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1. Experimental determination of model parameters

1 EXPERIMENTAL DETERMINATION OF MODEL
PARAMETERS

1.1 Importance of parameter identification

When we want to use numerical simulation as a gectisupport tool for
analysis and optimization, the produced resultstibesccurate and reliable enough.
In order to satisfy this basic requirement, we nus$sess a physical model that
adequately describes the phenomena in questionnanterical tools capable of
reproducing approximations that are in good agre¢nvéh physical models.

Beside the laws that are regarded basic physic¢atiples, such physical
models can include simplified description of comxplystems that can be derived
from more basic principles, or are just assumedhanbasis of experiments. An
example of this are basic principles of thermodyiegamwhich were confirmed
experimentally long before their validity could benticipated by statistical
thermodynamics, which starts from somehow more domehtal description as
macroscopic models do. Although statistical therymaghnics can state macroscopic
relations only in terms of averaging over microscagates, for systems with large
degrees of freedom deviations are small enoughweatan consider continuous
models valid in most practical situations.

In many practical situations we are forced to keidgrge gaps between
fundamental principles and physical models that weful for simulation. As an
example, the ideal gas equation can be derivedelaying gas molecules as colliding
rigid bodies whose radius is much smaller than ayerfree path, and it is accurate
enough in given situations. When it is not, it nieey extremely difficult to derive a
single point of the state equation, even if the etelence of two- and multi-
molecular potential could be exactly calculated. tlms case, fundamental
assumptions on sole existence of state equatiostlteg with some regularity
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assumptions can be supplemented by experimentlinlairder to build a physical
model used for, say, simulation of a jet engingesta

The remaining task is to experimentally determineugih points on the state
surface in order to build its accurate enough padkation. A problem arises when
some fundamental components of the physical maalelnot be measured directly,
as can be the case with viscosity. Most typicdilgse components are related to
material properties, but in simplified models thegn also include boundary
conditions (e.g. heat flux through the engine wait) unknown but constant
influence from system neighbourhood. These modealstnbe established from
experiments by using indirect techniques.

1.2 Inverseidentification of model parameters

Indirect techniques involves inference of modelapagters on the basis of
measuring something else in a controlled experimehd make this possible, we
must first insure that measurement outcome uniqdefyends on parameters to be
determined, i.e.

y™ =1 (a), (1.1)

y™ being measurements aadinknown parameters of the model. This dependence

is calculated by numerical simulation of the actergberiment that incorporates the
physical model whose parameter we are trying teerdehe. Model parameters
would in principle be obtained by solving the aboeguation, i.e. effectively
applying inverse off to measurement data (hence the name inverse teE®)i
Needless to say, this would require precise casist of our model (including
numerical calculation) with the physical realitydathe ability to sample measured
data exactly. None of this is true in practice avedcan at most find estimation of
parameters that is statistically the best accortbngeasurements.

In order to accomplish this task, we define a measiiinconsistency of the
model assuming given parameters with the experiahelata. The estimate of model
parameters is obtained by minimizing this discreyaover all possible parameter
values. Most often we define the discrepancy mesaisuthe least square sense, i.e.

F(a)=X2(a)=§[MT, 1.2




1. Experimental determination of model parameters.2. inverse identification of model parameters

thus
a =argmin F(a), (1.3)

In (1.0, y,(a) represent the values of corresponding measuremgnts

calculated by using numerical model of the expeni@ssuming specific values for
model parameters. Such a definition has a statisbiackground. If measurements
are distributed normally with corresponding stadddeviationso, and the model

exactly represent reality them maximizes the likelihood that actual parametees ar
equal toa . The distribution of values df is the chi-square distribution of order
v =m-n wherem is the number of measurements anthe number of unknown

parameters, with mean value and standard deviatiog2v. This fact can serve

statistical validation of the model itself by repeg the experiment. In practice we
have to deal with imperfect models, and provididgiaonal degrees of freedom in
model vectora can provide means of fitting the model to obseovet in lack of
physical arguments. This must be undertaken wittreme caution because
everything can be fitted by sufficiently loose mbhdaut such a model looses the
ability of prediction and has no sense. To avoid, tsystem (1.0 must be sufficiently
over-determined by capturing enough independenitrezapinformation.

Simulated measurementg(a) are defined implicitly through solution of

model equations with a model ultimately definedabyA software architecture that

will enable the solution of the parameter idenéfion problems defined e.g. as (1.0
is proposed in[1]-[2]. The computational sheiversé®’ is constructed to enable

incorporation of simulation environment in suchcaeme. Beside a good numerical
model, reliable algorithms for solving the resujtiminimization problems are

significant for successful practical applicatiormdis of such algorithms are outlined
in the following sections.
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2 NUMERICAL OPTIMISATION TECHNIQUES

2.1 Introduction

In general, optimisation problems can be stategralslems of minimisation
of some function of the design parametersubjected to certain constraints, i.e.:

minimise f(x) xOR"
subject to c(x)=0, iOE (2.1)
and c,(x)z0 jOI,

where f(x) is the objective function and(x) and cj(x) are constraint functiohs
Design parameters are also referred to as optiimmsaariables. The second line of
(2.0 represents the equality constraints of tfublpm and the third line represents
the inequality constraints. We have introduced itmaex sets, seE of the equality
constraint indices and skbf the inequality constraint indices. The abovelem is
also referred to as the general nonlinear probMuost of optimisation problems can
be expressed in this form, eventually having mldtigbjective functions in the case
of several conflicting design objectives.

Pointsx’, which satisfy all constraints, are called fedsipoints and the set of
all such points is called the feasible region. Anpa is called a constrained local
minimiser (or local solution of the above problenf) there exists some
neighbourhoodQ of X" such thatf (x' )< f (x') for all feasible pointsc0Q,x'# X .
Such a point is called a strict local minimisethié < sign is applied in place &f; a
slightly stronger definition of isolated local nmmiser, which requires the minimiser
to be the only local minimiser in some neighbouhdéurthermorex* is called the
global solution or global constrained minimiser ff(x*)s f(x) for all feasible

pointsx’. This means that a global minimiser is the lagaution with the least value
of f.

Since the objective and constraint functions aregemeral nonlinear, the
optimisation problem can have several constrainedlIminimisers< . The goal of

! Number of optimisation variables will be denotgdnithroughout chapter 2.
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optimisation is of course to comply with the objeetas much as possible, therefore
the identification of the global solution is the shalesirable. However, this problem
is in general extremely difficult to handle. Actlyathere is no general way to prove
that some point is a global minimiser. At best samgorithms are able to locate
several local solutions and one can then take éisedne of these. These methods are
mostly based on some stochastic search strateggtiba of problem solutions is of
a statistical nature, which inevitably leads to emormous number of function
evaluations needed to locate individual solutionh veatisfactory accuracy and
certainty. These methods are therefore usually feasible for use with costly
numerical simulations and are not included in tbeps of this work. Currently the
most popular types of algorithms for identifying ltiple local solutions are the
simulated annealing algorithms and genetic algorgthbriefly described in [12].

2.2 Heuristic Minimisation Methods and Related Practical
Problems

In the subsequent text the unconstrained problerarisidered, namely

minimise f(x) xOR" (2.2)

Throughout this chapter it is assumed thas at least aC® function, i.e. twice
continuously differentiable with respect xo Every local minimum is a stationary
point off, i.e. a point with zero gradiéflt

0f (x)=glx’)=g" =0. (2.3)

Minimisation can therefore be considered as a soludf the above equation, which
is essentially a system of nonlinear equationgfadient components

_of(x)_ o i
g (x)= 7 =0,i=1..n. (2.4)

This is essentially the same system that ariséisite element simulatidi”’ and can
be solved by the standard Newton method, for wthehteration is

w (640) = 5 (k) _ (Dg(k))‘lx(k) _ (2.5)
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The notationg® = g(x(")) is adopted throughout this work.

The method is derived from the Taylor serie§™ for g about the current
estimatex®:

g(x(k) + 5) =g® +OgMs + OQ|5||2) (2.6)

Considering this as the first order approximationd and equating it to zero we
obtain the expression for step which should bring the next estimate close to the
solution of (2.2)

k1) = x&) + 5 we obtain the above Newton lteration.

By settingx(
The Newton method is known to be rapidly convergertiut suffers for a
lack of global convergence properties, i.e. theatten converges to the solution only
in some limited neighbourhood, but not from anyrtstig point. This is the
fundamental reason that it is usually not applieabd optimisation without
modifications. The problem can usually be elegaatigided in simulations, either
because of some nice physical properties of thdysed system that guarantee
global convergence, or by the ability of making st@rting guess arbitrarily close to
the equilibrium point where the equations are Batls This is, for example,
exploited in the solution of path dependent proldemhere the starting guess of the
current iterate is the equilibrium of the previoasd this can be set arbitrarily close
to the solution because of the continuous naturtdefgoverning equations. Global
convergence can be ensured simply by cutting dbwerstep size, if necessary.

In practice, this is usually not at all case inimygation. The choice of a good
starting point typically depends only on a subjextjudgment where the solution
should be, and the knowledge used for this is hsumlt sufficient to choose the
starting point within the convergence radius of Mevis method, especially due to
the complex non-linear behaviour bfand consequentlg. Modifications to the
method must therefore be made in order to induabagl convergenée i.e.
convergence from any starting guess.

' Notation g(x)=0f (x), f® = f(x(k)), g :g(x(k)), etc. will be generally adopted throughout this
text.

2 Herein the expression global convergence is usel@note convergence to a local solution from any
given starting point. In some of the literaturestbkpression is used to denote convergence taoalglo
solution.
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One such modification arises from considering whratperties the method
must have in order to induce convergence to thatisal The solutiorx’ must be a
limiting point of the sequence of iterations. Tmeans that the distance between the
iterates and the solution tends towards zero, i.e.

lim
Kk -

X, —x*Hzo. (2.7)

This is satisfied if the above norm is monotonigcalecreasing and if the sequence
has no accumulation point other than When considering the minimisation
problem and assuming that the problem has a ursguion, the requirements for a
decreasing norm can be replaced (because of cagtofu) by the requirement that

& are monotonically decreasing. By such considanata basic property any
minimisation algorithm should have, is the generatf descent iterates so that

) < £ Ok, (2.8)

This is closely related to the idea of line searathich is one of the
elementary ideas in construction of minimisatiogogithms. The idea is to minimise
f along some straight line starting from the currgetate. Many algorithms are
centered on this idea, trying to generate a seguehdlirections along which line
searches are performed, such that a substantiaitred off is achieved in each line
search and such that, in the limit, the rapid cogeece properties of Newton’s
method are inherited.

An additional complication which limits the appliibty of Newton’s
method is that the second derivatives of the olwedtinction (i.e. first derivatives of
its gradient) are required. These are not alwaysctly available since double
differentiation of numerical models is usually a adhuharder problem than single
differentiation. Alternatively the derivatives cée obtained by straight numerical
differentiation using small perturbation of paraeret but in many cases this is not
applicable because numerical differentiation isyveensitive to errors in function
evaluatiof?®® and these can often not be avoided sufficienthervnumerical
models with many degrees of freedom are used. &umibre, even if the Newton
method converges, the limiting point is only guaead to be a stationary point fof
but this is not a sufficient condition for a logainimum, since it includes saddle
points, which are stationary points but are noaloainimisers.

The most simple algorithm that incorporates theaidaé line search is
sequential minimisation of the objective functionsiome fixed set af independent
directions in each iterate, most elementarily parab the coordinate axes. The
requirement fom independent directions is obvious since otherwige algorithm
could not reach any point ifR". The method is called the alternating variables
method and it seems to be adequate at a first gjldnut turns to be very inefficient
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and unreliable in practice. A simple illustratioh tbe reasons for this is that the
algorithm ignores the possibility of correlationtlween the variables. This causes the
search parallel to the current search directiodetstroy completely the property that
the current point is the minimiser in previouslyedsdirections. This leads to
oscillatory behaviour of the algorithm as illuse@tn Figure 2.1.

[,

Z

=]

Figure 2.1: Oscillatory behaviour, which is likely to occur emusing
sequential minimisation in a fixed set of direcgon

Another readily available algorithm is sequentiainimisation along the
current direction of the gradient bfAgain this seems to be a good choice, since the
gradient is the direction of the steepest descentthe direction in whicl decreases
most rapidly in the vicinity of the starting poitwith respect to this, the method is
called the steepest descent method. In practiceever, the method suffers for
similar problems to the alternating variables mdthand the oscillating behaviour of
this method is illustrated in Figure 2.2. The tledical proof of convergence exists,
but it can also be shown that locally the methaa @ehieve an arbitrarily slow rate
of linear convergené®.

The above discussion clearly indicates the nege$sit a more rigorous
mathematical treatment of algorithms. Indeed thej]or'nyt of the up-to-date
algorithms have a solid mathematical backgrétitl ! and partially the aim of
this section is to point which are the most imparfeatures in the design of fast and
reliable algorithms.
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Figure 2.2: Oscillatory behaviour, which can occur when periiog
sequential line searches along the steepest deticections.

2.3 Simplex Method

One minimisation method that does not belong witlia context of the
subsequent text is the simplex methdd®?™. It has been known since the early
sixties and could be classed as another heurigthaod since it is not based on a
substantial theoretical background.

The simplex method neither uses line searchessnbased on minimisation
of some simplified model of the objective functi@md therefore belongs to the class
of direct search methods. Because of this the ndettues not compare well with
other described methods with respect to local caeree properties. On the other
hand, for the same reason it has some other steaigres. The method is relatively
insensitive to numerical noise and does not demendome other properties of the
objective function (e.g. convexity) since no spiectontinuity or other assumptions
are incorporated in its design. It merely requttesevaluation of function values. Its
performance in practice can be as satisfactoryngsother non-derivative method,
especially when high accuracy of the solution i nequired and the local
convergence properties of more sophisticated msthdodhot play so important role.
In many cases it does not make sense to requirelyh@ccurate solutions of
optimisation problems, because the obtained resu#isinevitably inaccurate with
respect to real system behaviour due to numericadeting of the system (e.g.

10
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discretisation and round-off errors or inaccurateygical models). These are
definitely good arguments for considering practiecs¢ of the method in spite of the
lack of good local convergence results with respesbme other methods.

The simplex method is based on construction of\ariveng pattern ofn+1

points in IR" (vertices of a simplex). The points are systemadjianoved according
to some strategy such that they tend towards timetin minimum. Different
strategies give rise to different variants of tlgoathm. The most commonly used is
the Nelder-Mead algorithm described below. The tign begins by choice af+1

vertices of the initial simplexx(‘ll),..., x,(})l) so that it has non-zero volume. This

means that all vectors connecting a chosen veotéle reminding vertices must be
linearly independent, e.g.

1 20= Y A K -x0) 0.

i=1

If we have choserx&l), we can for example obtain other vertices by mgyin

for some distance, along all coordinate directidhg.is possible to predict several
points that should be good according to experiemaright be better to set vertices
to these points, but the condition regarding indeleace must then be checked.

Once the initial simplex is constructed, the fumetiis evaluated at its
vertices. Then one or more points of the simplexraoved in each iteration, so that
each subsequent simplex consists of a better stiofs:

Algorithm 2.1: The Nelder-Mead simplex method.
After the initial simplex is chosen, function vadui@ its vertices are evaluated:
0= f(x®)i=1..n+1.

Iterationk is then as follows:
1. Ordering step: Simplex vertices are first reordered so that

W< tM< < t® wheref® = f(x¥).
2. Reflection step: The worst vertex is reflected over the centre poirihe
bestn vertices &*) :EZXS") ), so that the reflected poinf* is

i=1

Evaluate f ) = f(xf")). If < f®< £ accept the reflected point and go to
6.

11
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3. Expansion step: If & < £ calculate the expansion
X0 = 509 1 o)~ 5¥)

and evaluatef® = £ (x¥). If £V < % acceptx®) and go to 6. Otherwise
acceptx®) and go to 6.
4. Contraction step: If £ > f® perform contraction betweet! and the
better ofx®), andx®. If f® < &) set

n+l r n+l?

X = 5004 L (5 0)
2
(this is called the outside contraction) and evtaluid =  (x). If &) < £,

c

acceptx¥) and go to 6.
If in contrary ) > &) set

n+l?

X@:y@-%&m_xﬁ)

(inside contraction) and evaluafe”. If f* < & acceptx®) and go to 6.
5. Shrink step: Move all vertices except the best towards the bedex, i.e.

and evaluatef,® = £ (v!¥)i=2,...,n+1. Acceptv¥) as new vertices.

6. Convergence check: Check if the convergence criterion is satisfiédol,
terminate the algorithm, otherwise start the ntetation.

Figure 2.3 illustrates possible steps of the dlgor. A possible situation of
two iterations when the algorithm is applied iswhan Figure 2.4. The steps allow
the shape of the simplex to be changed in evergtita, so the simplex can adapt to
the surface of. Far from the minimum the expansion step allows shmplex to
move rapidly in the descent direction. When theimim is inside the simplex,
contraction and shrink steps allow vertices to lowed closer to it.

12



2. Numerical Optimisation Techniques 2.3. Simplex Method

X

Figure 2.3: Possible steps of the simplex algorithm in two eligions
(from left to right): reflection, expansion, outsidnd inside contraction,
and shrink.

-1 -0.5

Figure 2.4: Example of evolution of the simplex.

There are basically two possibilities for the camemce criterion. Either that
function values at vertices must become close émoughe simplex must becomes
small enough. It is usually best to impose botteds, because either of them alone
can be misleading.

13
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It must be mentioned that convergence to a localimim has not been
proved for the Nelder-Mead algorithm. Examples hbhgen constructed for which
the method does not convel'ge However, the situations for which this was shown
are quite special and unlikely to occur in practié@other theoretical argument
against the algorithm is that it can fail becadsedimplex collapses into a subspace,
so that vectors connecting its vertices become Iyebanearly dependent.
Investigation of this phenomenon indicates thathsobiehaviour is related to cases
when the function to be minimised has highly eldadacontours (i.e. ill conditioned
Hessian). This is also a problematic situationofiver algorithms.

The Nelder-Mead algorithm can be easily adapted d¢onstrained
optimisation. One possibility is to add a speciahaty term to the objective
function, e.g.

f )= 10+ 15 -3 e (x)+ Xl () (2.9)

iol iol

where fn(i)l is the highest value df in the vertices of the initial simplex. Since

subsequent iterates generate simplices with lowkreg of the function at vertices,
the presence of this term guarantees that whergewgal point in some iteration
violates any constraints, its value is greater ttrencurrently best vertex. The last
two sums give a bias towards the feasible regioanndil vertices are infeasible. The
derivative discontinuity of the terms with absolwue should not be problematic
since the method is not based on any model, bu¢lgnen comparison of function
values. A practical implementation is similar teetbriginal algorithm.f is first
evaluated at the vertices of the initial simplexl dhe highest value is stored. Then
the additional terms in (2.0 are added to thedees, and in subsequent iterdites
replaced by’.

Another variant of the simplex method is the mulédtional search
algorithm. Its iteration consists of similar stepghe Nelder-Mead algorithm, except
that all vertices but the best one are involvedlimperations. There is no shrink step
and the contraction step is identical to the shsitdp of the Nelder-Mead algorithm.
Possible steps are shown in Figure 2.5. The cgewee proof exists for this
method™®, but in practice it performs much worse than theddiir-Mead algorithm.
This is due to the fact that more function evaluadiare performed at each iteration
and that the simplex can not be adapted to the fonation properties as well as the
former algorithm. The shape of the simplex can cfange, i.e. angles between it
edges remain constant (see Figure 2.5). The nreltitbnal search algorithm is
better suited to parallel processing becandenction evaluations can always be
performed simultaneously.

14
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Figure 2.5: possible steps in the multidirectional search rligin:
reflection, expansion, and contraction.

2.4 Basic Mathematical Background

Construction of optimisation methods describedhierrtin this section is
based on some model of the objective function amstraints. Such treatment of the
problem arises to a large extent from the fact tbeally every function can be

developed into a Taylor seri&® about any poini :

(x +h):§:h—n ( ) (2.10)

o N!

where f(”)(x)=% f(x) andni=1[2[3I...[n. This expression itself does not have a
X

significant practical value. A more important facthat

limR (h)=0 (2.11)

n- oo

and
lim R(h)=0, (2.12)

where

15
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R (h)= f(x +h)-s,(h) (2.13)

and

3 n hn (n) :
g(h)_;;—!f (x). (2.14)
This means that if we use only a few terms in tlgldr series, the error that we
make tends to zero both when we increase the nuofbrms without limit for
some fixedh, and when we take a fixed number of terms andedeser the step
towards zero. This follows from the restikt

hn+l

ey £04(x +h),0< B <1. (2.15)

Rw(h): (

The above equation also holds if functibis only €"™". This means that
every sufficiently smooth function can be locallppeoximated by a simple
polynomial function, which is sometimes more conigatfor theoretical treatment
than the original function.

A similar development is possible for a functiomofariable§™!:

(e, )= Tl )

i%(hl%+h2£+...+hn£] £(%,) Xy 0o X, )+, (2.16)
Ru(h e hy)
where
B 1 i i m+1l
Rm(l'll,...,hn)—(n+1)![ha)(1+...+hn axJ _ (2.17)

f(x,+6h,...x, +6h), 0<f <1 i=1..,n

In view of the beginning of this discussion, we caonsider numerical
optimisation as the estimation of a good approxiomadf the optimisation problem
solution on the basis of limited information abtiue function, usually objective and
constraint function values and their derivativessome discrete set of points. The
goal is to achieve satisfactory estimation with liéde function and derivative

16
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evaluations as possible. Now we can use the fatiggmeral functions can be locally
approximated by simpler functions. Besides, fumdi@f simple and known form
(e.g. linear or quadratic) are completely describga finite number of parameters.
If we know these parameters, we know (in princiléabout the function, including
minimising points.

There exists a clear correspondence between the a@onosiderations and the
design of optimisation algorithms. One thing tod@t when constructing algorithms
is how they perform on simple model functions, gmdofs of local convergence
properties based to a large extent on propertighefalgorithms when applied to
such function§

Heuristically this can be explained by consideriagconstruction of a
minimisation algorithm in the following way. Userfttion values and derivatives in
a set of points to build a simple approximation elge.g. quadratic), which will be
updated when new information is obtained. Consideplying an effective
minimisation technique adequate for the model fionct Since the model
approximates the function locally, some informataitained in this way should be
applicable to making decision where to set the nexate when minimising the
original function. In the limit, when the iteratapproach the minimum, the model
function should be increasingly better approximatmd minima of the successively
built models should be good guesses for the suleskderates.

In fact many algorithms perform in a similar mann&he difference is
usually that models are not built directly, but iterates are rather constructed in
such a way that the algorithm has certain properivhen applied to simple
functions, e.g. termination in a finite number @éps. This ensures good local
convergence properties. In addition some strategygtnibe incorporated which
ensures global convergence properties of the dlgoriThe remainder of this section
will consider some mathematical concepts relatethia First, some basic notions
will be introduced, and then some important aldponic properties will be discussed.

2.4.1 Basic Notions

Quadratic model functions are the most important tie study of
unconstrained minimisation. This is because thdoFageries up to quadratic terms
is the simplest Taylor approximation that can hameunconstrained local minimum.
Keeping the terms up to the second order in &8s the following expression for a
second order Taylor approximation:

f (x' +h)= f (x')+ h'Of (x')+%hT[D2f (x')]h : (2.18)

17
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where
.

Df(x):g(x):[af of af}

is the function gradient and
sz(x):G(x):(DDT)f(x)

is the Hessian matrbof the function, i.e. matrix of function secondislatives,

21 ()], =6, (x)= aiafx (x). (2.19)

Notation g(x) = Of (x) and G(x) =02 (x) will be used throughout this text.

The idea of a line ilR" is important. This is a set of points

x=x(a)=x +as, (2.20)

where ¢ O R is a scalar parameter, is any point on the line amslis the
direction of the lines can be normalised, e.g. with respect to the Eiaclidorm, i.e.

ansz =1.
i=1

It is often useful to study how a function definedIR" behaves on a line.
For this purpose, we can write

f(a)=f(x(a))=f(x +as). (2.21)

From this expression we can derive direction déreaof f, i.e. derivative of the
function along the line:

n 2
! In standard notation Operatef2 =p = 7] :ZLZ is the Laplace operator. However, in most
i1 0%,

optimisation literature this notation is used foe Hessian operator, and so is also used in tkiis te
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)y o=y {01

This can be written as

i=£=D1‘ Ts. (2.22)
da ds

In a similar way the curvature along the line isamfed:

d*f(a)_d df _d & of
da? da da daifa)g

RN
._ZZ$Sj axlax

and so

[@2t)s. (2.23)

A general quadratic function can be written in fibwen
1+ T
q(x):Ex Gx+b"x+c, (2.24)

whereG is a symmetric constant matrix’ a constant vector arwa constant scalar.
The gradient of this function is

Og(x)=Gx +b (2.25)

and the Hessian matrix is

0%(x)=G, (2.26)
where the rule for gradient of a vector product

O(uTv)= (Ou" v +(@vT)u; u=u(x), v=v(x)

19
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was applied.

We see that a quadratic function has a constargidteand its gradient is an
affine function ofx. As a consequence, for any two points the follgvaguation
relating the gradient in these points is valid:

Dq(x")—Dq(x')zG(x" —x'). (2.27)

If G is nonsingular, a quadratic function has a unigtetionary point
(Dq(x'):O):

X =-G™, (2.28)

which is also a minimiser ilG is positive definite (see section 2.4.2). Taylor
development about the stationary point gives amdtren for a quadratic function

q(x):%(x—x')TG(x—x')+c', (2.29)
wherec =c-=xTGx.
2

In this text a term linear functidmvill be used for functions of the form

I(x)=a"x+b, (2.30)

wherea' is a constant vector arda constant scalar. Such functions have a constant
gradient

Ol(x)=a (2.31)
and zero Hessian

02 (x)=0. (2.32)

! Mathematically this is an affine function. Lineafunctions are tho$& for which

f(ax +by)=af (x)+bf (y) for arbitraryx andy in the definition domain and for arbitrary consta
andb. Affine functions are those for WhiC|fl(x)—C is a linear function, where is some constant.

However, in the optimisation literature affine ftioos are often referred to simply as linear and th
is also adopted in this text.
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2.4.2 Conditionsfor Unconstrained Local Minima

Consider first a line through some painti.e. x(a)=x" +as. Let us define a
scalar function of parameteor using values of functionf on this line as
f(a)= f(x(a)). If X" is a local minimiser off (x), then 0 is clearly a local minimiser

of f(a). From the Taylor expansion for a function of orsiable about O then it

follows™ thatf has zero slope and non-negative curvaturer at . THis must be
true for any line throughx', and therefore for ang. From (2.0 and (2.0 it then
follows

g =0 (2.33)
and
s'G's>0 [s, (2.34)

where the following notation is used:" = f(x'), g(x)=0f (x), g =g(x),
G(x)=0%f(x), and G =G(x). This notation will be used through this text, and
similarly f(x("))z () etc.

Since (2.0 and (2.0 are implied by assumptiatx is a local minimiser of;
these are necessary conditionsxfobeing a local minimiser. (2.0 is referred tdrstf
order necessary condition and (2.0 as a secoddr arecessary condition. This
condition states that the Hessian matrix is pasisie@mi-definite in a local minimum.

The above necessary conditions are not at the sareesufficient, i.e. these

conditions do not implx” to be a local minimiser. Sufficient conditions damstated
in the following way":

Theorem 2.1:

Sufficient conditions for a strict and isolated &beinimiserx” of f are that f
has a zero gradient and a positive definite Hessfatrix inx :

g =0 (2.35)

and
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s'G’'s>0 Os#0 (2.36)

There are various ways how to check the conditibf.(The most important
for practical purposes are tHa3t? G is positive definite, the Choleski factors of the
LLT decomposition exist and all diagonal eleméntsre greater than zero, and the

same applies for diagonal elemerds of the LDL" decomposition. This can be

readily verified on those algorithms which solvesgstem of equation with the
system matrixG in each iteration, since one of these decompaositis usually
applied to solve the system.

Some algorithms do not evaluate the Hessian mathgse can not verify the
sufficient conditions directly. Sometimes theseoalfyms check only the first order
condition or some condition based on the progressg the last few iterations. It
can usually be proved that under certain assungtitamates still converges to a
local minimum. Algorithms should definitely haveetpossibility of termination in a
stationary point, which is not a minimum (usualtya saddle point with indefinite
Hessian matrix). Some algorithms generate subségapproximations of the
Hessian matrix, which converge to the Hessian @nlithit when iterates approach a
stationary point. The condition can then be chedkelitectly on the approximate
Hessian. More details concerning this will be @t in the description of individual
algorithms.

2.4.3 Desirable Properties of Algorithmsand Notion of
Conjugacy

A desired behaviour of an optimisation algorithm tieat iterates move
steadily towards the neighbourhood of a local mgegmthen converge rapidly to this
point and finally that it identifies when the minsar is determined with a
satisfactory accuracy and terminates.

Optimisation algorithms are usually based on sonwehand on some
prototype algorithm. A model is some approximatjoat necessarily explicit) of the
objective function, which enables a prediction ¢d@al minimiser to be made.

A prototype algorithm refers to the broad stratefjthe algorithm. Two basic
types are the restricted step approach and theskaech approach, described in
detail in the subsequent sections. There it willals® pointed out that the ideas of
prototype algorithms are usually closely associatgld global convergence.

Local convergence properties of an algorithm descitis performance in the
neighbourhood of a minimum. If we define the ewbthek-th iterate
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h() = x®) x| (2.37)

it may be possible to state some limit results . An algorithm is of course
convergent ith® _ 0. If a limit

Hh(m)
im ——=

I e (2.38)

exists wherea> (s some constant, then we say that the order mfergence ip.
This definition can also be stated in terms of lsuif the limit does not exist: the
order of convergence [sif

Hh(k+1)
P o

for some constand > @nd for eaclk greater than somem,. An important cases are
linear or first order convergence

Hh(m)
"

<a (2.40)

and quadratic or second order convergence

Hh(k+1)
—Hh(")uz <a. (2.41)

The constana is called the rate of convergence and must bethess 1 for
linear convergence. Linear convergence is only @etée if the rate of convergence
is small. If the order and rate are 1, the convwergeis sublinear (slower than all

linear convergence). This would be the casﬂh‘in =1/k.

When the order is 1, but the rate constant iséctinvergence is superlinear
(faster than all linear convergence), i.e.

=0. (2.42)

Successful methods for unconstrained minimisatanverge superlinearly.
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Many methods for unconstrained minimisation areived from
quadratic models. They are designed so that thel well or exactly on a quadratic
function. This is partially associated with the adission of section 2.4.1: since a
general function is well approximated by a quadrétinction, the quadratic model
should imply good local convergence properties.aBee the Taylor series about an
arbitrary point taken to quadratic terms will agrf®ea given accuracy with the
original function on a greater neighbourhood tham deries taken to linear terms, it
is preferable to use quadratic information evenatenfrom the minimum.

The quadratic model is most directly used in thevtda method (2.3), which
requires the second derivatives. A similar quadratodel is used in restricted step
methods. When second derivatives are not availéidg, can be estimated in various
ways. Such quadratic models are used in the quasitdh methods.

Newton-like methods (Newton or quasi-Newton) use ltessian matrix or
its approximation in Newton’s iteration (2.3). #otivation for this lies in the
Dennis-Moré theorem, which states that superlimeavergence can be obtained if
and only if the step is asymptotically equal tat thisthe Newton-Raphson metHdd

The quadratic model is also used by the conjugagéettbn methods, but in a
less direct way. Nonzero vectos?,s@ ... s are conjugate with respect to a
positive definite matrixG, when

e =0 0i#j. (2.43)

Optimisation methods, which generate such direstisiimen applied to a
quadratic function with Hessia@, are called conjugate direction methods. Such
methods have the following important prop&tty

Theorem 2.2:

A conjugate direction method terminates for a qadidrfunction in at most n
exact line searches, and eazff is a minimiser of that function in the set

k .
{x; x =xW +Zajs(’) a0 R} (2.44)

=1

The above theorem states that conjugate directiethads have the property
of quadratic termination, i.e. they can locate thimimising point of a quadratic
function in a known finite number of steps. Manydaninimisation algorithms can
generate the set of conjugate directions, althoiigh not possible to state that
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superlinear convergence implies quadratic ternmomatr vice versa. For example,
some successful superlinearly convergent Newtan4itethods do not possess this

property.

It is useful to further develop the idea of conjogan order to gain a better
insight in what it implies. We can easily see te&t are linearly independent. If for
examples(j) was a linear combination of some other vecsfs e.g.

§=3 gsH,

k# ]
multiplying this with $I'G would give
drggl) =0,
which contradicts the positive definitenessof

We can use vectors’) as basis vectors and write any point as
s (2.45)

Taking into account this equation,(2.0 and coafyg the quadratic function from the
theorem can be written‘as

q(a) 2%(x—x* )TG(x—x*)zé(a—a*)STGS(a ~a'). (2.46)

We have ignored a constant term in (2.0, whics ha influence on further
discussion, and written the minimiser of g as

X =x0 + 3 s,

and S is a matrix whose columns are vecta®®. Sinces' are conjugate with
respect td3, the producS'GS is a diagonal matrix with diagonal elememts say,

and therefore

! Notation a:[al N A an]T is used. Vectors denoted by Greek letters araypad in bold, but it

should be clear from the context when some quaistiyector and when scalar.
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q(a):%zn:(ai ~a; fd. . (2.47)

We see that conjugacy implies a coordinate transdtion fromx-space to
a -space in whiclt is diagonal. Variables in the new system are dglealfrom the
point of view thatq(a) can be minimised by applying successive minimisegiin

coordinate directions, which results in a minimiger corresponding to<” in thex
space. A conjugate direction method therefore spoads to the alternating variable
method applied in the new coordinate system. Emfgrconjugacy overcomes the
basic problem associated with the alternating bégianethod, i.e. the fact that
minimisation along one coordinate direction usualbpils earlier minimisations in
other directions, which is the reason for osciigtbehaviour of the method shown in
Figure 2.1. Since a similar problem is associatét the steepest descent method,
conjugacy can be successfully combined with dekeanethods.

A side observation is that eigenvectordoére orthogonal vectors conjugate
to G. A quadratic function is therefore minimised byae minimisation along all
eigenvectors of its Hessian. Construction of thajugate direction methods will
show that there is no need to know eigenvectoiS @i order to take advantage of
conjugacy, but it is possible to construct conjegdirections starting with an
arbitrary direction.

Another important issue in optimisation algorithmsvhen to terminate the
algorithm. Since we can not check directly how elés the minimiser the current
iterate is, the test can be based on conditiona focal minimum, for example

¥ <e. (2.48)

where £ is some tolerance. Sometimes it is not easy taddeehat magnitude to
choose fore, since a good decision would require some clueiatiee curvature in

the minimum. The above test is also dependent ers¢hling of variables. Another
difficulty is that it can terminate in a stationgogint that is not a minimum. When
second derivative information is available, it slkiobe used to exclude this
possibility.

When the algorithm converges rapidly, tests basedliierences between
iterates can be used, e.g.

k+1)

<& Oi (2.49)

XX

or
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O gl < g, (2.50)

These tests rely on a prediction how much at rhoah be further reduced or
x approached to the minimum.

The test
%g(k)TH kg(k), (2.51)

where H is the inverse Hessian or its approximation, sodbased on predicted
change of.

Finally, the possibility of termination when thember of iterations exceeds
some user supplied limit is a useful property oergvalgorithm. Even when good
local convergence results exist for a specific algm, this is not necessarily a
guarantee for good performance in practice. Funatialuation is always subjected
to numerical errors and this can especially affdgorithmic performance near the
solution where local convergence properties shtaikd effect.

2.5 Newton-like Methods

Newton-like methods are based on a quadratic madete exactly on the
second-order Taylor approximation (equation )fdk) aboutx®. The basic ideas

around this were explained in sections 2.2 addakd will be further developed in
this section.

In section 2.2 Newton’s method was derived from sblution of the system
of equations

Og(x)=0,

where the iteration formula was derived from thretforder Taylor’'s approximation
of g(x), giving iteration formula (2.3). Two problemslated with direct application
of the method were mentioned there, i.e. lack obgl convergence properties and
explicit use of the second order derivative infotiora regarding the objective
functions. Some general ideas on how to overcoresetiproblems were outlined in
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section 2.4 and will be further developed in teetion for algorithms, which in
principle stick with the basic idea of Newton’s imed.

In order to take over and develop the ideas givesection 2.4, let us start
from the second order Taylor approximatiorf d@kelf, developed around the current
iterate:

(X9 +8)=qV(8)= 19 g5+ 5'6W5 (252)

Using the results of section 2.4, the stationaoynipof this approximation is a
solution of a linear system of equations

GHg=—gh, (2.53)

It is unique ifG® is non-singular and corresponds to a minimise&s' is positive
definite. Newton’s method is obtained by consid@riﬁ") as solution of the above

equation and setting the next guessxf@+5("). The k-th iteration of Newton’s
method is then

1. Solve (2.0 foro™,
2. Setx&*) =xK 4 5

This is well defined as a minimisation method oifila® is positive definite
in each iteration, and this can be readily checkedfor example LDLT
decomposition is used for solution of (2.0. Hoereven ifG¥ is positive definite,

the method may not converge from any initial guassl, it can happen th{lf (")} do
not even decrease.

Line search can be used to eliminate this problEme. solution of (2.0 then

defines merely the search direction, rather thamection "), The correction is
then obtained by line minimisation, and such a wetls called Newton’s method
with line search. The direction of search is

gk = _G(k)‘lg(k) . (2.54)

If G¥ and hence its inverse are positive definite, thidines a descent
direction. IfG® is not positive definite, it may be possible tokea line search in

+sX | put the relevance of searching #s) is guestionable because this is not a
direction towards a stationary point q(é') Furthermore, the method fails if any

x*) is a saddle point df This givess® =0, althoughx® is not a minimiser of
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One possibility of how to overcome this problentdasswitch to the steepest
descent direction wheneved® is not positive definite. This can be done in
conjunction with the angle criterion to achievelibconvergence.

Minimising in the steepest descent directions eaad {to undesired oscillatory
behaviour where small reductions foire achieved in each iteration. This happens
because second order model information is ignaasdshown in section 2.4.3. The
alternative approach is to switch between the Nevatad steepest descent direction
in a continuous way, controlling the influence lmfth through some adaptive
weighting parameter. This can be achieved by addinltiple of the unit matrix to
GY so that the search direction is defined as

(% +v1)s® =—g¥. (2.55)

Parameterv is chosen so thaG! +v1 is positive definite. IfGY is close to
positive definite, a smalb is sufficient and the method therefore uses theature
information to a large extent. When large valuesvofare necessary, the search
directions becomes similar to the steepest desiiedtion —g(").

This method still fails when some* is a saddle point, and the second order
information is not used in the best possible wayiher modification of the method
incorporates the restricted step approach in whighimisation of the model
guadratic function subjected to length restricimminimised.

2.5.1 Quasi-Newton Methods

In the Newton-like methods discussed so far thersgaerivatives of are
necessary and substantial problems arise when ¢gsi&h matrix of the function is

not positive definite. The second derivatives@t' can be evaluated by numerical
differentiation of the gradient vector. In most esst is advisable that after this
operationG is made symmetric b :%(5 +§T), whereG is the finite difference

approximation of the Hessian matrix. However, eaitn of G can be unstable in

the presence of numerical noise, and it is alseesipe, because quadratic model
information built in the previous iterates is dgaeded.

The above mentioned problems are avoided in scedafjuasi-Newton

methods. In these metho®®® ™ are approximated by symmetric matrice®)
which are updated from iteration to iteration usithgg most recently obtained
information. Analogous to Newton’s method with lisearch, line minimisations are
performed in each iteration in the direction
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sk = —H kg, (2.56)

By updating approximaté& ™ rather thanG, a system of equations is avoided and
the search direction is obtained simply by multigtion of the gradient vector by a
matrix. An outline of the algorithm is given below:

Algorithm 2.2: General quasi-Newton algorithm.

Given a positive definite matriid @ thek-th iteration is:

1. Calculates according to (2.0.

2. Minimisef alongs®, setx ) = x® + g®sk)  wherea is a line
minimum.

3. UpdateH™® to obtainH .

If no second derivative information is availabletla¢ beginning,H(l) can be any
positive definite matrix, e.gd® =1 . The inexact line search strategy can be used in

line 2. If H® is positive definite, the search directions arscéet. This is desirable
and the most important are those quasi-Newton ndsthewhich maintain positive
definiteness oH®.

The updating formula should explicitly use onlysfiderivative information.

Repeated updating should change arbitrldr(ﬁ) to a close approximation i

The updating formula is therefore an attempt tonaemf the currentH () with
second derivative information gained in the curigration, i.e. by evaluation of

and Of at two distinct points. In this context equati@Q, which relates the Hessian
matrix of a quadratic function with its gradient iwo distinct points, requires

attention.
Let us write
31 = y(kr1) _ 3 () (2.57)
and
) = glkst) gk (2.58)

Using the Taylor series gfaboutx®) gives a relationship similar to (2.0, i.e.

P = GRS 4 OQ‘O‘(k)H)_ (2.59)
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The updating formula should therefore corrétt) so that the above relation

would hold approximately wittH“*™ in place of G®). This gives the so called

quasi-Newton condition, in which the updating fofenmust satisfy
H D)yl = 500, (2.60)
Since this condition gives only one equation, iesimot uniquely define the
updating formula and permits various ways of upagt. One possibility is to add a
symmetric rank one matrix tbl ) je.

H&D = H® 4 gy, (2.61)

Substituting this into (2.0 gives
H )+ guT ) = o), (2.62)

Since u(T)y(") Is a scalar, matrix multiplication is associatared multiplication with
a scalar is commutative,must be proportional ta®) = H®y)  Writing

U= a(a‘(k) —H® y(k))

and inserting this into (2.0 gives= ]/\/(5(") -H (")y("))T y* and therefore

() _ g 0 ) (50 — g 6) )
(- ) - o)

(k1) = )
A =R (6 ), fo

(2.63)

This formula is called the rank one updating formaccording to the above
derivation.

For a quadratic function with positive definite ldes the rank one method
terminates in at most+1 steps withH™ =G™, provided thatdo,...,6™ are

independent and that the method is well deffhe@ihe proof does not require exact
line searches. Also the so called hereditary ptgpmm be established, i.e.

HOY =60) j=12..i-1. (2.64)
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A disadvantage is that in general the formula dasmaintain positive definiteness
of H® and the dominator in (2.0 can become zero.

Better formulas can be obtained by allowing theecion to be of rank two.
This can always be writté"*4 as

HED = H® gy +w'. (2.65)
Using this in the quasi-Newton condition gives
3% = HOPA 4 guT )+ T, (2.66)

u andv can not be determined uniquely. A straightforwaray of satisfying the
above equation is to set proportional too™ andv proportional toH(")y("). By

solution of the equation separately for both growbsproportional vectors the
Davidon — Fletcher - Powell or DFP updating formiglabtained:

T T
+55 _HwH

H (k+l) - H ]
o 'y y'Hy

(2.67)

Indicesk have been omitted for the sake of simplicity (dgigproach will be adopted
through this section) and the symmetryHois used.

Another rank two updating formula can be obtaingddnsidering updating

and approximatingG instead of G™. Let us write BK =H®™ and consider

updating B® in a similar way aH ) was updated according to the DFP formula.
We require that the quasi-Newton condition (& (ieserved. This was true for the

DFP formula, but now we are updating inverseHdf', therefore, according to (2.0,
y(") and 5% must be interchanged. This gives the formula

a) _n, VY _BAO'B
Bg(Fé)S_B-'-yT—d_ 5T85 )

(2.68)

We however still want to update® rather thanB®), because a solution of system
of equations is in this way avoided in the quasiwhm iteration. The following

updating formula satisfieBUH &2 = -

. THy )38 (FH+H"
H(E';Fé)S:H+(1+yTyJ ° —[ y o j (2.69)
gy )oy oy
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This is called the Broyden — Fletcher — GoldfartlSkanno or BFGS updating
formula.

The BFGS and the DFP formula are said to be duatamnplementary
because the expressions B and H** in one are obtained by interchanging
B o H andy - 0 in the other. Such duality transformation presertree quasi-
Newton condition. The rank one formula is self-dual

The DFP and BFGS updating formula can be combimedbtain the so
called Broyden one-parameter family of rank twanrfatae:

Hy" = (- gHES +oH . (2.70)

This family includes the DFP and BFGS and also raférmula. The quasi-Newton
method with a Broyden family updating formula hias following propertiéd':

1. For a quadratic function with exact line searches:
« The method terminates in at masterations withH ™ =G,
* Previous quasi-Newton conditions are preservecethery property (2. 0).
» Conjugate directions are generated, and conjugatkents wherH© =1 |
2. For general functions:
* The method has superlinear order of convergence.
* The method is globally convergent for strictly cervfunctions if exact line
searches are performed.

(k+1)

v for

The Broyden family updates maintain positive dééness ofH
¢=0.

Global convergence has also been proved for theBfM@&thod with inexact
line searches, applied to a convex objective fonéti The BFGS method with

inexact line searches converges superlineaGit is positive definite.

The BFGS method also shows good performance in ncahexperiments.
The method is not sensitive to exactness of liregches, in fact it is a generally
accepted opinion that inexact line searches are mificient with the BFGS method
than near exact line searches. The contemporaimisption literatur!” suggests
the BFGS method as preferable choice for gener@nstrained optimisation based
on a line search prototype algorithm.
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2.5.2 Invariance Properties

It is important to study how optimisation algoritanperform when affine
transformation of variables is made, i.e.

y =Ax+a, (2.71)
whereA is nonsingular. This is a one-to-one mapping witlerse transformation
x=A"y-a).

f can be evaluated either inspace (denoted byx(x)) or iny space (denoted by
f,(v)=f(ay-a).

Applying the chain rule for derivation ispace gives

O3 0 _(pr), O (2.72)
= ) = 0y,
therefored], = A0, and so
9,=A"g,. (2.73)

Applying the gradient operator to the above equatidhen gives
0,9, =A"0,9,/A, ie.

G,=ATGA. (2.74)

The notationg, =01, f, , etc. was used, so that for example

0°f
[Gy]ij = ayia;j '

The following theoretd applies to Newton-like methods:

Theorem 2.3:

If H® transforms under transformation (2.0 as
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HY = AHYAT [k, (2.75)
then a Newton-like method with fixed ste(b) is invariant under the
transformation (2.0. A method is also invarigntzl) is determined by tests on

£ g®sk) or other invariant scalars.

Transformation (2.0 in the above theorem is aolat@iby inverting (2.0, since
H® approximateG® in the quasi-Newton methods.

We see that the steepest descent method (treatgdaasNewton method

with H(")=I) is not invariant under transformation (2.0 hesmal does not
transform correctly. Modified Newton methods aresoalnot invariant because
G +vI does not transform correctly wher> . 0

For a quasi-Newton method to be invariant? must be chosen so as to
transform correctly (as (2.0) and the updatingmida must preserve the

transformation property (2.0. Therefore,HY =1 is chosen, then invariance does

not hold. H® =G(x(1))_1 transforms correctly and therefore this choicesdaet
affect invariance.

In order to show that a specific updating formuleserves the transformation
property (2.0, we must show thaH ®AT = H(y") (which is (2.0 pre-multiplied bk
and post-multiplied byA™) which implies AH AT = H(y'“l). Let us do this for the
DFP formula

3,0, HyJWH,

H (k+l) - H +
5y, Vi H,

X

(2.76)

We will pre-multiply the above equation yand post-multiply it byA™ and
use relationsAJ, = d, following from (2.0 andy, =ATyy following from (2.0. We
will consider individual terms in equation (2.0.

The first term on the right-hand side of (2.0ggyafter muItipIicationH(y")
by assumption. Consider then the denominator o$#&rend term:

5y, =0, ATA Ty, =(AS,) v, =9,y,,
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the denominator is invariant. The numerator aftaltiplication gives
T _ T
AoJ, AT =9,0, ,
so the second term transforms correctly. Conslaedenominator of the third term:

yH v =y  ATAH ATA Ty, = (ATy, JH ATy, =

T

vy Hyy,

the denominator is invariant under transformatiohhe numerator after
multiplication is

AH x}/x}/xTHxAT :AHXATA_TJ/XJ/XT'A_]-AHX'AT = H yyy(A_TyX)T Hy =
T
H yyyyy Hy

(ke

y 1 is valid since

so the third term is also transformed correcyd AT =H

T T
+5y5y _Hyyyyy Hy

AHUIAT =+ .
5)’ yy yy H Yyy

y

and this is the DFP formula in tlyespace.

Similarly the preservation of (2.0 can be provedall updating formulas in
which the correction is a sum of rank one termsstroisted from vector® andHy,
multiplied by invariant scalars. Such versions @@ BFGS formula and hence all
Broyden family formulas.

The Broyden family (including BFGS and DFP) aldomis are therefore
invariant under the affine transformation of valesb (2.0, provided thaH @ s
chosen so as to transform correctly, i.e. as. (2dvever, even iH @ is not chosen

correctly, aftem iterations we haveH (1) =G(”*1)_1, which is transforms correctly.
The method therefore becomes close to the one ichvitivariance is preserved.

Invariance to an affine transformation of variablesa very important
algorithmic property. Algorithms which have thisoperty, are less sensitive to
situations in whichG is ill-conditioned, since an implicit transformati which
transformsG to the unity matrixl can be introduced, which does not change the
method. Algorithms that are not invariant, i.e. #teepest descent or the alternating
variables method, can perform very badly when teedtan is ill-conditioned.
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When using methods which are not invariant, it baradvantageous to find a
linear transformation which improves the conditiumbf the problef’”.

If columns of A are eigenvectors o5, then G is diagonalised when
transformation (2.0 is applied. Conditioning denachieved by additional scaling of
variables, i.e. by multiplication with a diagonaaimx. This approach is however not
applicable in practice because it is usually diffido calculate eigenvectors .
For positive definiteés the same effect is achieved by using CholeskofaadfG as

the transformation matrixG, =A'A gives
G,=ATGAT=ATATAAT =I.

It is often possible to improve conditioning just scaling the variables. In
this caseA is chosen to be a diagonal matrix so tAdtestimatesG, in some sense.

G,=ATG,A™ (from (2.0) is required to be close to the umitgtrix in some sense.
It can be required, for example, thk}y]” =10 . It is usually not necessary to

explicitly perform the scaling, but can be replaced in the methods by a suitable
diagonal matrix. For example, the modified Newtortinod can be improved by

using G +VvA ™ in place ofG +v1 .

2.6 Conjugate Direction Methods

Optimisation algorithms described in this sectioe dased on the result
given in Theorem 2.2, which associates conjugany exact line searches with
quadratic termination. These algorithms rely onidealized assumption that exact
line searches are performed. This is possible foguadratic function, but not in
general. By using interpolation in the line seaatforithm, it is still possible to
locate a local minimum up to a certain accuracy, this approach is used in practice
with the conjugate direction methods. An argumehicty justifies this is that in the
close neighbourhood of a minimum, quadratic intEons of the objective
functions will enable the line minimum to be loahtalmost exactly, so that the
inexact nature of the line search algorithm willt r&poil local convergence
properties, which are theoretically based on tiseimption of exact line search.
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In section 2.6.1 derivative based conjugate dwacinethods are described.
The described methods generate conjugate directidren they are applied to a
guadratic function.

2.6.1 Conjugate Gradient Methods

Conjugate gradient methods begin with line sealchga

st = —gl (2.77)

and then generate search directiogl€”, k=1 from -g**¥, so that they are

conjugate tos® ..., sMwith respect to the Hessian matr when a method is
applied to a quadratic function.

For a quadratic function it follows from (2.0 tha

W =Ga% ok, (2.78)
where ) =gt gk and o = x* —x() a5 usual. Conjugacy conditions (2.0
can therefore be written as

) =0 jzi (2.79)

since y' =Gl =GaWsli), The last expression is a consequence of thetliatt
xU*) is obtained by a line search performed frafi along s,

The above equation can be used to prove an imggtaperty. First we can
see that

s'g" =0 0O, (2.80)

because exact line searches are used. By usiraptve equation and (2.0 we obtain

gkt =

D gl gl 4 gl — gl 4 —glin) 4 glio) = (2.81)

S(i)(T)(y(k)+y(k)+l"y(i+l)+g(i+l)):0 Oi, k >i
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This means thag™®*? is orthogonal to all search directions of previsteps:

$g*) =0 k,i<k. (2.82)

This is actually the result of Theorem 2.2.

In the Fletcher-Reeves methgd™ is obtained from-g*? by the extended

Gramm-Schmidt orthogonalisatid®®®? with respect to ), j<k, in order to
satisfy conjugacy conditions (2.0. We can write

) = ke +2k: SO (2.83)
j=1

Multiplying the transpose of the above equationy{ﬁilgives

gl Y =0= _g(k+1)T Y+ Bl )gli)” ) (2.84)
where (2.0 was taken into account. It followd tha

k+)T (i)

A il D)
ﬂ B (i)T (I) - (i )T (i+l) _ (I) . (285)
s'y sV lg"" -g

It follows from construction ofs™ ((2.0 and (2.0) that vecto (1),...,9(") and
Sy span the same subspace. Therefore, sg\(&é) is orthogonal to the
subspace spanned bs‘l),...,s(") due to (2.0, it is also orthogonal to vectors
g¥,....g%, i.e.

g g* ) =0 0k, i <k (2.86)

We see that only3" # 0 and that

=2 __ (2.87)

! The derivation of the Fletcher-Reeves method wmasd to be not completely clear in some
optimisation literature and is therefore includeddin.
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The denominator of the above equation can be cidadny substitutings(k) by (2.0
with decreased indices and taking into account ahit ,8("‘1) iS non-zero, together
with the established orthogonality properties:

S(k)Tg(k) - (_ g(k) + ﬂ(k_l)s(k_l) )T g(k) - _g(k)Tg(k) .

Now we have

(
p=9_9 " (2.88)

The obtained results can be summarized in theviaiig way:

Theorem 2.4:

The Fletcher-Reeves method with exact line seartelesnates for a quadratic
function at a stationary poirt™* after m< n iterations. In addition, the
following results hold fod<i <m:

'Gs =0; j=12,..,i -1 (conjugate directions), (2.89)
g"gW =0; j=12...,i -1 (orthogonal gradients) (2.90)

and
gl = -g0"gl) (descent conditions). (2.91)

The termination must occur in at leasiterations because in the opposite
caseg(”*l) # 0 would contradict the result that gradients arbaybnal.

When applied to a quadratic function with positdefinite G, the Fletcher-
Reeves method turns to be equivalent to the Broyaerly of methods ifH =1,
the starting point is the same and exact line bearcare performed in both
method¥!”". For non-quadratic functions line relatively aater line search is
recommended. Resetting the search direction to steepest descent direction
periodically after everyn iterations is generally an accepted strategy mctpe.
When compared with quasi-Newton methods, conjugaaelient methods are less
efficient and less robust and they are more seediti the accuracy of the line search
algorithm. Methods with resetting are globally cergent and exhibit n-step
superlinear convergence, i.e.

40



2. Numerical Optimisation Techniques 2.6. Conjugate Direction Methods

[t -x
lim =

kﬂwm_ (2.92)

Some other formulas may be used instead of Ex@mples are the conjugate
descent formula

(k+1)T - (k+1)
K-9 "9
o g (2.93)
and the Polak-Ribiere formula
(k+1) _ (k)T (k+2)
ﬂ<k)=(9 g J o (2.94)
g(k) g(k)

Considering the derivation of the Fletcher-Reeveshad, it can be seen that these
formulas are equivalent to the Fletcher-Reeves titamvhen applied to quadratic
functions with exact line searches. The conjugascent formula has a strong

descent property thas®'g¥) <0 if g®'#0. The Polak-Ribiere formula is
recommended when solving large problEms

Another possibility for conjugate gradient methodsto use symmetric
projection matrices in the calculation €, which annihilate vectorg® ..., ) :

k)

s = —pldg®) k=12 .. n. (2.95)
Initially

PO = (2.96)

plks1) _ plk) _ _ (2.97)
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Again this method is equivalent to other describegthods for quadratic functions.
When applied to general functionB’) must be reset tb everyn iterations since

P™) =0. The method has the descent propefty g <0, but has a disadvantage
that matrix calculations are required in each ttera

2.7 Further Remarks

In the present chapter some of the basis of namliogramming is
outlined. This knowledge is important for undersliag the practical requirements
for implementation of the algorithmic part in thptionisation shell. The literature
cited in this chapter is mostly related to the mathtical and algorithmic
background of optimisation and less to practicgblamentation (except references
[6], [11] and [29]). Some implementation aspects airessed in the next chapter
within a larger framework of the optimisation shd&lhe need for hierarchical and
modular implementation, which is stated there adiplly based on the heterogeneity
of optimisation algorithms evident from the presempter.

In practice it is not always obvious which algomithto use in a given
situation. This depends first of all on the casedpsolved. Although the theory can
offer substantial support for making the judgmemtost of the literature on
optimisation methods recognize the significance noimerical experimentation
alongside the theoretical development. This imphesignificant aspect that was
borne in mind during development of the optimisatghell. The shell should not
only include a certain number of algorithms, bsbabrovide an open framework for
incorporation of new algorithms and testing themsonple model functions as well
as on practical problems.

Many issues important for engineering practice wesketaken into account.

One of them is handling multiple conflicting optsation criteria, i.e. solving the
problem stated as

minimise [£,(x), £,(x)..... T, (X)]
(2.98)
subjectto xOQ.

A common approach is to weight the individual ergewhich leads to the problem

minimis f(x)=w,f,(x)+w,f,(x)+..+w, f(x)
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(2.99)
subjectto xdQ,

where w,, ..., w_ are positive weighting coefficients. The problerhieh arises is
how to choose these coefficients. The choice is emaither on the basis of
experience or in an iterative process where opétius is performed several times
and coefficients are varied on the basis of themapétion results.

Sometimes it is more convenient to designate oifterion as a primary
objective and to constrain the magnitude of thethe.g. in the following way:

minimise f,(x)
subjectto f,(x)<C,,
(2.100)
f(x)<C,,
xQ.

This approach suffers for a similar defect as wengj criteria, i.e. the solution
depends on the choice of coefficien®,, ..., C,. Attempts to overcome this

problem lead to consideration of Pareto optim&fit{}”! and solution of the min-max
problent'? 23],

Another important practical issue is optimisatiarthe presence of numerical
noise. Most of the methods considered in this adrapte designed on the basis of
certain continuity assumptions and do not perforrall wf the objective and
constraint functions contain a considerable amaidrmoise. This can often not be
avoided due to complexity of the applied numerioaldels and their discrete nature
(e.g. adaptive mesh refinement in the finite elensenulations).

A promising approach to optimisation in the pregen€ noise incorporates
approximation techniquE8®. In this approach successive low order
approximations of the objective and constraint fioms are made locally on the
basis of sampled function values and/or derivatiidss leads to a sequence of
approximate optimisation subproblems. They refer rtonimisation of the
approximate objective functions subject to the appnate constraints and to
additional step restriction, which restricts thduson of the subproblem to the
region where the approximate functions are adeqi&ie subproblems are solved by
standard nonlinear programming methods. For appratons more data is usually
sampled than the minimum amount necessary for métation of the coefficients of
the approximate functions, which levels out theseiffof noise. A suitable strategy
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must be defined for choosing the limits of the ebkaregion and for the choice of
sampling points used for approximations (i.e. tkea f experimentS¥.

A common feature of all methods mentioned in thapter is that they at
best find a local solution of the optimisation desh. There are also methods which
can (with a certain probability) find the globall#ion or more than one local
solution at once. The most commonly used are sitedlannealing®*?*"! and
genetic algorithm&*”. Most of these methods are based on statisticaiclse
which means that they require a large number o€tfan evaluations in order to
accurately locate the solution. This makes thens lesnvenient for use in
conjunction with expensive numerical simulationgcept in cases where global
solutions are highly desirable. Use of these tegpes can also be suitable for
finding global solutions of certain optimisationoptems which arise as sub-
problems in optimisation algorithms and in whiclke tbbjective and constraint
functions are not defined implicitly through a nuroal simulation.

44



2. Numerical Optimisation Techniques References

References:

[1]

[2]

[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

M. Dutko, Software architectural, functional and design
specificationsPROFORM project interim report, 2004.

Rodi¢,T. & GreSovnik,l., A computer system for solving inverse and
optimization problems International Journal for Computer Aided
Engineering and Software 15/ 6-7, 1998, 893-98aldyga,
M.Jasinska, Effects of fluid motion and mixing particle
agglomeration and coating during precipitation.e@ical

Engineering Science, 2005, (Article in press).

Optimization Shell Inverselectronic document at
http://www.c3m.si/inverse/ , maintained by the Cerior
Computational Continuum Mechanics, Ljubljana.

R. FletcherPractical Methods of Optimization (second editiaighn
Wiley & Sons, New York, 1996).

E. J. BeltramiAn Algorithmic Approach to Nonlinear Analysis and
Optimization Academic Press, New York, 1970

J. E. Dennis (Jr.), R. B. Schnabi@lymerical Methods for
Unconstrained Optimization and Nonlinear Equatio88AM,
Philadelphia, 1996.

D. P. Bertsekad\onlinear Programming (second editio@jthena
Scientific, Belmont, 1999.

Mathematical Optimizatigrelectronic book at
http://csepl.phy.ornl.gov/CSEP/MO/MO.html , Com piatiaal
Science Education Project, 1996.

A. V. Fiacco, G. P. McCormickyonlinear Programming —
Sequential Unconstrained Minimisation Techniquisciety for
Industrial and Applied Mathematics, Philadelphi@9Q.

D. P. Bertsekas;onstrained Optimization and Lagrange Multiplier
Methods Athena Scientific, Belmont, 1996.

J. L. NazarethThe Newton — Cauchy Framework — A Unified
Approach to Unconstrained Nonlinear Minimisati@pringer —
Verlag, Berlin, 1994.

A. D. Belgundu, T. R. Chandrupat@ptimization Concepts and
Applications in EngineeringPrentice Hall, New Jersy, 1999.

45



2. Numerical Optimisation Techniques References

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

P. E. Gill, W. Murray, M. H. WrightPractical Optimization
Academic Press, London, 1981.

M. J. D. Powell (editor)Nonlinear Optimizatior- Proceedings of the
NATO Advanced Research Institute, Cambridge, Jay,JAcademic
Press, London, 1982.

M. H. Wright, Direct Search Methods: Once Scorned, Now
Respectablen D. F. Griffiths and G. A. Watson (eds.), Numgat
Analysis 1995 (Proceedings of the 1995 Dundee Bati@onference
in Numerical Analysis, p.p. 191 — 208, Addison Végdlongman,
Harlow, 1996.

K.G. Murty, Linear Complementarity, Linear and Nonlinear
Programming Helderman-Verlag, 1988.

S.R. SingiresuEngineering Optimization — Theory and Practice
(third edition) John Wiley & Sons, New York, 1996.

E. Panier, A. L. TitsDn Combining Feasibility, Descent and
Superlinear Convergence in Inequality Constraingudi@ization
Mathematical Programming, Vol. 59 (1993), p.p. 2&¥6.

C. T. Lawrence, A. L. TitdNonlinear Equality Constraints in
Feasible Sequential Quadratic Programmi@ptimization Methods
and Software, Vol. 6, 1996, pp. 265 - 282.

J. L. Zhou, A. L. TitsAn SQP Algorithm for Finely Discretized
Continuous Minimax Problems and Other Minimax Peolx$ With
Many Objective Functions$SIAM Journal on Optimization, Vol. 6,
No. 2, 1996, pp. 461 - 487.

P. Armand, J. C. GilberA piecewise Line Search Technique for
Maintaining the Positive Definiteness of the Maggdn the SQP
Method Research Report No. 2615 of the “Institut natialea
recherche en informatique et en automatique”, Recsgourt, 1995.

C. T. Lawrence, A. L. Titdreasible Sequential Quadratic
Programming for Finely Discretized Problems fron?Sh R.
Reemtsen, J.-J. Ruckmann (eds.): Semi-Infinite Rragiing, in the
series Nonconcex Optimization and its Applicatidfisiwer
Academic Publishers, 1998.

J. L. Zhou, A. L. TitsNonmonotone Line Search for Minimax
Problems Journal of Optimization Theory and ApplicatioN®|. 76,
No. 3, 1993, pp. 455 - 476.

J. F. Bonnans, E. Panier, A. L. Tits, J. LodhAvoiding the Maratos
Effect by Means of a Nonmonotone Line searchndquality
Problems - Feasible IterateSIAM Journal on Numerical Analysis,
Vol. 29, No. 4, 1992, pp. 1187-1202.

46



2. Numerical Optimisation Techniques References

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

[34]
[35]
[36]
[37]

[38]

C. T. Lawrence, J. L. Zhou, A. L. Titgdser's Guide for CFSQP
Version 2.5: A C Code for Solving (Large Scale) €ained
Nonlinear (Minimax) Optimization Problems, Genengtiterates
Satisfying all Inequality Constraintinstitute for Systems Research,
University of Maryland, Technical Report TR-94-161D97.

The FSQP Home pagelectronic document at
http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.htmilgintained
by the Institute for Systems Research, Univerditiylaryland.

H. J. Greenberdylathematical Programming Glossarglectronic
document at
http://www.cudenver.edu/~hgreenbe/glossary/glosktamy , 1999.

Optimization Frequently Asked Questipakectronic document at
http://www-unix.mcs.anl.gov/otc/Guide/faq/ , maimid by Robert
Fourer, The Optimization Technology Center.

W.H. Press, S.S. Teukolsky, V.T. VetterlingPBFlannery,
Numerical Recipies in C — the Art of Scientific @ortng, Cambridge
University Press, Cambridge, 1992.

J. W. DemmelApplied Numerical Linear Algebr&IAM,
Philadelphia, 1997.

L. N. Trefethen, D. Bau\lumerical Linear AlgebraSIAM,
Philadelphia, 1997.

B. Jacoblinear Algebra W. H. Freeman and Company, New York,
1990.

I. N. Bronstein, K. A. Smendljajew, G. Musidl, Muhlig,
Taschenbuch des Mathematik (second edition - im@e) Verlag
Harri Deutsch, Frankfurt am Main, 1995.

I. Ku&er, A. Kodre, H. NeunzeriMathematik in Physik und Technik
(in German) Springer - Verlag, Heidelberg, 1993.

E. Kreyszig Advanced Engineering Mathematics (second edition)
John Wiley & Sons, New York, 1993.

Z. Bohte, Numertne metodeDrustvo matematikov, fizikov in
astronomov SRS, Ljubljana, 1987.

K. J. BatheFinite Element Procedurep.p. 697-745, Prentice Hall,
New Jersey, 1996.

F. van Keulen, V. V. Toropowlultipoint Approximations for
Structural Optimization Problems with Noisy ResgoRanctions
electronic document at http://www-
tm.wbmt.tudelft.nl/~wbtmavk/issmo/paper/mam_nois2.h

47



2. Numerical Optimisation Techniques References

[39]

J. F. Rodriguez, J. E. Rena@hnvergence of Trust Region
Augmented Lagrangian Methods Using Variable Figelit
Approximation Dataln: WCSMO-2 : proceedings of the Second
World Congress of Structural and Multidiscipling@ptimization,
Zakopane, Poland, May 26-30, 1997. Vol. 1, Witolakdwski,
Zenon Mroz (editors), 1st ed., Lublin, Poland, Wiyd&two
ekoincynieria (WE), 1997, pp. 149-154.

48



