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1 EXPERIMENTAL DETERMINATION OF MODEL 
PARAMETERS 

1.1 Importance of parameter identification 

 
When we want to use numerical simulation as a decision support tool for 

analysis and optimization, the produced results must be accurate and reliable enough. 
In order to satisfy this basic requirement, we must possess a physical model that 
adequately describes the phenomena in question and numerical tools capable of 
reproducing approximations that are in good agreement with physical models. 

 
Beside the laws that are regarded basic physical principles, such physical 

models can include simplified description of complex systems that can be derived 
from more basic principles, or are just assumed on the basis of experiments. An 
example of this are basic principles of thermodynamics, which were confirmed 
experimentally long before their validity could be anticipated by statistical 
thermodynamics, which starts from somehow more fundamental description as 
macroscopic models do. Although statistical thermodynamics can state macroscopic 
relations only in terms of averaging over microscopic states, for systems with large 
degrees of freedom deviations are small enough that we can consider continuous 
models valid in most practical situations.  

 
In many practical situations we are forced to bridge large gaps between 

fundamental principles and physical models that are useful for simulation. As an 
example, the ideal gas equation can be derived by treating gas molecules as colliding 
rigid bodies whose radius is much smaller than average free path, and it is accurate 
enough in given situations. When it is not, it may be extremely difficult to derive a 
single point of the state equation, even if the dependence of two- and multi- 
molecular potential could be exactly calculated. In this case, fundamental 
assumptions on sole existence of state equation together with some regularity 
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assumptions can be supplemented by experimental data in order to build a physical 
model used for, say, simulation of a jet engine stage. 

 
The remaining task is to experimentally determine enough points on the state 

surface in order to build its accurate enough interpolation. A problem arises when 
some fundamental components of the physical model can not be measured directly, 
as can be the case with viscosity. Most typically these components are related to 
material properties, but in simplified models they can also include boundary 
conditions (e.g. heat flux through the engine wall) or unknown  but constant 
influence from system neighbourhood. These models must be established from 
experiments by using indirect techniques. 

1.2 Inverse identification of model parameters 

Indirect techniques involves inference of model parameters on the basis of 
measuring something else in a controlled experiments. To make this possible, we 
must first insure that measurement outcome uniquely depends on parameters to be 
determined, i.e. 

 
 ( ) ( )afy =m , ( 1.1) 
 

( )my  being measurements and a unknown parameters of the model. This dependence 
is calculated by numerical simulation of the actual experiment that incorporates the 
physical model whose parameter we are trying to determine. Model parameters 
would in principle be obtained by solving the above equation, i.e. effectively 
applying inverse of f to measurement data (hence the name inverse techniques). 
Needless to say, this would require precise consistence of our model (including 
numerical calculation) with the physical reality and the ability to sample measured 
data exactly. None of this is true in practice and we can at most find estimation of 
parameters that is statistically the best according to measurements. 

 
In order to accomplish this task, we define a measure of inconsistency of the 

model assuming given parameters with the experimental data. The estimate of model 
parameters is obtained by minimizing this discrepancy over all possible parameter 
values. Most often we define the discrepancy measure in the least square sense, i.e. 
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thus 
 
 ( )aa Fminarg* = , ( 1.3) 
 
In ( 1. 0, ( )aiy  represent the values of corresponding measurements iy , 

calculated by using numerical model of the experiment assuming specific values for 
model parameters. Such a definition has a statistical background. If measurements 
are distributed normally with corresponding standard deviations iσ  and the model 

exactly represent reality then *a  maximizes the likelihood that actual parameters are 
equal to *a . The distribution of values of F is the chi-square distribution of order 

nm−=ν  where m is the number of measurements and n the number of unknown 
parameters, with mean value ν  and standard deviation 2ν . This fact can serve 
statistical validation of the model itself by repeating the experiment. In practice we 
have to deal with imperfect models, and providing additional degrees of freedom in 
model vector a can provide means of fitting the model to observations in lack of 
physical arguments. This must be undertaken with extreme caution because 
everything can be fitted by sufficiently loose model, but such a model looses the 
ability of prediction and has no sense. To avoid this, system ( 1. 0 must be sufficiently 
over-determined by capturing enough independent empirical information.  

 
Simulated measurements ( )aiy  are defined implicitly through solution of 

model equations with a model ultimately defined by a. A software architecture that 
will enable the solution of the parameter identification problems defined e.g. as ( 1. 0 
is proposed in[1]-[2]. The computational shell Inverse[3] is constructed to enable 
incorporation of simulation environment in such a scheme. Beside a good numerical 
model, reliable algorithms for solving the resulting minimization problems are 
significant for successful practical application. Basics of such algorithms are outlined 
in the following sections. 
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2 NUMERICAL OPTIMISATION TECHNIQUES 

2.1 Introduction 

In general, optimisation problems can be stated as problems of minimisation 
of some function of the design parameters x, subjected to certain constraints, i.e.: 

 
minimise  ( ) nf RI, ∈xx   

subject to  ( ) Eici ∈= ,0x  ( 2.1) 

and  ( ) Ijc j ∈≥ ,0x ,  

 
where f(x) is the objective function and ci(x) and cj(x) are constraint functions1. 
Design parameters are also referred to as optimisation variables. The second line of 
( 2. 0 represents the equality constraints of the problem and the third line represents 
the inequality constraints. We have introduced two index sets, set E of the equality 
constraint indices and set I of the inequality constraint indices. The above problem is 
also referred to as the general nonlinear problem. Most of optimisation problems can 
be expressed in this form, eventually having multiple objective functions in the case 
of several conflicting design objectives. 

 
Points x’, which satisfy all constraints, are called feasible points and the set of 

all such points is called the feasible region. A point x* is called a constrained local 
minimiser (or local solution of the above problem) if there exists some 
neighbourhood Ω  of x* such that ( ) ( )'* xx ff ≤  for all feasible points *',' xxx ≠Ω∈ . 
Such a point is called a strict local minimiser if the < sign is applied in place of ≤ ; a 
slightly stronger definition of isolated local minimiser, which requires the minimiser 
to be the only local minimiser in some neighbourhood. Furthermore, x* is called the 
global solution or global constrained minimiser if ( ) ( )'* xx ff ≤  for all feasible 
points x’. This means that a global minimiser is the local solution with the least value 
of f. 

 
Since the objective and constraint functions are in general nonlinear, the 

optimisation problem can have several constrained local minimisers x*. The goal of 

                                                 
1 Number of optimisation variables will be denoted by n throughout chapter  2. 
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optimisation is of course to comply with the objective as much as possible, therefore 
the identification of the global solution is the most desirable. However, this problem 
is in general extremely difficult to handle. Actually there is no general way to prove 
that some point is a global minimiser. At best some algorithms are able to locate 
several local solutions and one can then take the best one of these. These methods are 
mostly based on some stochastic search strategy. Location of problem solutions is of 
a statistical nature, which inevitably leads to an enormous number of function 
evaluations needed to locate individual solutions with satisfactory accuracy and 
certainty. These methods are therefore usually not feasible for use with costly 
numerical simulations and are not included in the scope of this work. Currently the 
most popular types of algorithms for identifying multiple local solutions are the 
simulated annealing algorithms and genetic algorithms, briefly described in [12]. 

 
 

2.2 Heuristic Minimisation Methods and Related Practical 
Problems 

In the subsequent text the unconstrained problem is considered, namely 
 
 
minimise ( ) nf RI, ∈xx  ( 2.2) 
 

Throughout this chapter it is assumed that f is at least a 2CI  function, i.e. twice 
continuously differentiable with respect to x. Every local minimum is a stationary 
point of f, i.e. a point with zero gradient[4]: 
 

 ( ) ( ) 0*** ===∇ gxgxf . ( 2.3) 
 
Minimisation can therefore be considered as a solution of the above equation, which 
is essentially a system of nonlinear equations for gradient components  

 

 ( ) ( )
ni

x

f
g

i
i ...,1,0 ==

∂
∂= x

x . ( 2.4) 

 
This is essentially the same system that arises in finite element simulation[37] and can 
be solved by the standard Newton method, for which the iteration is 

 

 ( ) ( ) ( )( ) ( )kkkk xgxx
11 −+ ∇−= . ( 2.5) 
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The notation ( ) ( )( )kk xgg =  is adopted throughout this work. 
 

The method is derived from the Taylor series[33],[35] for g about the current 
estimate x(k): 

 

 ( )( ) ( ) ( ) ( )2δδδ Okkk +∇+=+ ggxg  ( 2.6) 

 
Considering this as the first order approximation for g and equating it to zero we 
obtain the expression for step δ  which should bring the next estimate close to the 
solution of ( 2. 2)1: 

 
 ( ) ( )kk gg −=∇ δ . 
 

By setting ( ) ( ) δ+=+ kk xx 1  we obtain the above Newton Iteration. 
 
The Newton method is known to be rapidly convergent[5], but suffers for a 

lack of global convergence properties, i.e. the iteration converges to the solution only 
in some limited neighbourhood, but not from any starting point. This is the 
fundamental reason that it is usually not applicable to optimisation without 
modifications. The problem can usually be elegantly avoided in simulations, either 
because of some nice physical properties of the analysed system that guarantee 
global convergence, or by the ability of making the starting guess arbitrarily close to 
the equilibrium point where the equations are satisfied. This is, for example, 
exploited in the solution of path dependent problems where the starting guess of the 
current iterate is the equilibrium of the previous, and this can be set arbitrarily close 
to the solution because of the continuous nature of the governing equations. Global 
convergence can be ensured simply by cutting down the step size, if necessary. 

 
In practice, this is usually not at all case in optimisation. The choice of a good 

starting point typically depends only on a subjective judgment where the solution 
should be, and the knowledge used for this is usually not sufficient to choose the 
starting point within the convergence radius of Newton’s method, especially due to 
the complex non-linear behaviour of f and consequently g. Modifications to the 
method must therefore be made in order to induce global convergence2, i.e. 
convergence from any starting guess. 

 

                                                 
1 Notation ( ) ( )xxg f∇= , ( ) ( )( )kk ff x= , ( ) ( )( )kk xgg = , etc. will be generally adopted throughout this 

text. 
2 Herein the expression global convergence is used to denote convergence to a local solution from any 
given starting point. In some of the literature this expression is used to denote convergence to a global 
solution. 
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One such modification arises from considering what properties the method 
must have in order to induce convergence to the solution. The solution x* must be a 
limiting point of the sequence of iterations. This means that the distance between the 
iterates and the solution tends towards zero, i.e. 

 

 0lim * =−
∞→

xxk
k

. ( 2.7) 

 
This is satisfied if the above norm is monotonically decreasing and if the sequence 
has no accumulation point other than x*. When considering the minimisation 
problem and assuming that the problem has a unique solution, the requirements for a 
decreasing norm can be replaced (because of continuity of f) by the requirement that 

( )kf  are monotonically decreasing. By such consideration, a basic property any 
minimisation algorithm should have, is the generation of descent iterates so that 

 
 ( ) ( ) kff kk ∀<+1 . ( 2.8) 
 
This is closely related to the idea of line search, which is one of the 

elementary ideas in construction of minimisation algorithms. The idea is to minimise 
f along some straight line starting from the current iterate. Many algorithms are 
centered on this idea, trying to generate a sequence of directions along which line 
searches are performed, such that a substantial reduction of f is achieved in each line 
search and such that, in the limit, the rapid convergence properties of Newton’s 
method are inherited. 

 
An additional complication which limits the applicability of Newton’s 

method is that the second derivatives of the objective function (i.e. first derivatives of 
its gradient) are required. These are not always directly available since double 
differentiation of numerical models is usually a much harder problem than single 
differentiation. Alternatively the derivatives can be obtained by straight numerical 
differentiation using small perturbation of parameters, but in many cases this is not 
applicable because numerical differentiation is very sensitive to errors in function 
evaluation[34],[36], and these can often not be avoided sufficiently when numerical 
models with many degrees of freedom are used. Furthermore, even if the Newton 
method converges, the limiting point is only guaranteed to be a stationary point of f, 
but this is not a sufficient condition for a local minimum, since it includes saddle 
points, which are stationary points but are not local minimisers. 

 
The most simple algorithm that incorporates the idea of line search is 

sequential minimisation of the objective function in some fixed set of n independent 
directions in each iterate, most elementarily parallel to the coordinate axes. The 
requirement for n independent directions is obvious since otherwise the algorithm 
could not reach any point in nRI . The method is called the alternating variables 
method and it seems to be adequate at a first glance, but turns to be very inefficient 
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and unreliable in practice. A simple illustration of the reasons for this is that the 
algorithm ignores the possibility of correlation between the variables. This causes the 
search parallel to the current search direction to destroy completely the property that 
the current point is the minimiser in previously used directions. This leads to 
oscillatory behaviour of the algorithm as illustrated in Figure  2.1. 
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Figure  2.1: Oscillatory behaviour, which is likely to occur when using 
sequential minimisation in a fixed set of directions. 

 
Another readily available algorithm is sequential minimisation along the 

current direction of the gradient of f. Again this seems to be a good choice, since the 
gradient is the direction of the steepest descent, i.e. the direction in which f decreases 
most rapidly in the vicinity of the starting point. With respect to this, the method is 
called the steepest descent method. In practice, however, the method suffers for 
similar problems to the alternating variables method, and the oscillating behaviour of 
this method is illustrated in Figure  2.2. The theoretical proof of convergence exists, 
but it can also be shown that locally the method can achieve an arbitrarily slow rate 
of linear convergence[4].  

 
The above discussion clearly indicates the necessity for a more rigorous 

mathematical treatment of algorithms. Indeed the majority of the up-to-date 
algorithms have a solid mathematical background[4]-[10], [29] and partially the aim of 
this section is to point which are the most important features in the design of fast and 
reliable algorithms. 
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Figure  2.2: Oscillatory behaviour, which can occur when performing 
sequential line searches along the steepest descent directions. 

 
 

2.3 Simplex Method 

One minimisation method that does not belong within the context of the 
subsequent text is the simplex method[15], [29],[4]. It has been known since the early 
sixties and could be classed as another heuristic method since it is not based on a 
substantial theoretical background. 

 
The simplex method neither uses line searches nor is based on minimisation 

of some simplified model of the objective function, and therefore belongs to the class 
of direct search methods. Because of this the method does not compare well with 
other described methods with respect to local convergence properties. On the other 
hand, for the same reason it has some other strong features. The method is relatively 
insensitive to numerical noise and does not depend on some other properties of the 
objective function (e.g. convexity) since no specific continuity or other assumptions 
are incorporated in its design. It merely requires the evaluation of function values. Its 
performance in practice can be as satisfactory as any other non-derivative method, 
especially when high accuracy of the solution is not required and the local 
convergence properties of more sophisticated methods do not play so important role. 
In many cases it does not make sense to require highly accurate solutions of 
optimisation problems, because the obtained results are inevitably inaccurate with 
respect to real system behaviour due to numerical modeling of the system (e.g. 



 
 

 2. Numerical Optimisation Techniques        2.3. Simplex Method 
 

 

 

 

 

11 
 
 

discretisation and round-off errors or inaccurate physical models). These are 
definitely good arguments for considering practical use of the method in spite of the 
lack of good local convergence results with respect to some other methods. 

 
The simplex method is based on construction of an evolving pattern of n+1 

points in nRI  (vertices of a simplex). The points are systematically moved according 
to some strategy such that they tend towards the function minimum. Different 
strategies give rise to different variants of the algorithm. The most commonly used is 
the Nelder-Mead algorithm described below. The algorithm begins by choice of n+1 
vertices of the initial simplex (( ) ( )1

1
1

1 ,..., +nxx ) so that it has non-zero volume. This 

means that all vectors connecting a chosen vertex to the reminding vertices must be 
linearly independent, e.g.  

 

 ( ) ( )( )∑
=

+ ≠−⇒≠∃
n

i
iii

1

1
1

1
1 00 xxλλ . 

 
If we have chosen ( )1

1x , we can for example obtain other vertices by moving, 
for some distance, along all coordinate directions. If it is possible to predict several 
points that should be good according to experience, it might be better to set vertices 
to these points, but the condition regarding independence must then be checked. 

 
Once the initial simplex is constructed, the function is evaluated at its 

vertices. Then one or more points of the simplex are moved in each iteration, so that 
each subsequent simplex consists of a better set of points: 

 
 

Algorithm  2.1: The Nelder-Mead simplex method. 

After the initial simplex is chosen, function values in its vertices are evaluated: 
( ) ( )( ) 1...,,1,11 +== niff ii x . 

Iteration k is then as follows: 
1. Ordering step: Simplex vertices are first reordered so that 

( ) ( ) ( )k
n

kk fff 121 ... +≤≤≤ , where ( ) ( )( )k
i

k
i ff x= . 

2. Reflection step: The worst vertex is reflected over the centre point of the 

best n vertices ( ( ) ( )
∑

=

=
n

i

k
i

k

n 1

1
xx ), so that the reflected point ( )k

rx  is 

 
 ( ) ( ) ( ) ( )( )k

n
kkk

r 1+−+= xxxx  

 
Evaluate ( ) ( )( )k

r
k

r ff x= . If ( ) ( ) ( )r
n

k
r

k fff <≤1 , accept the reflected point and go to 

 6. 
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3. Expansion step: If ( ) ( )kk
r ff 1< , calculate the expansion  

 
 ( ) ( ) ( ) ( )( )kk

r
kk

e xxxx −+= 2  

 
and evaluate ( ) ( )( )k

e
k

e ff x= . If ( ) ( )k
r

k
e ff < , accept ( )k

ex  and go to  6. Otherwise 

accept ( )k
rx  and go to  6. 

4. Contraction step: If ( ) ( )k
n

k
r ff ≥ , perform contraction between ( )kx  and the 

better of ( )k
n 1+x  and ( )k

rx . If ( ) ( )k
n

k
r ff 1+< , set 

 

 ( ) ( ) ( ) ( )( )kk
r

kk
c xxxx −+=

2

1
 

 
(this is called the outside contraction) and evaluate ( ) ( )( )k

c
k

c ff x= . If ( ) ( )k
r

k
c ff ≤ , 

accept ( )k
cx  and go to  6. 

If in contrary ( ) ( )k
n

k
r ff 1+≥ , set 

 

 ( ) ( ) ( ) ( )( )k
n

kkk
c 12

1
+−−= xxxx  

 
(inside contraction) and evaluate ( )k

cf . If ( ) ( )k
n

k
c ff 1+< , accept ( )k

cx  and go to  6. 

5. Shrink step: Move all vertices except the best towards the best vertex, i.e. 
 

 ( ) ( ) ( ) ( )( ) 1...,,2,
2

1
11 +=−+= nikk

i
kk

i xxxv , 

 
and evaluate ( ) ( )( ) 1...,,2,' +== niff k

i
k

i v . Accept ( )k
iv  as new vertices. 

6. Convergence check: Check if the convergence criterion is satisfied. If so, 
terminate the algorithm, otherwise start the next iteration. 
 
 
Figure  2.3 illustrates possible steps of the algorithm. A possible situation of 

two iterations when the algorithm is applied is shown in Figure  2.4. The steps allow 
the shape of the simplex to be changed in every iteration, so the simplex can adapt to 
the surface of f. Far from the minimum the expansion step allows the simplex to 
move rapidly in the descent direction. When the minimum is inside the simplex, 
contraction and shrink steps allow vertices to be moved closer to it. 
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Figure  2.3: Possible steps of the simplex algorithm in two dimensions 
(from left to right): reflection, expansion, outside and inside contraction, 
and shrink. 
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Figure  2.4: Example of evolution of the simplex. 

 
 
There are basically two possibilities for the convergence criterion. Either that 

function values at vertices must become close enough or the simplex must becomes 
small enough. It is usually best to impose both criteria, because either of them alone 
can be misleading. 
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It must be mentioned that convergence to a local minimum has not been 

proved for the Nelder-Mead algorithm. Examples have been constructed for which 
the method does not converge[15]. However, the situations for which this was shown 
are quite special and unlikely to occur in practice. Another theoretical argument 
against the algorithm is that it can fail because the simplex collapses into a subspace, 
so that vectors connecting its vertices become nearly linearly dependent. 
Investigation of this phenomenon indicates that such behaviour is related to cases 
when the function to be minimised has highly elongated contours (i.e. ill conditioned 
Hessian). This is also a problematic situation for other algorithms. 

 
The Nelder-Mead algorithm can be easily adapted for constrained 

optimisation. One possibility is to add a special penalty term to the objective 
function, e.g. 

 

 ( ) ( ) ( ) ( ) ( )∑∑
∈∈

+ +−+=
Ii

j
Ii

in ccfff xxxx 1
1

' , ( 2.9) 

 
where ( )1

1+nf  is the highest value of f in the vertices of the initial simplex. Since 

subsequent iterates generate simplices with lower values of the function at vertices, 
the presence of this term guarantees that whenever a trial point in some iteration 
violates any constraints, its value is greater than the currently best vertex. The last 
two sums give a bias towards the feasible region when all vertices are infeasible. The 
derivative discontinuity of the terms with absolute value should not be problematic 
since the method is not based on any model, but merely on comparison of function 
values. A practical implementation is similar to the original algorithm. f is first 
evaluated at the vertices of the initial simplex and the highest value is stored. Then 
the additional terms in ( 2. 0 are added to these values, and in subsequent iterates f is 
replaced by f’ . 

 
Another variant of the simplex method is the multidirectional search 

algorithm. Its iteration consists of similar steps to the Nelder-Mead algorithm, except 
that all vertices but the best one are involved in all operations. There is no shrink step 
and the contraction step is identical to the shrink step of the Nelder-Mead algorithm. 
Possible steps are shown in Figure  2.5. The convergence proof exists for this 
method[15], but in practice it performs much worse than the Nelder-Mead algorithm. 
This is due to the fact that more function evaluations are performed at each iteration 
and that the simplex can not be adapted to the local function properties as well as the 
former algorithm. The shape of the simplex can not change, i.e. angles between it 
edges remain constant (see Figure  2.5). The multidirectional search algorithm is 
better suited to parallel processing because n function evaluations can always be 
performed simultaneously. 
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Figure  2.5: possible steps in the multidirectional search algorithm: 
reflection, expansion, and contraction. 

 
 

2.4 Basic Mathematical Background 

 
Construction of optimisation methods described further in this section is 

based on some model of the objective function and constraints. Such treatment of the 
problem arises to a large extent from the fact that locally every function can be 
developed into a Taylor series[33] about any point 'x : 

 

 ( ) ( )( )∑
∞

=

=+
0

''

!n

n
n

xf
n

h
hxf , ( 2.10) 

 

where ( )( ) ( )xf
x

xf
n

n
n

∂
∂=  and nn ⋅⋅⋅⋅= ...321! . This expression itself does not have a 

significant practical value. A more important fact is that 
 
 ( ) 0lim =

∞→
hRn

n
 ( 2.11) 

 
and 

 
 ( ) 0lim

0
=

→
hRn

h
, ( 2.12) 

 
where  
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 ( ) ( ) ( )hShxfhR nn −+= '  ( 2.13) 

 
and 

 

 ( ) ( )( )∑
=

=
n

i

n
n

n xf
n

h
hS

0

'

!
. ( 2.14) 

 
This means that if we use only a few terms in the Taylor series, the error that we 
make tends to zero both when we increase the number of terms without limit for 
some fixed h, and when we take a fixed number of terms and decrease the step h 
towards zero. This follows from the result[33] 

 
 

 ( ) ( )
( )( ) 10,

!1
'1

1

<<+
+

= +
+

θθhxf
n

h
hR n

n

n . ( 2.15) 

 
The above equation also holds if function f is only 1CI +n . This means that 

every sufficiently smooth function can be locally approximated by a simple 
polynomial function, which is sometimes more convenient for theoretical treatment 
than the original function. 

 
A similar development is possible for a function of n variables[33]: 
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where 
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. ( 2.17) 

 
 
In view of the beginning of this discussion, we can consider numerical 

optimisation as the estimation of a good approximation of the optimisation problem 
solution on the basis of limited information about the function, usually objective and 
constraint function values and their derivatives in some discrete set of points. The 
goal is to achieve satisfactory estimation with as little function and derivative 
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evaluations as possible. Now we can use the fact that general functions can be locally 
approximated by simpler functions. Besides, functions of simple and known form 
(e.g. linear or quadratic) are completely described by a finite number of parameters. 
If we know these parameters, we know (in principle) all about the function, including 
minimising points. 

 
There exists a clear correspondence between the above considerations and the 

design of optimisation algorithms. One thing to look at when constructing algorithms 
is how they perform on simple model functions, and proofs of local convergence 
properties based to a large extent on properties of the algorithms when applied to 
such functions[4]-[10]. 

 
Heuristically this can be explained by considering a construction of a 

minimisation algorithm in the following way. Use function values and derivatives in 
a set of points to build a simple approximation model (e.g. quadratic), which will be 
updated when new information is obtained. Consider applying an effective 
minimisation technique adequate for the model function. Since the model 
approximates the function locally, some information obtained in this way should be 
applicable to making decision where to set the next iterate when minimising the 
original function. In the limit, when the iterates approach the minimum, the model 
function should be increasingly better approximation and minima of the successively 
built models should be good guesses for the subsequent iterates. 

 
In fact many algorithms perform in a similar manner. The difference is 

usually that models are not built directly, but the iterates are rather constructed in 
such  a way that the algorithm has certain properties when applied to simple 
functions, e.g. termination in a finite number of steps. This ensures good local 
convergence properties. In addition some strategy must be incorporated which 
ensures global convergence properties of the algorithm. The remainder of this section 
will consider some mathematical concepts related to this. First, some basic notions 
will be introduced, and then some important algorithmic properties will be discussed. 

2.4.1 Basic Notions 

Quadratic model functions are the most important in the study of 
unconstrained minimisation. This is because the Taylor series up to quadratic terms 
is the simplest Taylor approximation that can have an unconstrained local minimum. 
Keeping the terms up to the second order in ( 2. 0 gives the following expression for a 
second order Taylor approximation: 

 

 ( ) ( ) ( ) ( )[ ]hxhxhxhx '2'''

2

1
ffff TT ∇+∇+≈+ , ( 2.18) 
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where  
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is the function gradient and 
 
 ( ) ( ) ( ) ( )xxGx ff T∇∇==∇2  
 

is the Hessian matrix1 of the function, i.e. matrix of function second derivatives, 
 

 ( )[ ] ( ) ( )xxGx
ji

ijij xx

f
f

∂∂
∂==∇

2
2 . ( 2.19) 

 
Notation ( ) ( )xxg f∇=  and ( ) ( )xxG f2∇=  will be used throughout this text. 

 
 
The idea of a line in nRI  is important. This is a set of points 
 
 
 ( ) sxxx αα +== ' , ( 2.20) 
 
where RI∈α  is a scalar parameter, x’ is any point on the line and s is the 

direction of the line. s can be normalised, e.g. with respect to the Euclidian norm, i.e. 

∑
=

=
n

i
is

1

2 1. 

 
It is often useful to study how a function defined in nRI  behaves on a line. 

For this purpose, we can write 
 
 
 ( ) ( )( ) ( )sxx ααα +== 'fff . ( 2.21) 
 

From this expression we can derive direction derivative of f, i.e. derivative of the 
function along the line: 

 

                                                 
1 In standard notation Operator ∑

= ∂
∂=∇∇=Λ=∇

n

i i

T

x1
2

2
2 _  is the Laplace operator. However, in most 

optimisation literature this notation is used for the Hessian operator, and so is also used in this text. 
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This can be written as 

 

 s
s

Tf
d

df

d

df ∇==
α

. ( 2.22) 

 
In a similar way the curvature along the line is obtained: 
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and so 

 
 

 ( )ss
s

f
d

fd

d

fd T 2
2
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2

∇==
α

. ( 2.23) 

 
 
A general quadratic function can be written in the form 
 

 ( ) cq TT ++= xbGxxx
2

1
, ( 2.24) 

 
where G is a symmetric constant matrix, bT a constant vector and c a constant scalar. 
The gradient of this function is 

 
 ( ) bGxx +=∇q  ( 2.25) 
 

and the Hessian matrix is 
 
 
 ( ) Gx =∇ q2 , ( 2.26) 
 

where the rule for gradient of a vector product 
 
 ( ) ( ) ( ) ( ) ( )xvvxuuuvvuvu ==∇+∇=∇ ,;TTT  
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was applied. 
 
We see that a quadratic function has a constant Hessian and its gradient is an 

affine function of x. As a consequence, for any two points the following equation 
relating the gradient in these points is valid: 

 
 ( ) ( ) ( )'"'" xxGxx −=∇−∇ qq . ( 2.27) 
 
If G is nonsingular, a quadratic function has a unique stationary point 

( ( ) 0' =∇ xq ): 
 
 bGx 1' −−= , ( 2.28) 
 

which is also a minimiser if G is positive definite (see section  2.4.2). Taylor 
development about the stationary point gives another form for a quadratic function 

 
 

 ( ) ( ) ( ) '''

2

1
cq

T
+−−= xxGxxx , ( 2.29) 

 

where '''

2

1
Gxx Tcc −= . 

 
 
In this text a term linear function1 will be used for functions of the form 
 
 
 ( ) bl T += xax , ( 2.30) 
 

where aT is a constant vector and b a constant scalar. Such functions have a constant 
gradient 

 
 ( ) ax =∇l  ( 2.31) 
 
and zero Hessian 
 
 ( ) 02 =∇ xl . ( 2.32) 

                                                 
1 Mathematically this is an affine function. Linear functions are those[33] for which 

( ) ( ) ( )yxyx bfafbaf +=+  for arbitrary x and y in the definition domain and for arbitrary constants a 

and b. Affine functions are those for which ( ) cf −x  is a linear function, where c is some constant. 

However, in the optimisation literature affine functions are often referred to simply as linear and this 
is also adopted in this text. 
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2.4.2 Conditions for Unconstrained Local Minima 

Consider first a line through some point x*, i.e. ( ) sxx αα += * . Let us define a 
scalar function of parameter α  using values of function f on this line as 

( ) ( )( )αα xff = . If x* is a local minimiser of ( )xf , then 0 is clearly a local minimiser 

of ( )αf . From the Taylor expansion for a function of one variable about 0 then it 
follows[4] that f has zero slope and non-negative curvature at 0=α . This must be 
true for any line through x*, and therefore for any s. From ( 2. 0 and ( 2. 0 it then 
follows 

 
 0* =g  ( 2.33) 
 

and  
 
 ssGs ∀≥ 0*T , ( 2.34) 
 
where the following notation is used: ( )** xff = , ( ) ( )xxg f∇= , ( )** xgg = , 

( ) ( )xxG f2∇= , and ( )** xGG = . This notation will be used through this text, and 

similarly ( )( ) ( )kk ff =x , etc. 
 
Since ( 2. 0 and ( 2. 0 are implied by assumption that x* is a local minimiser of f, 

these are necessary conditions for x* being a local minimiser. ( 2. 0 is referred to a first 
order necessary condition and ( 2. 0 as a second order necessary condition. This 
condition states that the Hessian matrix is positive semi-definite in a local minimum.  

 
The above necessary conditions are not at the same time sufficient, i.e. these 

conditions do not imply x* to be a local minimiser. Sufficient conditions can be stated 
in the following way[4]: 

 

Theorem  2.1: 

Sufficient conditions for a strict and isolated local minimiser x* of f are that f 
has a zero gradient and a positive definite Hessian matrix in x*: 
 
 

 0* =g  ( 2.35) 
 
and 
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 00* ≠∀> ssGsT  ( 2.36) 
 

There are various ways how to check the condition ( 2. 0. The most important 
for practical purposes are that[30],[32] G is positive definite, the Choleski factors of the 
LLT decomposition exist and all diagonal elementsiil  are greater than zero, and the 

same applies for diagonal elements iid  of the LDLT decomposition. This can be 

readily verified on those algorithms which solve a system of equation with the 
system matrix G in each iteration, since one of these decompositions is usually 
applied to solve the system. 

 
Some algorithms do not evaluate the Hessian matrix. These can not verify the 

sufficient conditions directly. Sometimes these algorithms check only the first order 
condition or some condition based on the progress during the last few iterations. It 
can usually be proved that under certain assumptions iterates still converges to a 
local minimum. Algorithms should definitely have the possibility of termination in a 
stationary point, which is not a minimum (usually in a saddle point with indefinite 
Hessian matrix). Some algorithms generate subsequent approximations of the 
Hessian matrix, which converge to the Hessian in the limit when iterates approach a 
stationary point. The condition can then be checked indirectly on the approximate 
Hessian. More details concerning this will be outlined in the description of individual 
algorithms. 

2.4.3 Desirable Properties of Algorithms and Notion of 
Conjugacy 

A desired behaviour of an optimisation algorithm is that iterates move 
steadily towards the neighbourhood of a local minimser, then converge rapidly to this 
point and finally that it identifies when the minimiser is determined with a 
satisfactory accuracy and terminates.  

 
Optimisation algorithms are usually based on some model and on some 

prototype algorithm. A model is some approximation (not necessarily explicit) of the 
objective function, which enables a prediction of a local minimiser to be made. 

 
A prototype algorithm refers to the broad strategy of the algorithm. Two basic 

types are the restricted step approach and the line search approach, described in 
detail in the subsequent sections. There it will be also pointed out that the ideas of 
prototype algorithms are usually closely associated with global convergence. 

 
Local convergence properties of an algorithm describe its performance in the 

neighbourhood of a minimum. If we define the error of the k-th iterate 
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 ( ) ( ) *xxh −= kk , ( 2.37) 
 

it may be possible to state some limit results for h(k). An algorithm is of course 
convergent if ( ) 0→kh . If a limit 

 

 
( )

( )
apk

k

k
=

+

∞→ h

h 1

lim  ( 2.38) 

 
exists where 0>a  is some constant, then we say that the order of convergence is p. 
This definition can also be stated in terms of bounds if the limit does not exist: the 
order of convergence is p if 
 

 
( )

( )
apk

k

≤
+

h

h 1

 ( 2.39) 

 
for some constant 0>a  and for each k greater than some klim. An important cases are 
linear or first order convergence 
 

 
( )

( ) a
k

k

≤
+

h

h 1

 ( 2.40) 

 
and quadratic or second order convergence 
 

 
( )

( )
a

k

k

≤
+

2

1

h

h
. ( 2.41) 

 
The constant a is called the rate of convergence and must be less than 1 for 

linear convergence. Linear convergence is only acceptable if the rate of convergence 
is small. If the order and rate are 1, the convergence is sublinear (slower than all 

linear convergence). This would be the case if kk 1=h . 

 
When the order is 1, but the rate constant is 0, the convergence is superlinear 

(faster than all linear convergence), i.e. 
 

 
( )

( ) 0lim
1

=
+

∞→ k

k

k h

h
. ( 2.42) 

 
Successful methods for unconstrained minimisation converge superlinearly. 
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 Many methods for unconstrained minimisation are derived from 

quadratic models. They are designed so that they work well or exactly on a quadratic 
function. This is partially associated with the discussion of section  2.4.1: since a 
general function is well approximated by a quadratic function, the quadratic model 
should imply good local convergence properties. Because the Taylor series about an 
arbitrary point taken to quadratic terms will agree to a given accuracy with the 
original function on a greater neighbourhood than the series taken to linear terms, it 
is preferable to use quadratic information even remote from the minimum. 

 
The quadratic model is most directly used in the Newton method ( 2. 3), which 

requires the second derivatives. A similar quadratic model is used in restricted step 
methods. When second derivatives are not available, they can be estimated in various 
ways. Such quadratic models are used in the quasi-Newton methods. 

 
Newton-like methods (Newton or quasi-Newton) use the Hessian matrix or 

its approximation in Newton’s iteration ( 2. 3). A motivation for this lies in the 
Dennis-Moré theorem, which states that superlinear convergence can be obtained if 
and only if the step is asymptotically equal to that of the Newton-Raphson method[4]. 

 
The quadratic model is also used by the conjugate direction methods, but in a 

less direct way. Nonzero vectors ( ) ( ) ( )nsss ...,,, 21  are conjugate with respect to a 
positive definite matrix G, when 

 

 ( ) ( ) jis jTi ≠∀= 0Gs . ( 2.43) 
 
Optimisation methods, which generate such directions when applied to a 

quadratic function with Hessian G, are called conjugate direction methods. Such 
methods have the following important property[4]:  

 

Theorem  2.2: 

A conjugate direction method terminates for a quadratic function in at most n 
exact line searches, and each ( )kx  is a minimiser of that function in the set 
 

 ( ) ( )









∈+= ∑
=

k

j
j

j
j

1

1 RI,; αα sxxx  ( 2.44) 

 
 
The above theorem states that conjugate direction methods have the property 

of quadratic termination, i.e. they can locate the minimising point of a quadratic 
function in a known finite number of steps. Many good minimisation algorithms can 
generate the set of conjugate directions, although it is not possible to state that 
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superlinear convergence implies quadratic termination or vice versa. For example, 
some successful superlinearly convergent Newton-like methods do not possess this 
property. 

 
It is useful to further develop the idea of conjugacy in order to gain a better 

insight in what it implies. We can easily see that ( )is  are linearly independent. If for 
example ( )js  was a linear combination of some other vectors ( )ks , e.g. 

 

 ( ) ( )
∑

≠

=
jk

k
k

j ss β , 

 
multiplying this with ( ) Gs Tj  would give  

 
 ( ) ( ) 0=jTj Gss , 
 

which contradicts the positive definiteness of G. 
 
We can use vectors ( )js  as basis vectors and write any point as 
 

 ( ) ( )
∑

=
+=

n

i

i
i

1

1 sxx α . ( 2.45) 

 
Taking into account this equation,( 2. 0 and conjugacy, the quadratic function from the 
theorem can be written as1 
 

 ( ) ( ) ( ) ( ) ( )****

2

1

2

1 ααααα −−=−−= GSSxxGxx TT
q . ( 2.46) 

 
We have ignored a constant term in ( 2. 0, which has no influence on further 
discussion, and written the minimiser *x  of q as 
 

 ( ) ( ) ( )
∑+= i

i sxx *1* α , 

 
and S is a matrix whose columns are vectors ( )is . Since ( )is  are conjugate with 
respect to G, the product STGS is a diagonal matrix with diagonal elements id , say, 

and therefore 
 

                                                 
1 Notation [ ]Tnαααα ...,,, 21=  is used. Vectors denoted by Greek letters are not typed in bold, but it 

should be clear from the context when some quantity is vector and when scalar. 
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 ( ) ( )∑
=

−=
n

i
iii dq

1

2*

2

1 ααα . ( 2.47) 

 
 We see that conjugacy implies a coordinate transformation from x-space to 
α -space in which G is diagonal. Variables in the new system are decoupled from the 
point of view that ( )αq  can be minimised by applying successive minimisations in 

coordinate directions, which results in a minimiser *α  corresponding to *x  in the x 
space. A conjugate direction method therefore corresponds to the alternating variable 
method applied in the new coordinate system. Enforcing conjugacy overcomes the 
basic problem associated with the alternating variable method, i.e. the fact that 
minimisation along one coordinate direction usually spoils earlier minimisations in 
other directions, which is the reason for oscillating behaviour of the method shown in 
Figure  2.1. Since a similar problem is associated with the steepest descent method, 
conjugacy can be successfully combined with derivative methods. 

 
A side observation is that eigenvectors of G are orthogonal vectors conjugate 

to G. A quadratic function is therefore minimised by exact minimisation along all 
eigenvectors of its Hessian. Construction of the conjugate direction methods will 
show that there is no need to know eigenvectors of G in order to take advantage of 
conjugacy, but it is possible to construct conjugate directions starting with an 
arbitrary direction. 

 
 
Another important issue in optimisation algorithms is when to terminate the 

algorithm. Since we can not check directly how close to the minimiser the current 
iterate is, the test can be based on conditions for a local minimum, for example 

 

 ( ) ε≤kg , ( 2.48) 

 
where ε  is some tolerance. Sometimes it is not easy to decide what magnitude to 
choose for ε , since a good decision would require some clue about the curvature in 
the minimum. The above test is also dependent on the scaling of variables. Another 
difficulty is that it can terminate in a stationary point that is not a minimum. When 
second derivative information is available, it should be used to exclude this 
possibility. 

 
When the algorithm converges rapidly, tests based on differences between 

iterates can be used, e.g. 
 

 ( ) ( ) ixx i
kk

ii
∀≤− + ε1  ( 2.49) 

 
or 
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 ( ) ( ) ε≤− +1kk ff . ( 2.50) 
 
These tests rely on a prediction how much at most f can be further reduced or 

x approached to the minimum. 
 
The test 
 

 ( ) ( )kkTk gHg
2

1
, ( 2.51) 

 
where H is the inverse Hessian or its approximation, is also based on predicted 
change of f. 

 
Finally, the possibility of termination when the number of iterations exceeds 

some user supplied limit is a useful property of every algorithm. Even when good 
local convergence results exist for a specific algorithm, this is not necessarily a 
guarantee for good performance in practice. Function evaluation is always subjected 
to numerical errors and this can especially affect algorithmic performance near the 
solution where local convergence properties should take effect. 

 

2.5 Newton-like Methods 

Newton-like methods are based on a quadratic model, more exactly on the 
second-order Taylor approximation (equation ) of ( )xf  about x(k). The basic ideas 
around this were explained in sections  2.2 and  2.4 and will be further developed in 
this section. 

 
In section  2.2 Newton’s method was derived from the solution of the system 

of equations 
 
 ( ) 0=∇ xg , 
 

where the iteration formula was derived from the first order Taylor’s approximation 
of g(x), giving iteration formula ( 2. 3). Two problems related with direct application 
of the method were mentioned there, i.e. lack of global convergence properties and 
explicit use of the second order derivative information regarding the objective 
functions. Some general ideas on how to overcome these problems were outlined in 
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section  2.4 and will be further developed in this section for algorithms, which in 
principle stick with the basic idea of Newton’s method. 

 
In order to take over and develop the ideas given in section  2.4, let us start 

from the second order Taylor approximation of f itself, developed around the current 
iterate: 

 

 ( )( ) ( )( ) ( ) ( ) ( )δδδδδ kTTkkkk fqf Ggx
2

1++=≈+ . ( 2.52) 

 
Using the results of section  2.4, the stationary point of this approximation is a 
solution of a linear system of equations 
 

 ( ) ( )kk gG −=δ . ( 2.53) 
 
It is unique if G(k) is non-singular and corresponds to a minimiser if G(k) is positive 
definite. Newton’s method is obtained by considering ( )kδ  as solution of the above 
equation and setting the next guess to ( ) ( )kk δ+x . The k-th iteration of Newton’s 
method is then 

 
1. Solve ( 2. 0 for ( )kδ , 
2. Set ( ) ( ) ( )kkk δ+=+ xx 1 . 

 
This is well defined as a minimisation method only if G(k) is positive definite 

in each iteration, and this can be readily checked if for example LDLT 
decomposition is used for solution of ( 2. 0. However, even if G(k) is positive definite, 
the method may not converge from any initial guess, and it can happen that ( ){ }kf  do 
not even decrease. 

 
Line search can be used to eliminate this problem. The solution of ( 2. 0 then 

defines merely the search direction, rather than correction ( )kδ . The correction is 
then obtained by line minimisation, and such a method is called Newton’s method 
with line search. The direction of search is 

 

 ( ) ( ) ( )kkk gGs
1−−= . ( 2.54) 

 
If G(k) and hence its inverse are positive definite, this defines a descent 

direction. If G(k) is not positive definite, it may be possible to make a line search in 
( )ks± , but the relevance of searching in ( )ks−  is questionable because this is not a 

direction towards a stationary point of ( )δq . Furthermore, the method fails if any 
( )kx  is a saddle point of f. This gives ( ) 0=ks , although ( )kx  is not a minimiser of f. 
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One possibility of how to overcome this problem is to switch to the steepest 
descent direction whenever G(k) is not positive definite. This can be done in 
conjunction with the angle criterion to achieve global convergence. 

 
Minimising in the steepest descent directions can lead to undesired oscillatory 

behaviour where small reductions of f are achieved in each iteration. This happens 
because second order model information is ignored, as shown in section  2.4.3. The 
alternative approach is to switch between the Newton and steepest descent direction 
in a continuous way, controlling  the influence of both through some adaptive 
weighting parameter. This can be achieved by adding a multiple of the unit matrix to 
G(k) so that the search direction is defined as 

 
 ( )( ) ( ) ( )kkk gsG −=Ι+ν . ( 2.55) 
 

Parameter ν  is chosen so that ( ) Ι+νkG  is positive definite. If G(k) is close to 
positive definite, a small ν  is sufficient and the method therefore uses the curvature 
information to a large extent. When large values of ν  are necessary, the search 
directions becomes similar to the steepest descent direction ( )kg− . 
 

This method still fails when some ( )kx  is a saddle point, and the second order 
information is not used in the best possible way. Further modification of the method 
incorporates the restricted step approach in which minimisation of the model 
quadratic function subjected to length restriction is minimised. 

2.5.1 Quasi-Newton Methods 

In the Newton-like methods discussed so far the second derivatives of f are 
necessary and substantial problems arise when the Hessian matrix of the function is 
not positive definite. The second derivatives of ( )kG  can be evaluated by numerical 
differentiation of the gradient vector. In most cases it is advisable that after this 
operation G is made symmetric by ( )TGGG += 2

1 , where G  is the finite difference 

approximation of the Hessian matrix. However, evaluation of G can be unstable in 
the presence of numerical noise, and it is also expensive, because quadratic model 
information built in the previous iterates is disregarded. 

 
The above mentioned problems are avoided in so called quasi-Newton 

methods. In these methods ( ) 1−kG  are approximated by symmetric matrices ( )kH , 
which are updated from iteration to iteration using the most recently obtained 
information. Analogous to Newton’s method with line search, line minimisations are 
performed in each iteration in the direction 
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 ( ) ( ) ( )kkk gHs −= . ( 2.56) 
 

By updating approximate 1−G  rather than G, a system of equations is avoided and 
the search direction is obtained simply by multiplication of the gradient vector by a 
matrix. An outline of the algorithm is given below: 

 
 

Algorithm  2.2: General quasi-Newton algorithm. 

Given a positive definite matrix ( )1H , the k-th iteration is: 
1. Calculate ( )ks  according to ( 2. 0. 
2. Minimise f along ( )ks , set ( ) ( ) ( ) ( )kkkk sxx α+=+1 , where ( )kα  is a line 

minimum. 
3. Update ( )kH  to obtain ( )1+kH . 

 
 

If no second derivative information is available at the beginning, ( )1H  can be any 
positive definite matrix, e.g. ( ) IH =1 . The inexact line search strategy can be used in 
line  2. If ( )kH  is positive definite, the search directions are descent. This is desirable 
and the most important are those quasi-Newton methods, which maintain positive 
definiteness of H(k). 

 
The updating formula should explicitly use only first derivative information. 

Repeated updating should change arbitrary ( )1H  to a close approximation of ( ) 1−kG  
The updating formula is therefore an attempt to augment the current ( )kH  with 
second derivative information gained in the current iteration, i.e. by evaluation of f  
and f∇  at two distinct points. In this context equation ( 2. 0, which relates the Hessian 
matrix of a quadratic function with its gradient in two distinct points, requires 
attention. 

 
Let us write 
 
 ( ) ( ) ( )kkk xx −= +1δ  ( 2.57) 
 

and 
 

 ( ) ( ) ( )kkk gg −= +1γ . ( 2.58) 
 
Using the Taylor series of g about ( )kx  gives a relationship similar to ( 2. 0, i.e. 

 

 ( ) ( ) ( ) ( )( )kkkk o δδγ += G . ( 2.59) 
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The updating formula should therefore correct ( )1+kH  so that the above relation 

would hold approximately with ( ) 11 −+kH  in place of ( )kG . This gives the so called 
quasi-Newton condition, in which the updating formula must satisfy 
 

 ( ) ( ) ( )kkk δγ =+1H . ( 2.60) 
 

Since this condition gives only one equation, it does not uniquely define the 
updating formula and permits various ways of updating H. One possibility is to add a 
symmetric rank one matrix to ( )kH , i.e. 

 
 ( ) ( ) Tkk uuHH +=+1 . ( 2.61) 
 

Substituting this into ( 2. 0 gives 
 

 
 ( ) ( ) ( ) ( )kkTkk δγγ =+ uuH . ( 2.62) 
 

 
Since ( ) ( )kT γu  is a scalar, matrix multiplication is associative and multiplication with 

a scalar is commutative, u must be proportional to ( ) ( ) ( )kkk γδ H− . Writing 
 

 ( ) ( ) ( )( )kkka γδ Hu −=  
 

and inserting this into ( 2. 0 gives ( ) ( ) ( )( ) ( )kTkkka γγδ H−=1  and therefore 

 

 ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )( ) ( )kTkkk

Tkkkkkk
kk

γγδ
γδγδ

H

HH
HH

−
−−+=+1 . ( 2.63) 

 
This formula is called the rank one updating formula according to the above 
derivation. 

 
For a quadratic function with positive definite Hessian the rank one method 

terminates in at most n+1 steps with ( ) 11 −+ = GH n , provided that ( ) ( )nδδ ...,,1  are 
independent and that the method is well defined[4]. The proof does not require exact 
line searches. Also the so called hereditary property can be established, i.e. 

 
 ( ) ( ) ( ) 1...,,2,1,i −== ijjj δγH . ( 2.64) 
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A disadvantage is that in general the formula does not maintain positive definiteness 
of ( )kH  and the dominator in ( 2. 0 can become zero. 

 
Better formulas can be obtained by allowing the correction to be of rank two. 

This can always be written[32],[34] as 
 
 ( ) ( ) TTkk vvuuHH ++=+1 . ( 2.65) 
 

Using this in the quasi-Newton condition gives 
 

 ( ) ( ) ( ) ( ) ( )kTkTkkk γγγδ vvuuH ++= . ( 2.66) 
 
u and v can not be determined uniquely. A straightforward way of satisfying the 
above equation is to set u proportional to ( )kδ  and v proportional to ( ) ( )kk γH . By 
solution of the equation separately for both groups of proportional vectors the 
Davidon – Fletcher - Powell or DFP updating formula is obtained: 
 

 ( )
γγ

γγ
γδ

δδ
H

HH
HH

T

T

T

T
k

DFP −+=+1 . ( 2.67) 

 
Indices k have been omitted for the sake of simplicity (this approach will be adopted 
through this section) and the symmetry of H is used. 

 
 
Another rank two updating formula can be obtained by considering updating 

and approximating G instead of 1−G . Let us write ( ) ( ) 1−= kk HB  and consider 
updating ( )kB  in a similar way as ( )kH  was updated according to the DFP formula. 
We require that the quasi-Newton condition ( 2. 0 is preserved. This was true for the 
DFP formula, but now we are updating inverse of ( )kH , therefore, according to ( 2. 0, 

( )kγ  and ( )kδ  must be interchanged. This gives the formula 
 

 ( )
δδ

δδ
δγ

γγ
B

BB
BB

T

T

T

T
k

BFGS −+=+1 . ( 2.68) 

 
We however still want to update ( )kH  rather than ( )kB , because a solution of system 
of equations is in this way avoided in the quasi-Newton iteration. The following 
updating formula satisfies ( ) ( ) IHB =++ 11 k

BFGS
k

BFGS : 

 

 ( )







 +−







++=+

γδ
γδδγ

γδ
δδ

γδ
γγ

T

TT

T

T

T

T
k

BFGS

HHH
HH 11 . ( 2.69) 
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This is called the Broyden – Fletcher – Goldfarb – Shanno or BFGS updating 
formula. 

 
The BFGS and the DFP formula are said to be dual or complementary 

because the expressions for ( )1+kB  and ( )1+kH  in one are obtained by interchanging 
HB ↔  and δγ ↔  in the other. Such duality transformation preserves the quasi-

Newton condition. The rank one formula is self-dual. 
 
The DFP and BFGS updating formula can be combined to obtain the so 

called Broyden one-parameter family of rank two formulae: 
 
 ( ) ( ) ( )111 1 +++ +−= k

BFGS
k

DFP
k HHH φφφ . ( 2.70) 

 
This family includes the DFP and BFGS and also rank 1 formula. The quasi-Newton 
method with a Broyden family updating formula has the following properties[4]: 

 
1. For a quadratic function with exact line searches: 

• The method terminates in at most n iterations with ( ) 11 −+ = GH n . 
• Previous quasi-Newton conditions are preserved (hereditary property ( 2.  0). 
• Conjugate directions are generated, and conjugate gradients when ( ) IH =0 . 

2. For general functions: 
• The method has superlinear order of convergence. 
• The method is globally convergent for strictly convex functions if exact line 

searches are performed. 
 
The Broyden family updates maintain positive definiteness of ( )1+k

φH  for 

0≥φ . 
 
Global convergence has also been proved for the BFGS method with inexact 

line searches, applied to a convex objective function[4]. The BFGS method with 
inexact line searches converges superlinearly if ( )*G  is positive definite. 

 
The BFGS method also shows good performance in numerical experiments. 

The method is not sensitive to exactness of line searches, in fact it is a generally 
accepted opinion that inexact line searches are more efficient with the BFGS method 
than near exact line searches. The contemporary optimisation literature[4],[7] suggests 
the BFGS method as preferable choice for general unconstrained optimisation based 
on a line search prototype algorithm. 
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2.5.2 Invariance Properties 

It is important to study how optimisation algorithms perform when affine 
transformation of variables is made, i.e. 

 
 aAxy += , ( 2.71) 
 

where A is nonsingular. This is a one-to-one mapping with inverse transformation 
 

 ( )ayAx −= −1 . 
 
f can be evaluated either in x space (denoted by ( )xxf ) or in y space (denoted by 

( ) ( )( )ayAy −= −1
xy ff  ). 

 
Applying the chain rule for derivation in x space gives 
 

 ( )∑∑
== ∂

∂=
∂
∂

∂
∂=

∂
∂ n

k k
ik

T
n

k ki

k

i yyx

y

x 11

A , ( 2.72) 

 
therefore y

T
x ∇=∇ A  and so 

 
 y

T
x gAg = . ( 2.73) 

 
Applying the gradient operator to the above equation then gives 

AgAg T
yy

TT
xx ∇=∇ , i.e. 

 
 AGAG y

T
x = . ( 2.74) 

 
The notation yyy f∇=g , etc. was used, so that for example 

 

 [ ]
ji

y

ijy yy

f

∂∂
∂

=
2

G . 

 
 

The following theorem[4] applies to Newton-like methods: 
 

Theorem  2.3: 

If ( )kH  transforms under transformation ( 2. 0 as 
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 ( ) ( ) kTk

y
k

x ∀= −− AHAH 1 , ( 2.75) 

 
then a Newton-like method with fixed step ( )kα  is invariant under the 
transformation ( 2. 0. A method is also invariant if ( )kα  is determined by tests on 

( )kf , ( ) ( )kTk sg  or other invariant scalars. 
 

 
Transformation ( 2. 0 in the above theorem is obtained by inverting ( 2. 0, since 

( )kH  approximate ( )kG  in the quasi-Newton methods. 
 
We see that the steepest descent method (treated as quasi-Newton method 

with ( ) IH =k ) is not invariant under transformation ( 2. 0 because I does not 
transform correctly. Modified Newton methods are also not invariant because 

IG ν+  does not transform correctly when 0>ν . 
 
For a quasi-Newton method to be invariant, ( )1H  must be chosen so as to 

transform correctly (as ( 2. 0) and the updating formula must preserve the 
transformation property ( 2. 0. Therefore, if ( ) IH =1  is chosen, then invariance does 

not hold. ( ) ( )( ) 111 −= xGH  transforms correctly and therefore this choice does not 
affect invariance. 

 
In order to show that a specific updating formula preserves the transformation 

property ( 2. 0, we must show that ( ) ( )k
y

Tk
x HAAH =  (which is ( 2. 0 pre-multiplied by A 

and post-multiplied by AT) which implies ( ) ( )11 ++ = k
y

Tk
x HAAH . Let us do this for the 

DFP formula 
 

 ( )

xx
T

x

x
T

xxx

x
T

x

T
xx

x
k

x γγ
γγ

γδ
δδ

H

HH
HH −+=+1 . ( 2.76) 

 
We will pre-multiply the above equation by A and post-multiply it by AT and 

use relations yx δδ =A  following from ( 2. 0 and y
T

x γγ A=  following from ( 2. 0. We 

will consider individual terms in equation ( 2. 0. 
 
The first term on the right-hand side of ( 2. 0 gives, after multiplication, ( )k

yH  

by assumption. Consider then the denominator of the second term: 
 

 ( ) y
T

yy
T

xx
TTT

xx
T

x γδγδγδγδ === − AAA , 
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the denominator is invariant. The numerator after multiplication gives 
 

 T
yy

TT
xx δδδδ =AA , 

 
so the second term transforms correctly. Consider the denominator of the third term: 

 

 
( )

yy
T

y

x
T

y

T

x
T

x
TT

x
T

xxx
T

x

γγ

γγγγγγ

H

AHAAAAHAH === −−−−1

, 

 
the denominator is invariant under transformation. The numerator after 
multiplication is 
 

 
( )

y
T

yyy

y

T

x
T

yy
T

x
T

xx
TT

x
T

x
T

xxx

HH

HAHAAHAAAAHAHAH

γγ

γγγγγγ === −−− 1

, 

 
so the third term is also transformed correctly. ( ) ( )11 ++ = k

y
Tk

x HAAH  is valid since 

 

 ( )

yy
T

y

y
T

yyy

y
T

y

T
yy

y
Tk

x γγ
γγ

γδ
δδ

H

HH
HAAH −+=+1  

 
and this is the DFP formula in the y space. 

 
Similarly the preservation of ( 2. 0 can be proved for all updating formulas in 

which the correction is a sum of rank one terms constructed from vectors δ  and γH , 
multiplied by invariant scalars. Such versions are the BFGS formula and hence all 
Broyden family formulas. 

 
The Broyden family (including BFGS and DFP) algorithms are therefore 

invariant under the affine transformation of variables ( 2. 0, provided that ( )1H  is 
chosen so as to transform correctly, i.e. as ( 2. 0. However, even if ( )1H  is not chosen 

correctly, after n iterations we have ( ) ( ) 111 −++ ≈ nn GH , which is transforms correctly. 
The method therefore becomes close to the one in which invariance is preserved. 

 
Invariance to an affine transformation of variables is a very important 

algorithmic property. Algorithms which have this property, are less sensitive to 
situations in which G is ill-conditioned, since an implicit transformation which 
transforms G to the unity matrix I can be introduced, which does not change the 
method. Algorithms that are not invariant, i.e. the steepest descent or the alternating 
variables method, can perform very badly when the Hessian is ill-conditioned. 

 



 
 

 2. Numerical Optimisation Techniques        2.6. Conjugate Direction Methods 
 

 

 

 

 

37 
 
 

 
When using methods which are not invariant, it can be advantageous to find a 

linear transformation which improves the conditioning of the problem[17]. 
 
If columns of A  are eigenvectors of G, then G is diagonalised when 

transformation ( 2. 0 is applied. Conditioning can be achieved by additional scaling of 
variables, i.e. by multiplication with a diagonal matrix. This approach is however not 
applicable in practice because it is usually difficult to calculate eigenvectors of G. 
For positive definite G the same effect is achieved by using Choleski factors of G as 
the transformation matrix. AAG T

x =  gives  

 
 IAAAAAGAG === −−−− 11 TT

x
T

y . 

 
It is often possible to improve conditioning just by scaling the variables. In 

this case A is chosen to be a diagonal matrix so that 2A  estimates xG  in some sense. 
1−−= AGAG x

T
y  (from ( 2. 0) is required to be close to the unity matrix in some sense. 

It can be required, for example, that [ ] i
ii

y ∀=1G . It is usually not necessary to 

explicitly perform the scaling, but I can be replaced in the methods by a suitable 
diagonal matrix. For example, the modified Newton method can be improved by 
using 2−+ AG ν  in place of Ι+νG . 

 

2.6 Conjugate Direction Methods 

Optimisation algorithms described in this section are based on the result 
given in Theorem  2.2, which associates conjugacy and exact line searches with 
quadratic termination. These algorithms rely on an idealized assumption that exact 
line searches are performed. This is possible for a quadratic function, but not in 
general. By using interpolation in the line search algorithm, it is still possible to 
locate a local minimum up to a certain accuracy, and this approach is used in practice 
with the conjugate direction methods. An argument which justifies this is that in the 
close neighbourhood of a minimum, quadratic interpolations of the objective 
functions will enable the line minimum to be located almost exactly, so that the 
inexact nature of the line search algorithm will not spoil local convergence 
properties, which are theoretically based on the assumption of exact line search. 
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In section  2.6.1 derivative based conjugate direction methods are described. 
The described methods generate conjugate directions when they are applied to a 
quadratic function. 

2.6.1 Conjugate Gradient Methods 

Conjugate gradient methods begin with line search along 
 
 ( ) ( )11 gs −=  ( 2.77) 
 

and then generate search directions ( ) 1,1 ≥+ kks  from ( )1+− kg , so that they are 

conjugate to ( ) ( )kss ...,,1 with respect to the Hessian matrix G when a method is 
applied to a quadratic function. 

 
For a quadratic function it follows from ( 2. 0 that 
 
 ( ) ( ) kkk ∀= δγ G , ( 2.78) 
 

where ( ) ( ) ( )kkk gg −= +1γ  and ( ) ( ) ( )kkk xx −= +1δ , as usual. Conjugacy conditions ( 2. 0 
can therefore be written as 
 

 ( ) ( ) ijjTi ≠= 0γs  ( 2.79) 
 
since ( ) ( ) ( )jjjj sGG αδγ == . The last expression is a consequence of the fact that 

( )1+jx  is obtained by a line search performed from ( )jx  along ( )js . 
 
 
The above equation can be used to prove an important property. First we can 

see that 
 

 ( ) iiTi ∀=+ 01gs , ( 2.80) 
 

because exact line searches are used. By using the above equation and ( 2. 0 we obtain 
 

 

( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( ) ikiiikkTi

iikkkkTi

kTi

>∀=+++

=+−+−+−

=

++

++−+

+

,0...

...
11

1111

1

gs

ggggggs

gs

γγγ

, ( 2.81) 
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This means that ( )1+kg  is orthogonal to all search directions of previous steps: 
 

 ( ) ( ) kikkTi ≤∀=+ ,01gs . ( 2.82) 
 
This is actually the result of Theorem  2.2. 

 
 
In the Fletcher-Reeves method ( )1+ks  is obtained from ( )1+− kg  by the extended 

Gramm-Schmidt orthogonalisation[30],[32] with respect to ( ) kji ≤,γ , in order to 
satisfy conjugacy conditions ( 2. 0. We can write1 

 

 ( ) ( ) ( ) ( )
∑

=

++ +−=
k

j

jjkk

1

11 sgs β . ( 2.83) 

 
Multiplying the transpose of the above equation by ( )iγ  gives 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )iTiiiTkiTk γβγγ sgs +−== ++ 11 0 , ( 2.84) 
 
where ( 2. 0 was taken into account. It follows that 
 

 ( )
( ) ( )

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )iiTi

iiTk

iTi

iTk
i

ggs

ggg

s

g

−
−==

+

+++

1

111

γ
γβ . ( 2.85) 

 
It follows from construction of ( )ks  (( 2. 0 and ( 2. 0) that vectors ( ) ( )kgg ...,,1  and 

( ) ( )kss ...,,1  span the same subspace. Therefore, since ( )1+kg  is orthogonal to the 

subspace spanned by ( ) ( )kss ...,,1  due to ( 2. 0, it is also orthogonal to vectors 
( ) ( )kgg ...,,1 , i.e. 

 

 ( ) ( ) kikkTi ≤∀=+ ,01gg  ( 2.86) 
 
We see that only ( ) 0≠kβ  and that 
 

 ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )

( ) ( )kTk

kTk

kkTk

kkTk
k

gs

gg

ggs

ggg 11

1

11 ++

+

++

−=
−
−=β  ( 2.87) 

 

                                                 
1 The derivation of the Fletcher-Reeves method was found to be not completely clear in some 
optimisation literature and is therefore included herein. 
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The denominator of the above equation can be obtained by substituting ( )ks  by ( 2. 0 
with decreased indices and taking into account that only ( )1−kβ  is non-zero, together 
with the established orthogonality properties: 
 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )kTkkTkkkkTk gggsggs −=+−= −− 11β . 
 
Now we have 
 

 ( )
( ) ( )

( ) ( )kTk

kTk
k

gg

gg 11 ++

=β . ( 2.88) 

 
 
The obtained results can be summarized in the following way: 
 

Theorem  2.4: 

The Fletcher-Reeves method with exact line searches terminates for a quadratic 
function at a stationary point 1+mx  after nm≤  iterations. In addition, the 
following results hold for mi ≤≤1 : 
 

 ( ) ( ) 1...,,2,1;0 −== ijjTi Gss  (conjugate directions), ( 2.89) 
 

 ( ) ( ) 1...,,2,1;0 −== ijjTi gg  (orthogonal gradients) ( 2.90) 
and 
 

 ( ) ( ) ( ) ( )iTiiTi gggs −=  (descent conditions). ( 2.91) 
 

 
The termination must occur in at least n iterations because in the opposite 

case ( ) 01 ≠+ng  would contradict the result that gradients are orthogonal. 
 
When applied to a quadratic function with positive definite G, the Fletcher-

Reeves method turns to be equivalent to the Broyden family of methods if ( ) IH =1 , 
the starting point is the same and exact line searches are performed in both 
methods[4],[7]. For non-quadratic functions line relatively accurate line search is 
recommended. Resetting the search direction to the steepest descent direction 
periodically after every n iterations is generally an accepted strategy in practice. 
When compared with quasi-Newton methods, conjugate gradient methods are less 
efficient and less robust and they are more sensitive to the accuracy of the line search 
algorithm. Methods with resetting are globally convergent and exhibit n-step 
superlinear convergence, i.e. 
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( )

( ) 0lim
*

*

=
−

−+

∞→ xx

xx
k

nk

k
 ( 2.92) 

 
 
 
Some other formulas may be used instead of ( 2. 0. Examples are the conjugate 

descent formula 
 

 ( )
( ) ( )

( ) ( )kTk

kTk
k

sg

gg 11 ++

=β  ( 2.93) 

 
and the Polak-Ribiere formula 

 

 ( )
( ) ( )( ) ( )

( ) ( )kTk

kTkk
k

gg

ggg 11 ++ −=β . ( 2.94) 

 
Considering the derivation of the Fletcher-Reeves method, it can be seen that these 
formulas are equivalent to the Fletcher-Reeves formula when applied to quadratic 
functions with exact line searches. The conjugate descent formula has a strong 

descent property that ( ) ( ) 0<kTk gs  if ( ) 0≠kg . The Polak-Ribiere formula is 
recommended when solving large problems[4]. 

 
 
Another possibility for conjugate gradient methods is to use symmetric 

projection matrices in the calculation of ( )1+ks , which annihilate vectors ( ) ( )kk γγ ...,, : 
 
 ( ) ( ) ( ) nkkkk ...,,2,1, =−= gPs . ( 2.95) 
 

Initially 
 

 ( ) IP =1  ( 2.96) 
 
and subsequent ( )kP  are updated as 
 

 ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )kkTk

kTkkk
kk

γγ
γγ
P

PP
PP −=+1 . ( 2.97) 
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Again this method is equivalent to other described methods for quadratic functions. 
When applied to general functions, ( )iP  must be reset to I every n iterations since 

( ) 01 =+nP . The method has the descent property ( ) ( ) 0≤kTk gs , but has a disadvantage 
that matrix calculations are required in each iteration. 
 

2.7  Further Remarks 

In the present chapter some of the basis of nonlinear programming is 
outlined. This knowledge is important for understanding the practical requirements 
for implementation of the algorithmic part in the optimisation shell. The literature 
cited in this chapter is mostly related to the mathematical and algorithmic 
background of optimisation and less to practical implementation (except references 
[6], [11] and [29]). Some implementation aspects are stressed in the next chapter 
within a larger framework of the optimisation shell. The need for hierarchical and 
modular implementation, which is stated there, is partially based on the heterogeneity 
of optimisation algorithms evident from the present chapter. 

 
In practice it is not always obvious which algorithm to use in a given 

situation. This depends first of all on the case being solved. Although the theory can 
offer substantial support for making the judgment, most of the literature on 
optimisation methods recognize the significance of numerical experimentation 
alongside the theoretical development. This implies a significant aspect that was 
borne in mind during development of the optimisation shell. The shell should not 
only include a certain number of algorithms, but also provide an open framework for 
incorporation of new algorithms and testing them on simple model functions as well 
as on practical problems. 

 
Many issues important for engineering practice were not taken into account. 

One of them is handling multiple conflicting optimisation criteria, i.e. solving the 
problem stated as 

 
minimise ( ) ( ) ( )[ ]xxx mfff ...,,, 21  

  ( 2.98) 
tosubject  Ω∈x . 

 
A common approach is to weight the individual criteria, which leads to the problem 
 
minimise ( ) ( ) ( ) ( )xxxx mm fwfwfwf +++= ...2211  
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  ( 2.99) 
tosubject  Ω∈x , 
 

where 1w , …, mw  are positive weighting coefficients. The problem which arises is 

how to choose these coefficients. The choice is made either on the basis of 
experience or in an iterative process where optimisation is performed several times 
and coefficients are varied on the basis of the optimisation results. 

 
Sometimes it is more convenient to designate one criterion as a primary 

objective and to constrain the magnitude of the others, e.g. in the following way: 
 

minimise ( )x1f  
   

tosubject  ( ) 22 Cf ≤x , 
 … ( 2.100) 
 ( ) mm Cf ≤x , 

 
 Ω∈x . 

 
This approach suffers for a similar defect as weighting criteria, i.e. the solution 
depends on the choice of coefficients 2C , …, mC . Attempts to overcome this 

problem lead to consideration of Pareto optimality[12],[17] and solution of the min-max 
problem[12],[23]. 

 
Another important practical issue is optimisation in the presence of numerical 

noise. Most of the methods considered in this chapter are designed on the basis of 
certain continuity assumptions and do not perform well if the objective and 
constraint functions contain a considerable amount of noise. This can often not be 
avoided due to complexity of the applied numerical models and their discrete nature 
(e.g. adaptive mesh refinement in the finite element simulations). 

 
A promising approach to optimisation in the presence of noise incorporates 

approximation techniques[38],[39]. In this approach successive low order 
approximations of the objective and constraint functions are made locally on the 
basis of sampled function values and/or derivatives. This leads to a sequence of 
approximate optimisation subproblems. They refer to minimisation of the 
approximate objective functions subject to the approximate constraints and to 
additional step restriction, which restricts the solution of the subproblem to the 
region where the approximate functions are adequate. The subproblems are solved by 
standard nonlinear programming methods. For approximations more data is usually 
sampled than the minimum amount necessary for determination of the coefficients of 
the approximate functions, which levels out the effect of noise. A suitable strategy 
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must be defined for choosing the limits of the search region and for the choice of 
sampling points used for approximations (i.e. the plan of experiments)[38]. 

 
A common feature of all methods mentioned in this chapter is that they at 

best find a local solution of the optimisation problem. There are also methods which 
can (with a certain probability) find the global solution or more than one local 
solution at once. The most commonly used are simulated annealing[29],[12],[17] and 
genetic algorithms[12],[17]. Most of these methods are based on statistical search, 
which means that they require a large number of function evaluations in order to 
accurately locate the solution. This makes them less convenient for use in 
conjunction with expensive numerical simulations, except in cases where global 
solutions are highly desirable. Use of these techniques can also be suitable for 
finding global solutions of certain optimisation problems which arise as sub-
problems in optimisation algorithms and in which the objective and constraint 
functions are not defined implicitly through a numerical simulation. 
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