based on a quadratic model, more exactly on the
second-order Taylor approximation (equation) of ()xf about x(k). The basic ideas
around this were explained in sections 2.2 and 2.4 and will be further developed in
this section.

In section 2.2 Newton’s method was derived from the solution of the system

of equations

 () 0=∇ xg ,

where the iteration formula was derived from the first order Taylor’s approximation
of g(x), giving iteration formula (2. 3). Two problems related with direct application
of the method were mentioned there, i.e. lack of global convergence properties and
explicit use of the second order derivative information regarding the objective
functions. Some general ideas on how to overcome these problems were outlined in

 2. Numerical Optimisation Techniques 2.5. Newton-like Methods

28

section 2.4 and will be further developed in this section for algorithms, which in
principle stick with the basic idea of Newton’s method.

In order to take over and develop the ideas given in section 2.4, let us start

from the second order Taylor approximation of f itself, developed around the current
iterate:

 ()() ()() () () ()δδδδδ kTTkkkk fqf Ggx
2

1++=≈+ . (2.52)

Using the results of section 2.4, the stationary point of this approximation is a
solution of a linear system of equations

 () ()kk gG −=δ . (2.53)

It is unique if G(k) is non-singular and corresponds to a minimiser if G(k) is positive
definite. Newton’s method is obtained by considering ()kδ as solution of the above
equation and setting the next guess to () ()kk δ+x . The k-th iteration of Newton’s
method is then

1. Solve (2. 0 for ()kδ ,
2. Set () () ()kkk δ+=+ xx 1 .

This is well defined as a minimisation method only if G(k) is positive definite

in each iteration, and this can be readily checked if for example LDLT
decomposition is used for solution of (2. 0. However, even if G(k) is positive definite,
the method may not converge from any initial guess, and it can happen that (){ }kf do
not even decrease.

Line search can be used to eliminate this problem. The solution of (2. 0 then

defines merely the search direction, rather than correction ()kδ . The correction is
then obtained by line minimisation, and such a method is called Newton’s method
with line search. The direction of search is

 () () ()kkk gGs
1−−= . (2.54)

If G(k) and hence its inverse are positive definite, this defines a descent

direction. If G(k) is not positive definite, it may be possible to make a line search in
()ks± , but the relevance of searching in ()ks− is questionable because this is not a

direction towards a stationary point of ()δq . Furthermore, the method fails if any
()kx is a saddle point of f. This gives () 0=ks , although ()kx is not a minimiser of f.

 2. Numerical Optimisation Techniques 2.5. Newton-like Methods

29

One possibility of how to overcome this problem is to switch to the steepest
descent direction whenever G(k) is not positive definite. This can be done in
conjunction with the angle criterion to achieve global convergence.

Minimising in the steepest descent directions can lead to undesired oscillatory

behaviour where small reductions of f are achieved in each iteration. This happens
because second order model information is ignored, as shown in section 2.4.3. The
alternative approach is to switch between the Newton and steepest descent direction
in a continuous way, controlling the influence of both through some adaptive
weighting parameter. This can be achieved by adding a multiple of the unit matrix to
G(k) so that the search direction is defined as

 ()() () ()kkk gsG −=Ι+ν . (2.55)

Parameter ν is chosen so that () Ι+νkG is positive definite. If G(k) is close to
positive definite, a small ν is sufficient and the method therefore uses the curvature
information to a large extent. When large values of ν are necessary, the search
directions becomes similar to the steepest descent direction ()kg− .

This method still fails when some ()kx is a saddle point, and the second order
information is not used in the best possible way. Further modification of the method
incorporates the restricted step approach in which minimisation of the model
quadratic function subjected to length restriction is minimised.

2.5.1 Quasi-Newton Methods

In the Newton-like methods discussed so far the second derivatives of f are
necessary and substantial problems arise when the Hessian matrix of the function is
not positive definite. The second derivatives of ()kG can be evaluated by numerical
differentiation of the gradient vector. In most cases it is advisable that after this
operation G is made symmetric by ()TGGG += 2

1 , where G is the finite difference

approximation of the Hessian matrix. However, evaluation of G can be unstable in
the presence of numerical noise, and it is also expensive, because quadratic model
information built in the previous iterates is disregarded.

The above mentioned problems are avoided in so called quasi-Newton

methods. In these methods () 1−kG are approximated by symmetric matrices ()kH ,
which are updated from iteration to iteration using the most recently obtained
information. Analogous to Newton’s method with line search, line minimisations are
performed in each iteration in the direction

 2. Numerical Optimisation Techniques 2.5. Newton-like Methods

30

 () () ()kkk gHs −= . (2.56)

By updating approximate 1−G rather than G, a system of equations is avoided and
the search direction is obtained simply by multiplication of the gradient vector by a
matrix. An outline of the algorithm is given below:

Algorithm 2.2: General quasi-Newton algorithm.

Given a positive definite matrix ()1H , the k-th iteration is:
1. Calculate ()ks according to (2. 0.
2. Minimise f along ()ks , set () () () ()kkkk sxx α+=+1 , where ()kα is a line

minimum.
3. Update ()kH to obtain ()1+kH .

If no second derivative information is available at the beginning, ()1H can be any
positive definite matrix, e.g. () IH =1 . The inexact line search strategy can be used in
line 2. If ()kH is positive definite, the search directions are descent. This is desirable
and the most important are those quasi-Newton methods, which maintain positive
definiteness of H(k).

The updating formula should explicitly use only first derivative information.

Repeated updating should change arbitrary ()1H to a close approximation of () 1−kG
The updating formula is therefore an attempt to augment the current ()kH with
second derivative information gained in the current iteration, i.e. by evaluation of f
and f∇ at two distinct points. In this context equation (2. 0, which relates the Hessian
matrix of a quadratic function with its gradient in two distinct points, requires
attention.

Let us write

 () () ()kkk xx −= +1δ (2.57)

and

 () () ()kkk gg −= +1γ . (2.58)

Using the Taylor series of g about ()kx gives a relationship similar to (2. 0, i.e.

 () () () ()()kkkk o δδγ += G . (2.59)

 2. Numerical Optimisation Techniques 2.5. Newton-like Methods

31

The updating formula should therefore correct ()1+kH so that the above relation

would hold approximately with () 11 −+kH in place of ()kG . This gives the so called
quasi-Newton condition, in which the updating formula must satisfy

 () () ()kkk δγ =+1H . (2.60)

Since this condition gives only one equation, it does not uniquely define the
updating formula and permits various ways of updating H. One possibility is to add a
symmetric rank one matrix to ()kH , i.e.

 () () Tkk uuHH +=+1 . (2.61)

Substituting this into (2. 0 gives

 () () () ()kkTkk δγγ =+ uuH . (2.62)

Since () ()kT γu is a scalar, matrix multiplication is associative and multiplication with

a scalar is commutative, u must be proportional to () () ()kkk γδ H− . Writing

 () () ()()kkka γδ Hu −=

and inserting this into (2. 0 gives () () ()() ()kTkkka γγδ H−=1 and therefore

 () ()
() () ()() () () ()()()

() () ()()() ()kTkkk

Tkkkkkk
kk

γγδ
γδγδ

H

HH
HH

−
−−+=+1 . (2.63)

This formula is called the rank one updating formula according to the above
derivation.

For a quadratic function with positive definite Hessian the rank one method

terminates in at most n+1 steps with () 11 −+ = GH n , provided that () ()nδδ ...,,1 are
independent and that the method is well defined[4]. The proof does not require exact
line searches. Also the so called hereditary property can be established, i.e.

 () () () 1...,,2,1,i −== ijjj δγH . (2.64)

 2. Numerical Optimisation Techniques 2.5. Newton-like Methods

32

A disadvantage is that in general the formula does not maintain positive definiteness
of ()kH and the dominator in (2. 0 can become zero.

Better formulas can be obtained by allowing the correction to be of rank two.

This can always be written[32],[34] as

 () () TTkk vvuuHH ++=+1 . (2.65)

Using this in the quasi-Newton condition gives

 () () () () ()kTkTkkk γγγδ vvuuH ++= . (2.66)

u and v can not be determined uniquely. A straightforward way of satisfying the
above equation is to set u proportional to ()kδ and v proportional to () ()kk γH . By
solution of the equation separately for both groups of proportional vectors the
Davidon – Fletcher - Powell or DFP updating formula is obtained:

 ()
γγ

γγ
γδ

δδ
H

HH
HH

T

T

T

T
k

DFP −+=+1 . (2.67)

Indices k have been omitted for the sake of simplicity (this approach will be adopted
through this section) and the symmetry of H is used.

Another rank two updating formula can be obtained by considering updating

and approximating G instead of 1−G . Let us write () () 1−= kk HB and consider
updating ()kB in a similar way as ()kH was updated according to the DFP formula.
We require that the quasi-Newton condition (2. 0 is preserved. This was true for the
DFP formula, but now we are updating inverse of ()kH , therefore, according to (2. 0,

()kγ and ()kδ must be interchanged. This gives the formula

 ()
δδ

δδ
δγ

γγ
B

BB
BB

T

T

T

T
k

BFGS −+=+1 . (2.68)

We however still want to update ()kH rather than ()kB , because a solution of system
of equations is in this way avoided in the quasi-Newton iteration. The following
updating formula satisfies () () IHB =++ 11 k

BFGS
k

BFGS :

 ()

 +−

++=+

γδ
γδδγ

γδ
δδ

γδ
γγ

T

TT

T

T

T

T
k

BFGS

HHH
HH 11 . (2.69)

 2. Numerical Optimisation Techniques 2.5. Newton-like Methods

33

This is called the Broyden – Fletcher – Goldfarb – Shanno or BFGS updating
formula.

The BFGS and the DFP formula are said to be dual or complementary

because the expressions for ()1+kB and ()1+kH in one are obtained by interchanging
HB ↔ and δγ ↔ in the other. Such duality transformation preserves the quasi-

Newton condition. The rank one formula is self-dual.

The DFP and BFGS updating formula can be combined to obtain the so

called Broyden one-parameter family of rank two formulae:

 () () ()111 1 +++ +−= k

BFGS
k

DFP
k HHH φφφ . (2.70)

This family includes the DFP and BFGS and also rank 1 formula. The quasi-Newton
method with a Broyden family updating formula has the following properties[4]:

1. For a quadratic function with exact line searches:

• The method terminates in at most n iterations with () 11 −+ = GH n .
• Previous quasi-Newton conditions are preserved (hereditary property (2. 0).
• Conjugate directions are generated, and conjugate gradients when () IH =0 .

2. For general functions:
• The method has superlinear order of convergence.
• The method is globally convergent for strictly convex functions if exact line

searches are performed.

The Broyden family updates maintain positive definiteness of ()1+k

φH for

0≥φ .

Global convergence has also been proved for the BFGS method with inexact

line searches, applied to a convex objective function[4]. The BFGS method with
inexact line searches converges superlinearly if ()*G is positive definite.

The BFGS method also shows good performance in numerical experiments.

The method is not sensitive to exactness of line searches, in fact it is a generally
accepted opinion that inexact line searches are more efficient with the BFGS method
than near exact line searches. The contemporary optimisation literature[4],[7] suggests
the BFGS method as preferable choice for general unconstrained optimisation based
on a line search prototype algorithm.

 2. Numerical Optimisation Techniques 2.5. Newton-like Methods

34

2.5.2 Invariance Properties

It is important to study how optimisation algorithms perform when affine
transformation of variables is made, i.e.

 aAxy += , (2.71)

where A is nonsingular. This is a one-to-one mapping with inverse transformation

 ()ayAx −= −1 .

f can be evaluated either in x space (denoted by ()xxf) or in y space (denoted by

() ()()ayAy −= −1
xy ff).

Applying the chain rule for derivation in x space gives

 ()∑∑
== ∂

∂=
∂
∂

∂
∂=

∂
∂ n

k k
ik

T
n

k ki

k

i yyx

y

x 11

A , (2.72)

therefore y

T
x ∇=∇ A and so

 y

T
x gAg = . (2.73)

Applying the gradient operator to the above equation then gives

AgAg T
yy

TT
xx ∇=∇ , i.e.

 AGAG y

T
x = . (2.74)

The notation yyy f∇=g , etc. was used, so that for example

 []
ji

y

ijy yy

f

∂∂
∂

=
2

G .

The following theorem[4] applies to Newton-like methods:

Theorem 2.3:

If ()kH transforms under transformation (2. 0 as

 2. Numerical Optimisation Techniques 2.5. Newton-like Methods

35

 () () kTk

y
k

x ∀= −− AHAH 1 , (2.75)

then a Newton-like method with fixed step ()kα is invariant under the
transformation (2. 0. A method is also invariant if ()kα is determined by tests on

()kf , () ()kTk sg or other invariant scalars.

Transformation (2. 0 in the above theorem is obtained by inverting (2. 0, since

()kH approximate ()kG in the quasi-Newton methods.

We see that the steepest descent method (treated as quasi-Newton method

with () IH =k) is not invariant under transformation (2. 0 because I does not
transform correctly. Modified Newton methods are also not invariant because

IG ν+ does not transform correctly when 0>ν .

For a quasi-Newton method to be invariant, ()1H must be chosen so as to

transform correctly (as (2. 0) and the updating formula must preserve the
transformation property (2. 0. Therefore, if () IH =1 is chosen, then invariance does

not hold. () ()() 111 −= xGH transforms correctly and therefore this choice does not
affect invariance.

In order to show that a specific updating formula preserves the transformation

property (2. 0, we must show that () ()k
y

Tk
x HAAH = (which is (2. 0 pre-multiplied by A

and post-multiplied by AT) which implies () ()11 ++ = k
y

Tk
x HAAH . Let us do this for the

DFP formula

 ()

xx
T

x

x
T

xxx

x
T

x

T
xx

x
k

x γγ
γγ

γδ
δδ

H

HH
HH −+=+1 . (2.76)

We will pre-multiply the above equation by A and post-multiply it by AT and

use relations yx δδ =A following from (2. 0 and y
T

x γγ A= following from (2. 0. We

will consider individual terms in equation (2. 0.

The first term on the right-hand side of (2. 0 gives, after multiplication, ()k

yH

by assumption. Consider then the denominator of the second term:

 () y
T

yy
T

xx
TTT

xx
T

x γδγδγδγδ === − AAA ,

 2. Numerical Optimisation Techniques 2.5. Newton-like Methods

36

the denominator is invariant. The numerator after multiplication gives

 T
yy

TT
xx δδδδ =AA ,

so the second term transforms correctly. Consider the denominator of the third term:

()

yy
T

y

x
T

y

T

x
T

x
TT

x
T

xxx
T

x

γγ

γγγγγγ

H

AHAAAAHAH === −−−−1

,

the denominator is invariant under transformation. The numerator after
multiplication is

()

y
T

yyy

y

T

x
T

yy
T

x
T

xx
TT

x
T

x
T

xxx

HH

HAHAAHAAAAHAHAH

γγ

γγγγγγ === −−− 1

,

so the third term is also transformed correctly. () ()11 ++ = k

y
Tk

x HAAH is valid since

 ()

yy
T

y

y
T

yyy

y
T

y

T
yy

y
Tk

x γγ
γγ

γδ
δδ

H

HH
HAAH −+=+1

and this is the DFP formula in the y space.

Similarly the preservation of (2. 0 can be proved for all updating formulas in

which the correction is a sum of rank one terms constructed from vectors δ and γH ,
multiplied by invariant scalars. Such versions are the BFGS formula and hence all
Broyden family formulas.

The Broyden family (including BFGS and DFP) algorithms are therefore

invariant under the affine transformation of variables (2. 0, provided that ()1H is
chosen so as to transform correctly, i.e. as (2. 0. However, even if ()1H is not chosen

correctly, after n iterations we have () () 111 −++ ≈ nn GH , which is transforms correctly.
The method therefore becomes close to the one in which invariance is preserved.

Invariance to an affine transformation of variables is a very important

algorithmic property. Algorithms which have this property, are less sensitive to
situations in which G is ill-conditioned, since an implicit transformation which
transforms G to the unity matrix I can be introduced, which does not change the
method. Algorithms that are not invariant, i.e. the steepest descent or the alternating
variables method, can perform very badly when the Hessian is ill-conditioned.

 2. Numerical Optimisation Techniques 2.6. Conjugate Direction Methods

37

When using methods which are not invariant, it can be advantageous to find a

linear transformation which improves the conditioning of the problem[17].

If columns of A are eigenvectors of G, then G is diagonalised when

transformation (2. 0 is applied. Conditioning can be achieved by additional scaling of
variables, i.e. by multiplication with a diagonal matrix. This approach is however not
applicable in practice because it is usually difficult to calculate eigenvectors of G.
For positive definite G the same effect is achieved by using Choleski factors of G as
the transformation matrix. AAG T

x = gives

 IAAAAAGAG === −−−− 11 TT

x
T

y .

It is often possible to improve conditioning just by scaling the variables. In

this case A is chosen to be a diagonal matrix so that 2A estimates xG in some sense.
1−−= AGAG x

T
y (from (2. 0) is required to be close to the unity matrix in some sense.

It can be required, for example, that [] i
ii

y ∀=1G . It is usually not necessary to

explicitly perform the scaling, but I can be replaced in the methods by a suitable
diagonal matrix. For example, the modified Newton method can be improved by
using 2−+ AG ν in place of Ι+νG .

2.6 Conjugate Direction Methods

Optimisation algorithms described in this section are based on the result
given in Theorem 2.2, which associates conjugacy and exact line searches with
quadratic termination. These algorithms rely on an idealized assumption that exact
line searches are performed. This is possible for a quadratic function, but not in
general. By using interpolation in the line search algorithm, it is still possible to
locate a local minimum up to a certain accuracy, and this approach is used in practice
with the conjugate direction methods. An argument which justifies this is that in the
close neighbourhood of a minimum, quadratic interpolations of the objective
functions will enable the line minimum to be located almost exactly, so that the
inexact nature of the line search algorithm will not spoil local convergence
properties, which are theoretically based on the assumption of exact line search.

 2. Numerical Optimisation Techniques 2.6. Conjugate Direction Methods

38

In section 2.6.1 derivative based conjugate direction methods are described.
The described methods generate conjugate directions when they are applied to a
quadratic function.

2.6.1 Conjugate Gradient Methods

Conjugate gradient methods begin with line search along

 () ()11 gs −= (2.77)

and then generate search directions () 1,1 ≥+ kks from ()1+− kg , so that they are

conjugate to () ()kss ...,,1 with respect to the Hessian matrix G when a method is
applied to a quadratic function.

For a quadratic function it follows from (2. 0 that

 () () kkk ∀= δγ G , (2.78)

where () () ()kkk gg −= +1γ and () () ()kkk xx −= +1δ , as usual. Conjugacy conditions (2. 0
can therefore be written as

 () () ijjTi ≠= 0γs (2.79)

since () () ()jjjj sGG αδγ == . The last expression is a consequence of the fact that

()1+jx is obtained by a line search performed from ()jx along ()js .

The above equation can be used to prove an important property. First we can

see that

 () iiTi ∀=+ 01gs , (2.80)

because exact line searches are used. By using the above equation and (2. 0 we obtain

() ()

()() () () () () () ()()
()() () () () ()() ikiiikkTi

iikkkkTi

kTi

>∀=+++

=+−+−+−

=

++

++−+

+

,0...

...
11

1111

1

gs

ggggggs

gs

γγγ

, (2.81)

 2. Numerical Optimisation Techniques 2.6. Conjugate Direction Methods

39

This means that ()1+kg is orthogonal to all search directions of previous steps:

 () () kikkTi ≤∀=+ ,01gs . (2.82)

This is actually the result of Theorem 2.2.

In the Fletcher-Reeves method ()1+ks is obtained from ()1+− kg by the extended

Gramm-Schmidt orthogonalisation[30],[32] with respect to () kji ≤,γ , in order to
satisfy conjugacy conditions (2. 0. We can write1

 () () () ()
∑

=

++ +−=
k

j

jjkk

1

11 sgs β . (2.83)

Multiplying the transpose of the above equation by ()iγ gives

 () () () () () () ()iTiiiTkiTk γβγγ sgs +−== ++ 11 0 , (2.84)

where (2. 0 was taken into account. It follows that

 ()
() ()

() ()

() () ()()
() () ()()iiTi

iiTk

iTi

iTk
i

ggs

ggg

s

g

−
−==

+

+++

1

111

γ
γβ . (2.85)

It follows from construction of ()ks ((2. 0 and (2. 0) that vectors () ()kgg ...,,1 and

() ()kss ...,,1 span the same subspace. Therefore, since ()1+kg is orthogonal to the

subspace spanned by () ()kss ...,,1 due to (2. 0, it is also orthogonal to vectors
() ()kgg ...,,1 , i.e.

 () () kikkTi ≤∀=+ ,01gg (2.86)

We see that only () 0≠kβ and that

 ()
() () ()()
() () ()()

() ()

() ()kTk

kTk

kkTk

kkTk
k

gs

gg

ggs

ggg 11

1

11 ++

+

++

−=
−
−=β (2.87)

1 The derivation of the Fletcher-Reeves method was found to be not completely clear in some
optimisation literature and is therefore included herein.

 2. Numerical Optimisation Techniques 2.6. Conjugate Direction Methods

40

The denominator of the above equation can be obtained by substituting ()ks by (2. 0
with decreased indices and taking into account that only ()1−kβ is non-zero, together
with the established orthogonality properties:

 () () () () ()() () () ()kTkkTkkkkTk gggsggs −=+−= −− 11β .

Now we have

 ()
() ()

() ()kTk

kTk
k

gg

gg 11 ++

=β . (2.88)

The obtained results can be summarized in the following way:

Theorem 2.4:

The Fletcher-Reeves method with exact line searches terminates for a quadratic
function at a stationary point 1+mx after nm≤ iterations. In addition, the
following results hold for mi ≤≤1 :

 () () 1...,,2,1;0 −== ijjTi Gss (conjugate directions), (2.89)

 () () 1...,,2,1;0 −== ijjTi gg (orthogonal gradients) (2.90)
and

 () () () ()iTiiTi gggs −= (descent conditions). (2.91)

The termination must occur in at least n iterations because in the opposite

case () 01 ≠+ng would contradict the result that gradients are orthogonal.

When applied to a quadratic function with positive definite G, the Fletcher-

Reeves method turns to be equivalent to the Broyden family of methods if () IH =1 ,
the starting point is the same and exact line searches are performed in both
methods[4],[7]. For non-quadratic functions line relatively accurate line search is
recommended. Resetting the search direction to the steepest descent direction
periodically after every n iterations is generally an accepted strategy in practice.
When compared with quasi-Newton methods, conjugate gradient methods are less
efficient and less robust and they are more sensitive to the accuracy of the line search
algorithm. Methods with resetting are globally convergent and exhibit n-step
superlinear convergence, i.e.

 2. Numerical Optimisation Techniques 2.6. Conjugate Direction Methods

41

()

() 0lim
*

*

=
−

−+

∞→ xx

xx
k

nk

k
 (2.92)

Some other formulas may be used instead of (2. 0. Examples are the conjugate

descent formula

 ()
() ()

() ()kTk

kTk
k

sg

gg 11 ++

=β (2.93)

and the Polak-Ribiere formula

 ()
() ()() ()

() ()kTk

kTkk
k

gg

ggg 11 ++ −=β . (2.94)

Considering the derivation of the Fletcher-Reeves method, it can be seen that these
formulas are equivalent to the Fletcher-Reeves formula when applied to quadratic
functions with exact line searches. The conjugate descent formula has a strong

descent property that () () 0<kTk gs if () 0≠kg . The Polak-Ribiere formula is
recommended when solving large problems[4].

Another possibility for conjugate gradient methods is to use symmetric

projection matrices in the calculation of ()1+ks , which annihilate vectors () ()kk γγ ...,, :

 () () () nkkkk ...,,2,1, =−= gPs . (2.95)

Initially

 () IP =1 (2.96)

and subsequent ()kP are updated as

 () ()
() () () ()

() () ()kkTk

kTkkk
kk

γγ
γγ
P

PP
PP −=+1 . (2.97)

 2. Numerical Optimisation Techniques 2.7. Further Remarks

42

Again this method is equivalent to other described methods for quadratic functions.
When applied to general functions, ()iP must be reset to I every n iterations since

() 01 =+nP . The method has the descent property () () 0≤kTk gs , but has a disadvantage
that matrix calculations are required in each iteration.

2.7 Further Remarks

In the present chapter some of the basis of nonlinear programming is
outlined. This knowledge is important for understanding the practical requirements
for implementation of the algorithmic part in the optimisation shell. The literature
cited in this chapter is mostly related to the mathematical and algorithmic
background of optimisation and less to practical implementation (except references
[6], [11] and [29]). Some implementation aspects are stressed in the next chapter
within a larger framework of the optimisation shell. The need for hierarchical and
modular implementation, which is stated there, is partially based on the heterogeneity
of optimisation algorithms evident from the present chapter.

In practice it is not always obvious which algorithm to use in a given

situation. This depends first of all on the case being solved. Although the theory can
offer substantial support for making the judgment, most of the literature on
optimisation methods recognize the significance of numerical experimentation
alongside the theoretical development. This implies a significant aspect that was
borne in mind during development of the optimisation shell. The shell should not
only include a certain number of algorithms, but also provide an open framework for
incorporation of new algorithms and testing them on simple model functions as well
as on practical problems.

Many issues important for engineering practice were not taken into account.

One of them is handling multiple conflicting optimisation criteria, i.e. solving the
problem stated as

minimise () () ()[]xxx mfff ...,,, 21

 (2.98)
tosubject Ω∈x .

A common approach is to weight the individual criteria, which leads to the problem

minimise () () () ()xxxx mm fwfwfwf +++= ...2211

 2. Numerical Optimisation Techniques 2.7. Further Remarks

43

 (2.99)
tosubject Ω∈x ,

where 1w , …, mw are positive weighting coefficients. The problem which arises is

how to choose these coefficients. The choice is made either on the basis of
experience or in an iterative process where optimisation is performed several times
and coefficients are varied on the basis of the optimisation results.

Sometimes it is more convenient to designate one criterion as a primary

objective and to constrain the magnitude of the others, e.g. in the following way:

minimise ()x1f

tosubject () 22 Cf ≤x ,
 … (2.100)
 () mm Cf ≤x ,

 Ω∈x .

This approach suffers for a similar defect as weighting criteria, i.e. the solution
depends on the choice of coefficients 2C , …, mC . Attempts to overcome this

problem lead to consideration of Pareto optimality[12],[17] and solution of the min-max
problem[12],[23].

Another important practical issue is optimisation in the presence of numerical

noise. Most of the methods considered in this chapter are designed on the basis of
certain continuity assumptions and do not perform well if the objective and
constraint functions contain a considerable amount of noise. This can often not be
avoided due to complexity of the applied numerical models and their discrete nature
(e.g. adaptive mesh refinement in the finite element simulations).

A promising approach to optimisation in the presence of noise incorporates

approximation techniques[38],[39]. In this approach successive low order
approximations of the objective and constraint functions are made locally on the
basis of sampled function values and/or derivatives. This leads to a sequence of
approximate optimisation subproblems. They refer to minimisation of the
approximate objective functions subject to the approximate constraints and to
additional step restriction, which restricts the solution of the subproblem to the
region where the approximate functions are adequate. The subproblems are solved by
standard nonlinear programming methods. For approximations more data is usually
sampled than the minimum amount necessary for determination of the coefficients of
the approximate functions, which levels out the effect of noise. A suitable strategy

 2. Numerical Optimisation Techniques 2.7. Further Remarks

44

must be defined for choosing the limits of the search region and for the choice of
sampling points used for approximations (i.e. the plan of experiments)[38].

A common feature of all methods mentioned in this chapter is that they at

best find a local solution of the optimisation problem. There are also methods which
can (with a certain probability) find the global solution or more than one local
solution at once. The most commonly used are simulated annealing[29],[12],[17] and
genetic algorithms[12],[17]. Most of these methods are based on statistical search,
which means that they require a large number of function evaluations in order to
accurately locate the solution. This makes them less convenient for use in
conjunction with expensive numerical simulations, except in cases where global
solutions are highly desirable. Use of these techniques can also be suitable for
finding global solutions of certain optimisation problems which arise as sub-
problems in optimisation algorithms and in which the objective and constraint
functions are not defined implicitly through a numerical simulation.

 2. Numerical Optimisation Techniques References

45

References:

[1] M. Dutko, Software architectural, functional and design
specifications, PROFORM project interim report, 2004.

[2] Rodič,T. & Grešovnik,I., A computer system for solving inverse and
optimization problems.- International Journal for Computer Aided
Engineering and Software 15 / 6-7, 1998, 893-907.J.Baldyga,
M.Jasinska, Effects of fluid motion and mixing on particle
agglomeration and coating during precipitation. Chemical
Engineering Science, 2005, (Article in press).

[3] Optimization Shell Inverse, electronic document at
http://www.c3m.si/inverse/ , maintained by the Centre for
Computational Continuum Mechanics, Ljubljana.

[4] R. Fletcher, Practical Methods of Optimization (second edition), John
Wiley & Sons, New York, 1996).

[5] E. J. Beltrami, An Algorithmic Approach to Nonlinear Analysis and
Optimization, Academic Press, New York, 1970

[6] J. E. Dennis (Jr.), R. B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, SIAM,
Philadelphia, 1996.

[7] D. P. Bertsekas, Nonlinear Programming (second edition), Athena
Scientific, Belmont, 1999.

[8] Mathematical Optimization, electronic book at
http://csep1.phy.ornl.gov/CSEP/MO/MO.html , Computational
Science Education Project, 1996.

[9] A. V. Fiacco, G. P. McCormick, Nonlinear Programming –
Sequential Unconstrained Minimisation Techniques, Society for
Industrial and Applied Mathematics, Philadelphia, 1990.

[10] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods, Athena Scientific, Belmont, 1996.

[11] J. L. Nazareth, The Newton – Cauchy Framework – A Unified
Approach to Unconstrained Nonlinear Minimisation, Springer –
Verlag, Berlin, 1994.

[12] A. D. Belgundu, T. R. Chandrupatla: Optimization Concepts and
Applications in Engineering, Prentice Hall, New Jersy, 1999.

 2. Numerical Optimisation Techniques References

46

[13] P. E. Gill, W. Murray, M. H. Wright, Practical Optimization,
Academic Press, London, 1981.

[14] M. J. D. Powell (editor), Nonlinear Optimization – Proceedings of the
NATO Advanced Research Institute, Cambridge, July 1981, Academic
Press, London, 1982.

[15] M. H. Wright, Direct Search Methods: Once Scorned, Now
Respectable, in D. F. Griffiths and G. A. Watson (eds.), Numerical
Analysis 1995 (Proceedings of the 1995 Dundee Biennial Conference
in Numerical Analysis, p.p. 191 – 208, Addison Wesley Longman,
Harlow, 1996.

[16] K.G. Murty, Linear Complementarity, Linear and Nonlinear
Programming, Helderman-Verlag, 1988.

[17] S.R. Singiresu, Engineering Optimization – Theory and Practice
(third edition), John Wiley & Sons, New York, 1996.

[18] E. Panier, A. L. Tits, On Combining Feasibility, Descent and
Superlinear Convergence in Inequality Constrained Optimization,
Mathematical Programming, Vol. 59 (1993), p.p. 261 - 276.

[19] C. T. Lawrence, A. L. Tits, Nonlinear Equality Constraints in
Feasible Sequential Quadratic Programming, Optimization Methods
and Software, Vol. 6, 1996, pp. 265 - 282.

[20] J. L. Zhou, A. L. Tits, An SQP Algorithm for Finely Discretized
Continuous Minimax Problems and Other Minimax Problems With
Many Objective Functions, SIAM Journal on Optimization, Vol. 6,
No. 2, 1996, pp. 461 - 487.

[21] P. Armand, J. C. Gilbert, A piecewise Line Search Technique for
Maintaining the Positive Definiteness of the Matrices in the SQP
Method, Research Report No. 2615 of the “Institut national de
recherche en informatique et en automatique”, Rocquencourt, 1995.

[22] C. T. Lawrence, A. L. Tits, Feasible Sequential Quadratic
Programming for Finely Discretized Problems from SIP, in R.
Reemtsen, J.-J. Ruckmann (eds.): Semi-Infinite Programming, in the
series Nonconcex Optimization and its Applications. Kluwer
Academic Publishers, 1998.

[23] J. L. Zhou, A. L. Tits, Nonmonotone Line Search for Minimax
Problems, Journal of Optimization Theory and Applications, Vol. 76,
No. 3, 1993, pp. 455 - 476.

[24] J. F. Bonnans, E. Panier, A. L. Tits, J. L. Zhou, Avoiding the Maratos
Effect by Means of a Nonmonotone Line search: II. Inequality
Problems - Feasible Iterates, SIAM Journal on Numerical Analysis,
Vol. 29, No. 4, 1992, pp. 1187-1202.

 2. Numerical Optimisation Techniques References

47

[25] C. T. Lawrence, J. L. Zhou, A. L. Tits, User's Guide for CFSQP
Version 2.5: A C Code for Solving (Large Scale) Constrained
Nonlinear (Minimax) Optimization Problems, Generating Iterates
Satisfying all Inequality Constraints, Institute for Systems Research,
University of Maryland, Technical Report TR-94-16r1, 1997.

[26] The FSQP Home page, electronic document at
http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html , maintained
by the Institute for Systems Research, University of Maryland.

[27] H. J. Greenberg, Mathematical Programming Glossary, electronic
document at
http://www.cudenver.edu/~hgreenbe/glossary/glossary.html , 1999.

[28] Optimization Frequently Asked Questions, electronic document at
http://www-unix.mcs.anl.gov/otc/Guide/faq/ , maintained by Robert
Fourer, The Optimization Technology Center.

[29] W.H. Press, S.S. Teukolsky, V.T. Vetterling, B.P. Flannery,
Numerical Recipies in C – the Art of Scientific Computing, Cambridge
University Press, Cambridge, 1992.

[30] J. W. Demmel, Applied Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

[31] L. N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

[32] B. Jacob, Linear Algebra, W. H. Freeman and Company, New York,
1990.

[33] I. N. Bronstein, K. A. Smendljajew, G. Musiol, H. Mühlig,
Taschenbuch des Mathematik (second edition - in German), Verlag
Harri Deutsch, Frankfurt am Main, 1995.

[34] I. Kuščer, A. Kodre, H. Neunzert, Mathematik in Physik und Technik
(in German), Springer - Verlag, Heidelberg, 1993.

[35] E. Kreyszig, Advanced Engineering Mathematics (second edition),
John Wiley & Sons, New York, 1993.

[36] Z. Bohte, Numerične metode, Društvo matematikov, fizikov in
astronomov SRS, Ljubljana, 1987.

[37] K. J. Bathe, Finite Element Procedures, p.p. 697-745, Prentice Hall,
New Jersey, 1996.

[38] F. van Keulen, V. V. Toropov, Multipoint Approximations for
Structural Optimization Problems with Noisy Response Functions,
electronic document at http://www-
tm.wbmt.tudelft.nl/~wbtmavk/issmo/paper/mam_nois2.htm.

 2. Numerical Optimisation Techniques References

48

[39] J. F. Rodriguez, J. E. Renaud, Convergence of Trust Region
Augmented Lagrangian Methods Using Variable Fidelity
Approximation Data, In: WCSMO-2 : proceedings of the Second
World Congress of Structural and Multidisciplinary Optimization,
Zakopane, Poland, May 26-30, 1997. Vol. 1, Witold Gutkowski,
Zenon Mroz (editors), 1st ed., Lublin, Poland, Wydawnictwo
ekoincynieria (WE), 1997, pp. 149-154.

