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1 Abstract 
 

The purpose of this deliverable is to specify methods and software to compute 
sensitivities as integral part of optimisation procedures that will be applied in 
TUNCONSTRUCT. Within SP1, applications of sensitivities will be focused on Back analysis 
of geological condition, Upscaling of laboratory data and the development and application of 
optimization procedures. 

 
The sensitivity analyses can be performed in two ways. The first possibility is 

numerical derivation of response functions. Numerical differentiation is subject to numerical 
noise, which is inevitable in complex numerical computations. Application of approximation 
based sensitivity analysis procedures is intended for alleviation of problems related to 
instability of numerical differentiation in presence of noise. This approach is presented in 
combination with the approximation based optimisation techniques because close integration 
with optimisation concept is envisaged. It is anticipated that optimization techniques based on 
successive approximation of the response functions will be mainly used in 
TUNCONSTRRUCT, where derivatives of the successive approximated problems will be used 
in the minimization procedures. 

 
The second possibility is to provide sensitivities directly as a result of numerical 

simulation, for which analytical differentiation of the numerical model with respect to design 
parameters must be performed. In this case, sensitivity analysis cannot be treated independent 
of the direct analysis and must be incorporated within the analysis code. Basic concepts of 
analytical differentiation of numerical models are presented in this deliverable. 

 
Main objective of back-analyses in TUNCONSTRUCT is inverse reconstruction of 

geological conditions at the tunnel site, which includes material parameters for the 
surrounding rock mass, stress state before excavation and orientation of geological layers. In 
this document main features of the sensitivity procedures are demonstrated on a synthetic 
example that will be used for development and validation of procedures for back analysis as 
well as to demonstrate how sensitivities with respect to shape, material parameters and 
boundary conditions can be evaluated in an optimisation scheme. 

 
Parameterisation according to various requirements has been prepared and the 

response functions for back-analysis problems defined. The sensitivity analysis for different 
scenarios was performed by analytical differentiation of the finite element model. The 
problem was set up in the simulation environment that enables automatic generation of the 
finite element code by utilising symbolical derivation of the element level expressions and 
ready incorporation of the generated code in the global simulation framework.  

 
Considering manpower resources and software available in the TUNCONSTRUCT 

consortium it is evident that analytical differentiation methods are feasible only in 
conjunction with AceGen system, which includes symbolic system for automatic generation of 
finite element codes. 

 
For sensitivity analyses where objective and constraint functions are evaluated by 

other solvers (EKATE, BEFE++, FLAC3D, ELFEN) numerical differentiation methods will 
be applicable. Precise specifications how these solvers could be integrated in sensitivity and 
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optimization procedures are described in Section 6. Note that necessary conditions to apply 
inverse and optimization procedures are parametric description of the direct problem, 
reliable evaluations of responses for different sets of parameters and provision of 
objective/constraint functions according to the specification. For sensitivity analyses in 
TUNCONSTRUCT it is required that direct models are set up by the partners who must 
ensure that their direct problems can be run automatically based on parameterized data from 
UCIS. 

Section 7 contains a description of a test case for validation of back-analysis 
procedures using a synthetic test case with assumed conditions at a tunnel construction site. 

 

2 Outline of the document 
 
This deliverable gives specifications for the software that computes numerical 

derivatives (sensitivities) within optimisation procedures applicable in TUNCONSTRUCT for 
the solution of upscaling and back analysis problems. 

 
Firstly, a general mathematical basis and the computational methods suitable for the 

solution of optimization problems in connection with numerical models are described in 
Sections Error! Reference source not found. - 5. The precise specifications for the 
integration of simulation software with optimization modules is provided in Section 6. A test 
case has been set up in Section 7 to demonstrate actual realization of sensitivity procedures 
related to shape and material parameters as well as to parametrised boundary conditions. 
Finally, an outline of the planned integration within TUNCONSTRUCT and the links with 
other software developed within TC is provided in Section 8. 

 

3 Introduction 
 
We consider the case where optimisation problems are defined by response functions 

that are based on results of numerical analysis (e.g. finite element) of the considered system. 
The response functions include the objective function to be minimised and constraint 
functions that define the admissible sets of designs. Optimisation or design parameters specify 
the trial design (in the case of optimization) or assumed parameters of the physical model (in 
the case of inverse analysis), and determine the input for numerical analysis of the considered 
system. Derivatives of the response functions with respect to design parameters are used in 
gradient-based optimisation algorithms. 

 
Mathematically, we state an optimization problem as  
 
minimize  ( ) nf RI, ∈xx   
subject to  ( ) Eici ∈= ,0x  (1) 
and  ( ) Ijc j ∈≥ ,0x ,  
where  , 1, 2, ...,k k kl x u k n≤ ≤ =   
 

In the above equation, f is the objective function, ci and cj are constraint functions and lk and 
uk are upper and lower parameter bounds. The second and third line of the equation are 
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referred to as equality and inequality constraints, respectively. We will collectively refer to f, 
ci and cj as response functions. 

 
Analytical differentiation of finite element models is described first in a generalised 

way in Section 4. When available, analytical differentiation represents the most efficient and 
also reliable method for providing gradient information used in optimisation procedures. 
Implementation of derivatives in an existing finite element model is usually time consuming. 
This can be significantly alleviated by automatic generation of code based on symbolic 
derivation of expressions. A finite element system utilizing this approach is outlined at the 
end of Section 4. 

 
Whether “analytical” derivatives are available or not will, among the others, depend 

on economical factors. Here the basic question is whether efficiency gains achieved by 
analytical differentiation outweigh the necessary implementation effort. When “analytical 
sensitivities” of the finite element model are not available, a logical approach would be to 
perform numerical differentiation of the response calculated by the direct model. The simplest 
and cheapest is the finite difference method where calculation of gradient of a response 
function includes perturbing parameters one by one and evaluating the response (including the 
complete finite element simulation) at the perturbed parameters. In order to calculate the 
response gradient, this method requires at least one additional evaluation of the response for 
each design parameter. 

 
The main problem of numerical differentiation is related to the accuracy of the 

calculated derivatives, which critically depends on the step size used for parameter 
perturbation. For smooth functions calculated with unlimited precision, the increasing of the 
step size in general reduces the accuracy of the numerical derivatives because of increasing 
deviation of the function from its first order Taylor approximation. Because of limited 
precision, the step size can not be arbitrarily reduced and there exists an optimal step size for 
which precision of numerical derivatives is the highest. The optimal step depends on 
computational precision and higher order derivatives of the function. Because it varies with 
parameters and its computation would require extra effort, an often approach in practice is to 
guess a compromise step size that gives “reasonably good performance”.  

 
Finding an acceptable compromise for step size is often possible when the 

computational precision is high and there is a large range of step sizes that are sufficiently 
small with respect to function characteristics, but well above the limit where finite precision 
would cause substantial errors in numerical derivatives. When the evaluation of response 
functions involves complex numerical simulations, functions usually contain a high level of 
numerical noise that makes choice of an acceptable step size for numerical differentiation 
very difficult. In such cases, we can attempt to apply optimisation algorithms that don’t 
require gradient information. However, these algorithms are usually significantly less efficient 
than those that are gradient-based. 

 
Another approach is based on application of function approximation techniques. We 

begin with the assumption that the “true” response functions are smooth and therefore 
gradient-based optimisation algorithms could be efficiently applied to the problem. When we 
calculate the functions numerically, a certain level of noise is added to the “true” functions. 
One consequence of this is that the functions can not be evaluated with arbitrary precision, 
which also affect the precision to which the optimisation problem can be solved. Another 
consequence is of practical characters: the performance of numerical techniques such as 
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optimisation and differentiation that would work (hypothetically, of course) fine on the “true” 
response may be completely deteriorated on the calculated response. 

 
The first effect can only be treated by increasing accuracy of numerical computation, 

which increases computational time and can be achieved only to a limited extent. The 
approach envisaged to fight the second effect is to apply numerical algorithms not directly to 
noisy numerical response, but to smooth approximation of the response built on basis of its 
systematic sampling. 

 
The sampling strategy and type of approximation used will depend on the purpose for 

which the response is used (e.g. optimisation). When there is no particular known model that 
would be especially suitable for description of the response functions, a weighted least 
squares approximation with low order monomial basis functions would be an intuitive choice. 
This rests on the same theoretical basis as the polynomial interpolation models, which is 
intrinsic also to most standard numerical differentiation procedures and many optimisation 
and other numerical methods – the Taylor expansion. The important distinction of 
approximation models as compared to interpolation is that the former can used an arbitrary 
number of samples (response evaluations) that are at least as large as the number of basis 
functions. Sampled function values are therefore not fit exactly, and this provides a 
mechanism to prevent large random fluctuations superimposed on the “true” response from 
spoiling completely the picture of the response (something we use implicitly when applying 
numerical differentiation or optimisation techniques). We can imagine this as a means of 
“levelling out” the noise. For “there is no free lunch” in the real world, the mechanism has its 
cost in evaluation of additional samples that are necessary to improve the image of the 
response, and its true value is in providing good control mechanisms for improving the 
response approximation. The spatial distribution of samples is technically much less 
important when using approximation models. This makes easy to add additional samples or to 
re-use existing samples for improvement of the accuracy of the approximation. 

 
With regard to numerical differentiation, using approximation models preserves the 

dilemma about the choice of the step size, which corresponds to the choice of the size of the 
sampling region. When the size is too large the combination of the basis function can not 
approximate the “true response”, and when the size is too small, the approximation can not be 
stabilised against effects of random fluctuations. Control mechanisms provided by the 
weighting least squares approximation can be used for adaptive adjustment of the step size. 
Oversampling (i.e. calculation of the response functions in more points than minimum 
necessary for the approximation) provides means of estimation of accuracy of approximation, 
which governs the decision of step enlargement or reduction. Weighting samples according to 
their distance from the point of evaluation (e.g. of approximate response and its gradient) 
provide a mechanism of changing effective step size without completely discarding already 
calculated samples that fall out of the selected sampling region. 

 
In accordance with the “no free lunch” paradigm, adaptive schemes for approximation 

based numerical differentiation can provide more reliable method on account of additional 
computational cost. In view of improving computational efficiency, we must consider 
numerical differentiation in combination with the purpose for which the computed gradients 
are used, e.g. for enabling gradient based optimisation techniques. The idea is to integrate 
numerical differentiation with optimisation in such a way that the excess computation 
required for adaptive step adaptation is incorporated in computational effort needed for the 
solution of the optimisation problem. 
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This idea is supported by the way in which efficient optimisation algorithms actually 

operate. E.g., the Newton’s method1 for unconstrained optimisation utilises the function value 
and its first and second derivatives in each step. Practical obstacles for application include the 
fact that starting solving optimisation problems within the convergence radius of the method 
is a rather exceptional situation in practice, and that computation of second derivatives is 
usually too expensive numerically instable. The quasi-Newton methods that are derived from 
the Newton’s method are widely considered as the most efficient methods (especially the 
BFGS) for local unconstrained optimisation. These methods start with the gradient descent 
direction and utilise the line search prototype algorithm in order to ensure global convergence. 
In successive line searches, the approximation of second order derivatives2 is gradually built 
up in the scheme resembling the finite difference numerical differentiation. However, the 
approximation is very rough since it initially uses large step sizes dictated by the line search. 
Its accuracy starts to improve only in the vicinity of the minimum where quadratic model is 
good approximation, taking in this way the advantage of the good local convergence 
properties of the Newton’s method. In the area where good local quadratic approximation of 
the function would not contribute to algorithm performance, the time is not wasted in attempt 
of its construction. 

 
Similar ideas are used for approximation based optimisation and sensitivity analysis. 

For better integration of approximation models, the restricted step prototype algorithm rather 
than line search is utilised as a framework for achieving global convergence. A the beginning, 
the attempt to maintain as large step size as possible is being made, rather than trying to make 
a good local approximation of the response. This corresponds to the large size of the sampling 
region and increased stability with respect to noise. Rather than by accuracy of 
approximation, the step size is controlled by success of the optimisation step measured by 
reduction of the value of the minimised function. Close to the minimum, good order of 
response approximation will contribute to good local convergence as far as this is permitted 
by the level of noise. When accuracy limit defined by the level of noise is achieved, this is 
detected on the basis of accuracy probing. Different kinds of breakdown (such as capturing in 
fictive minima that are in fact fluctuations) are prevented by stabilisation achieved by more 
distant samples. 

 
For better adjustment to the above mentioned ideas, the moving least squares 

approximation model is considered. In this model, we allow that approximation coefficients 
are not constant but are parameter dependent. Their variation is defined by weighting 
functions, which assign weights to the samples according to relative distance from the point 
of evaluation. This gives raise to a local-global approximation that can adapt to the function 
over a large range of parameters as long as enough samples are available over the whole 
range, and behaves locally in a similar manner than the corresponding ordinary weighted least 
squares approximation. 

 
Section 5 provides a brief description of approximation techniques that are used with 

approximation based numerical differentiation and optimisation techniques. Properties of the 
moving least squares approximation are demonstrated by instructive visual examples in 
                                                 
1 This method is in some sense an equivalent to the Newton’s method for equation solving , which is (usually 
with some modifications) widely used in engineering simulation techniques including the finite and boundary 
element methods, finite difference method and meshless techniques. 
2 In fact, approximation of inverse of the matrix of second derivatives is more commonly built up for efficiency 
reasons. 
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Section 5.4. The scope of discussion is limited on the case where only sampled response 
values are used. The approach can however be extended in order to incorporate eventual 
gradients that are provided by analytical differentiation of the numerical model3. 

 
Approximation based optimisation techniques have a large potential in terms of 

efficiency in the presence of noise, possibility of parallelisation, re-use of calculated 
information, combination with other response interrogation techniques, reliability based 
optimisation, limited time optimisation and other areas that are of particular importance from 
the practical engineering point of view. For making good use of this potential, ability of quick 
adaptation of solution algorithms to particular problems and requirements is especially 
important. The goal will be to design a library and of building blocks for solution of 
individual problems in such a way that they can be easily combined in relatively complex 
algorithms. This requires well considered internal design, which will also reflects in the 
application interfaces for optimisation and numerical differentiation algorithms. The 
specifications of these interfaces is given in Section 6. 

 
Finally, a test example that has been set up for validation of numerical techniques used 

in back-analysis of geological conditions at the tunnel construction site, is described in 
Section 7. 

 
Section 8 has been added that treats matters related to this deliverable and the two 

future tasks of C3M within the project - the upscaling and back analysis problem. 
 

4 Analytical Differentiation of the Finite Element Model 

4.1 Finite Element Simulations 

The aim of numerical simulations is to predict the behaviour of a system under 
consideration. In the finite element approach this is performed by solving a set of algebraic 
equations, which can be expressed in the residual form 
 

 ( ) 0uR = . (2) 
 
The above equations represent the discretised form of the governing equations including 
balance laws, constitutive equations, and initial and boundary conditions, which arise in 
mechanical, thermal, or electromagnetic problems. Unknowns u define approximate solution 
and are considered as the primary system response. System (2) represents a wide variety of 
problems and description of finite element techniques to solve particular problems are beyond 
the scope of the present description. This section is focused on basic aspects of sensitivity 
analysis for nonlinear problems, which is crucial for efficient optimisation procedures. 
 
The system (2) can be solved by the Newton-Raphson method, in which the following 
iteration is performed: 
 
                                                 
3 Similar as with classical optimization techniques, availability of analytical gradients would be of great benefit 
for the improvement of efficiency. Separate numerical differentiation in order to provide gradients would not 
make sense on the other hand, since it is already implicitly incorporated in the approach (which is done in such a 
way that stability problems are overcome). 
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 ( )( ) ( )( )ii

d
d uRuu

u
R

−=δ , (3) 

 
 ( ) ( ) uuu δ+=+ ii 1 . (4) 

 

The term ( )( )iuR  is referred to as the residual (or load) vector and the term ( )( i

d
d u

u
R )  is 

referred to as the tangent operator (or tangential stiffness matrix).  
 
 
For time dependent problems the iteration scheme given by (3) and (4) is not sufficient 

since the state of the system at different times must be determined. Time is usually treated 
differently to the spatial independent variables. The time domain is discretised according to 
the finite difference scheme in which approximate states are evaluated for discrete times 

. Solution for intermediate times is usually linearly interpolated within the 
intervals 

( ) ( ) ( )ttt M...,,, 21

( ) ( )[ ]tt nn 1, +  and time derivatives of the time dependent quantities are approximated by 
finite difference expressions. 

 
The approximate solution for the n-th time step is obtained by solution of the residual 

equations 
 
 ( ) ( ) ( )( ) 0uuR =−1, nnn , (5) 

 
which are solved for each time step (or increment) for ( )un  while ( )u1−n  is known from the 
previous time step. Dependence on earlier increments ( ( )u2−n , etc.) is possible when higher 
order time derivatives are present in the continuum equations. The system (5) can again be 
solved by the Newton-Raphson method in which the following iteration is performed4: 
 

 
( )

( )
( ) ( )( ) ( ) ( ) ( )( innin

n

n

d
d uRuu

u
R

−=δ ), (6) 

 
 ( ) ( ) ( ) ( ) uuu δ+=+ inin 1 . (7) 
 
The incremental scheme is not used only for transient but also for path dependent 

problems such as plasticity where constitutive laws depend on evolution of state variables, 
which inherently calls for an incremental approach. Material response is not necessarily time 
dependent and the time can be replaced by some other parameter, referred to as pseudo time. 
Treatment of path dependent material behaviour requires introduction of additional internal 
state variables, which serve for description of the history effect. 

 
The state of a continuum system is often defined by two distinct fields, e.g. the 

temperature and displacement fields. Two sets of governing equations define the solution for 
both types of variables. When neither of these variables can be eliminated by using one set of 
                                                 
4 The Euler backward integration scheme is considered here, but other schemes such as variable midpoint 
algorithms can also be incorporated. 
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equations, both sets must be solved simultaneously and the system is said to be coupled. The 
approximate solution is obtained by solving two sets of residual equations in each time step: 
 

 ( ) ( ) ( ) ( ) ( )( ) 0vvuuR =−− 11 ,,, nnnnn  (8) 
 
and 
 

 ( ) ( ) ( ) ( ) ( )( ) 0vvuuH =−− 11 ,,, nnnnn . (9) 
 
Different solution schemes include either solution of both systems simultaneously in an 
iteration system, or solution of the systems separately for one set of variables while keeping 
the other set fixed; the converged sets of variables are in this case exchanged between the two 
systems. 

 

4.2 Sensitivity Analysis 

For the purpose of optimisation the notion of parametrisation is introduced. We want 
to change the setup of the considered system either in terms of geometry, constitutive 
parameters, initial or boundary conditions, or a combination of these. A set of design 
parameters [ n ]φφφ ,...,,, 21=Φ  is used to describe the properties of the system which can be 
varied. The equations which govern the system and therefore the numerical solution depend 
on the design parameters. 

 
To construct an optimisation problem, certain quantities of interest such as the 

objective and constraint functions must be defined. For many optimisation algorithms the 
derivatives of these quantities with respect to the design parameters (i.e. sensitivities) are 
important. Evaluation of these derivatives is the subject of sensitivity analysis, which is 
introduced here in terms of basic formalism. For this purpose, let us consider a general 
function that is dependent on the design parameters which completely define the system of 
interest: 

 
 ( ) ( )( ),F GΦ = Φu Φ  (10) 
 

F is referred to as the response functional and appears as a term in the objective or constraint 
functions. F will be typically defined through a system response u, but it may in addition 
include explicit dependence on the design parameters, as is indicated by the right hand side of 
(10). One way of evaluating derivatives iddF φ  is using numerical approximation by the 
finite difference formula, 
 

( ) ( ) ( )
k

nkkknkkkk
n

k

FF
d
dF

φ
φφφφφφφφφφφφφφ

φ Δ
−Δ+

≈ +−+− ...,,,...,,...,,,...,,...,,, 111111
21 . (11) 

 
Evaluation of each derivative requires an additional evaluation of F at a perturbed set of 
design parameters, which includes numerical evaluation of the system response u  at the 
perturbed parameters. More effective schemes, which are incorporated in a solution procedure 
for evaluation of the system response, are described below. 
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Derivation of (10) with respect to a specific design parameter kφφ = 5 gives 
 

 
φφφ ∂
∂

+
∂
∂

=
G

d
dG

d
dF u

u
. (12) 

 
Derivatives u∂∂G  and φ∂∂G  are determined explicitly by definition of the functional F. 
The main task of the sensitivity analysis is therefore evaluation of the term φddu , which is 
an implicit quantity because the system response u depends on the design parameters 
implicitly through numerical solution of the governing equations. 

 
Let us first consider steady state problems where the approximate system response can 

be obtained by solution of a single set of non-linear equations (2). Since the system is 
parametrised, these equations depend on the design parameters and can be restated as 

 
 ( )( ) 0uR =ΦΦ , . (13) 
 
This equation defines implicit dependence of the system response on the design 

parameters and will be used for derivation of formulae for implicit sensitivity terms. 
 
In the direct differentiation method the term φddu  is obtained directly by derivation 

of (13) with respect to a specific parameter φ , which yields 
 

 
φφ ∂

∂
−=

∂
∂ Ru

u
R

d
d . (14) 

 
This set of linear equations must be solved for each design parameter in order to obtain the 
appropriate implicit term φddu . This term is then substituted into (12) in order to obtain the 
derivative of the functional F with respect to that parameter. The equation resembles (3), 
which is solved iteratively to obtain the approximate system response. According to this 
analogy, (14) is often referred to as a pseudoproblem for evaluation of the implicit sensitivity 
terms, and the right-hand side φ∂∂− R  is referred to as the pseudoload. As opposed to (3), 
(14) is solved only once at the end of the iterative scheme, because the tangent operator 

uR ∂∂  evaluated for the converged solution u (where equations (13) are satisfied) must be 
taken into account for evaluation of sensitivities. If the system of equations (3) is solved by 
decomposition of the stiffness matrix, then the decomposed tangent stiffness matrix from the 
last iteration can be used for solution of (14), which means that the additional computational 
cost includes only back substitution. Evaluation of derivatives with respect to each design 
parameter therefore contributes only a small portion of computational cost required for 
solution of (13) as opposed to the finite difference scheme, where evaluation of the derivative 
with respect to each parameter requires a complete solution of (13) for the corresponding 
perturbed design. 

 
An additional task in the case of analytical differentiation is evaluation of the load 

vector φ∂∂− R . It requires explicit derivation of the finite element formulation (more 
                                                 
5 Index k is suppressed in order to simplify the derived expressions. 
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precisely the formulae for evaluation of element contributions to the stiffness matrix) with 
respect to design parameters, which must be incorporated in the numerical simulation. 

 
An alternative method for evaluation of sensitivities is the adjoint method. In this 

method the implicit term φddu  is eliminated from (12). An augmented functional 
 
 ( ) ( )( ) ( ) ( )( ), TF G λΦ = Φ Φ − Φ Φ Φu R u ,  (15) 
 

is defined, where λ  is the vector6 of Lagrange multipliers, which will be used for elimination 
of implicit sensitivity terms. In the converged solution, FF =~  because . Differentiation 
of (

0=R
15) with respect to a specific design parameter φ  yields 
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Since  by (0=R 13) and 0=
∂

+
∂
∂

φφ dd
d Ru

u
R  by (14), we have 

 

 
φφ d
Fd

d
dF ~

= . (17) 

 
The terms in (15) which include implicit derivatives are 
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∂
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∂
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These terms are eliminated from (16) by defining λ  so that the term in round brackets in (18) 
is zero. This is achieved if λ  solves the system 
 

 
TT G
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

uu
R λ . (19) 

 
System (19) is referred to as the adjoint problem for the adjoint response λ  with the adjoint 
load ( TG u∂∂ ) . Once multipliers λ  are evaluated, the derivative of F with respect to a 
specific parameter φ  is obtained as 
 

 
φ

λ
φφφ ∂

∂
−

∂
∂

==
RTG

d
Fd

d
dF ~

. (20) 

 
The adjoint method requires the solution of the adjoint problem (19) for each response 

functional F. It is efficient when the number of response functionals is small compared to the 
number of design parameters. 
                                                 
6 Vectors denoted by Greek letters are not typed in bold, but it should be clear from the context when some 
quantity is a vector and when scalar. 
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A similar approach can be adopted for transient problems where sensitivities are 

evaluated within the incremental solution scheme. As for steady state problems the 
dependence on the design parameter is taken into account in the discretised governing 
equations (5): 

 
 ( ) ( ) ( ) ( ) ( )( ) 0uuR =− φφφ ,, 1nnn . (21) 
 

It will be assumed that the response functional is defined through the response at the final 
time ( ) : tM

 
 ( ) ( ) ( )( )ΦΦ=Φ ,uMGF . (22) 

 
Derivation with respect to the parameter φ  yields 
 

 ( )

( )

φφφ ∂
∂

+=
G

d
D

d
dG

d
dF M

M

u
u

. (23) 

 
 

In the direct differentiation method the implicit derivative is obtained directly by 
derivation of (21), which yields (after setting the increment index to M) 

 

 
( )

( )

( ) ( )

( )

( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−=
∂
∂ −

−
i

MM

M

MM

M

M

d
d

d
d

φφφ
Ru

u
Ru

u
R 1

1  (24) 

 
The pseudoload on the above equation contains the sensitivity of the response evaluated in the 
previous step. By applying the direct differentiation procedure back in time we see that the 
system 
 

 
( )

( )

( ) ( )

( )

( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−=
∂
∂ −

−
i

nn

n

nn

n

n

d
d

d
d

φφφ
Ru

u
Ru

u
R 1

1  (25) 

 
must be solved for ( ) φdd i u  after each time step (i.e. for i=1, 2, …, M) after convergence of 
the iteration (6) and (7), while the derivative of the initial condition ( ) φdd u0  needed after the 
first increment is assumed to be known. 

 
 
In the adjoint method the implicit terms are again eliminated by the appropriate 

definition of the Lagrange multipliers. The augmented functional is defined by combination 
of (22) and (21) for all increments: 

 

  (26) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(∑
=

− ΦΦΦΦ−ΦΦ=Φ
M

n

nnnTnMGF
1

1 ,,, uuRu λ )
 

06_05_C3M_D1.3.2.1  Page 13 of  56 



   Specifications for software to determine sensitivities for optimization  
of the design of underground construction as part of IOPT 

 
 

Again FF ~=  follows from (21) and 
φφ d
Fd

d
dF ~

=  follows from (21) and (25). Derivation 

of (26) yields after rearrangement and some manipulation 
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d
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∂
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0

1
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1

~

, (27) 

 
where the first line contains explicit terms and the other two lines contain implicit terms 
which must be eliminated.  
 

Elimination of implicit terms from (27) is achieved by solution of the following set of 
adjoint problems for the Lagrange multiplier vectors: 
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. (28) 

 
Once this is done, the functional derivative is obtained from 
 

 ( )
( )

( )
( )

( )

( )

φ
λ

φ
λ

φφφ d
d

d
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d
Fd

d
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0

1
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−

∂
∂

−
∂
∂

== ∑
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 (29) 

 
Since the equations (28) are evaluated in the reverse order as the tangent operators, the 

complete problem must be solved before the sensitivity analysis can begin. This requires 
storage of converged (and possibly decomposed) tangent operators from all increments. The 
adjoint analysis may still be preferred when the number of the design parameters is 
significantly larger than the number of response functionals. 

 
A similar derivation can be performed for coupled systems (i.e. equations (6) and (7)). 

The procedure is outlined e.g. in [2] and [3]. In the direct method sensitivity of one field is 
expressed in terms of the sensitivity of another, which gives the dependent and the 
independent pseudoproblem. In the adjoint methods, two sets of Lagrange multipliers must be 
introduced, one for each corresponding equation. Two adjoint problems are solved for each 
set of multipliers for each increment, otherwise the procedure is the same as for non-coupled 
problems. 

 
Sensitivity analysis increases the complexity of the simulation code. One complication 

comes at the global level where the assembled problem is solved in the incremental/iterative 
scheme. Solution of the adjoint or pseudoproblems must be included in the scheme, which 
includes assembling of pseudoloads from element terms. This is followed by appropriate 
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substitutions in order to evaluate the complete sensitivities. An additional complication in the 
adjoint method is that the converged tangent operators must be stored for increments, since 
solution of the adjoint problems is reversed in time. In this level the additional complexity can 
be relatively easily kept under control if the programme structure is sufficiently flexible. The 
number of necessary updates in the code which is primarily aimed for solution of the direct 
problem is small and the additional complexity in the programme flow chart is comparable to 
the complexity of the original flow chart. 

 
A more serious problem is the complexity which arises on the element level, where 

element terms of the pseudoloads are evaluated, i.e. derivatives of the residual with respect to 
design parameters. The code should be able to evaluate the pseudoload for any 
parametrisation that might be used, which can include shape, material, load parameters, etc. 
Implementation of a general purpose solution code which could provide response sensitivities 
for any possible set of parameters turns out to be a difficult task. It must be taken into account 
that such a code must include different material models and finite element formulations and 
that derivation of the process of evaluation of element residual terms with respect to any of 
the possible parameters can be itself a tedious task. Another complication which should not be 
overlooked is the evaluation of the terms u∂∂G . Although these are regarded explicit terms, 
for complex functionals their evaluation is closely related to the numerical model and can 
include spatial and time integration and derivation of quantities dependent upon history 
parameters, with respect to the primary response u. 
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Figure 1: Outline of an optimization system utilizing symbolic code generation. 

 
The reasons outlined above, use of symbolic systems for automatic generation of 

element level code is very beneficial. Use of such systems enables implementation of new 

06_05_C3M_D1.3.2.1  Page 15 of  56 



   Specifications for software to determine sensitivities for optimization  
of the design of underground construction as part of IOPT 

 
 

finite element formulations and physical models in times drastically shorter than would be 
needed for manual development. Functionals which are used in optimisation and the 
necessary sensitivity terms can be defined on abstract mathematical level where the basic 
formulation of the numerical model is defined. These definitions can be readily adjusted to 
new types of problems, because the necessary derivations are performed by the symbolic 
systems and the appropriate computer code is generated automatically. The system for 
automatic code generation is connected with a flexible solution environment framework 
(referred to as the finite element driver[11], [12]) into which the generated code can be readily 
incorporated. The complexity which would arise in a static simulation code applicable for 
sensitivity analysis in general problems, is avoided to a large extent. 

 

5 Approximation Based Sensitivity and Optimisation 

5.1 Introduction 

 
Numerical computation of parameter derivatives is usually based on polynomial 

interpolation of function response. The finite difference scheme from equation (11) is an 
example of such interpolation based sensitivity computation. The major problem with such 
schemes is that they are instable in the presence of noise, which is an inevitable companion in 
complex numerical computations. 

 
Another approach is based on approximation of the response function. In this 

approach, the function is sampled in a sufficient number of points (with respect to the chosen 
basis functions) around the point of evaluation to calculate the approximation coefficients. 
Function gradient is then approximated by the gradient of the approximation. Matters of 
concern are the choice of the sampling region and positions of sampling points in order to 
maximise the accuracy, choice of basis functions and eventually the number of excessive 
sampling points that stabilise the approximation in the presence of noise in sampled data. 

 
As mentioned in Section 2, this kind of numerical differentiation will typically be 

coupled with other analysis tools such as optimisation techniques. In this case the accuracy of 
numerical derivatives themselves may be of minor concern. The ultimate target in this case is 
efficiency of the optimisation procedure. Calculation of derivatives of the approximation 
appears as a tasks that is a part of solution of the approximated optimisation problem with 
additional step restriction constraints, an inner sub-problem that is solved in iterative scheme. 
For these reasons, adjustment of sampling strategy or weighting functions and other 
approximation related issues will be more subject to optimisation than to differentiation. 

 
In this section the approximation methods that will be used in approximation based 

sensitivity analysis and optimisation are outlined. The concept of weighted least squares 
approximation is described first, with details exposed for quadratic polynomial 
approximation. In Section 5.3, the concept of moving least squares (MLS) approximation is 
introduced. This type of approximation is suitable for use in optimisation techniques due to 
the ability of fitting the response over large parameter ranges, as opposed to the ordinary least 
squares whose character is local. A qualitative demonstration of the MLS character is 
provided in Section 5.4. 
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5.2 Weighted Least Squares in Function Approximation 

 
We have values of some function ( )xf  in m points: 
 
 ( ) miyf ii ...,,1, ==x . (30) 
 

We would like to evaluate coefficients of linear combination of n functions , …, ( )x1f ( )xnf  
 

 , (31) ( ) ( ) ( ) ( ) ( )∑
=

=+++=
n

j
jjnn fafafafay

1
2211 ... xxxxx

 
such that 
 

 ( ) miyy ii ...,,1=∀≈x , (32) 
 
i.e. we want that the linear approximation (or approximation) agrees as much as possible with 
values of  in all points . We look for the best agreement in the weighted least squares 
sense, i.e. we minimize the function 

( )xf ix

 

 . (33) ( ) ( )( ) ( )∑ ∑∑
= ==
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⎜
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1
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1

22 xxaφ

 
with respect to parameters of approximation . w is the m-dimensional vector of weights, 
which weight significance of points . Minimum is the stationary point of 

ia

ix ( )aφ  where 
 

 ( ) nk
ad

d

k

...,,10 =∀=
aφ . (34) 

 
Derivatives of ( )aφ  are 
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Equation (34) therefore gives the following system of equations for unknown coefficients : ja
 

  (36) ( ) ( )( ) ( )( ) nifywffwa
m

k
kikk

n

j

m

k
kikjkj ...,,1,

1

2

1 1
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== =

xxx

 
Coefficients a can therefore be obtained by solving the linear system of equations 
 
 dCa = , (37) 
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where 
 

  (38) ( ) ( )∑
=

=
m

k
kjkikij ffwC
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2 xx

 
and 
 

  (39) ( )∑
=

=
m

k
kkiki yfwd

1

2 x

 
 
We can write 
 
  (40) AAC T=
 

and 
 

 , (41) bAd T=
 
where 
 

 ( )ijiij fwA x=  (42) 
 
and 
 

 iii yw=b . (43) 
 

 
 
 
From (31) we can see that 
 

 . (44) ( ) (∑
=

=
n

k
ikki fay
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, xax )

 
and therefore 

 

 ( ) ( )
i

ik
ik

k

i

w
Af
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== xax ,  (45) 

 
We see that 
 

 ( )
k

i

i

ik

ad
yd

w
A ax ,

=  (46) 

 
Sometimes we define matrix  so that X
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( ) ( ) jijji

i

j
ij Af

ad
xyd

X σ=== x
a,

. (47) 

 

5.2.1 Quadratic Approximation 
 
The quadratic approximation has the following general form: 
 

 ( ) cq TT ++= xbGxxx
2
1 , (48) 

 
where G is a symmetric constant symmetric matrix (Gij=Gji), bT a constant vector and c a 
constant scalar. The gradient of this function is 

 
 ( ) bGxx +=∇q  (49) 
 

and its Hessian matrix is 
 
 
 ( ) Gx =∇ q2 , (50) 
 
We must calculate 1 coefficient of the constant term (c), N coefficients of linear terms 

and ( ) 21+⋅ NN  coefficients of quadratic terms. We will map the coefficients and functions 
in the following way: 
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and 
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 (52) 

 
We obtain the coefficients a1, a2, … by constituting and solving the system of 

equations (37) according to (38) and (39). If the dimension of the space is N then we have 
( )( ) 221 ++ NN  equations to solve. 

 

Example: basis functions in two dimensions 
 
We have 
 
 ( ) cybxbyxGyGxGyxq +++++= 2112

2
222

12
112

1, , (53) 
 

therefore 
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5.3 Moving Least Squares (MLS) 

 
Let us have a set of m points 
 
 mii ...,,2,1, =Ω∈x  (55) 
 
 

1x , , , …,  and values of the function 2x 3x mx ( )xf  in these points 
 
 ( ) mify ii ...,,2,1, == x . (56) 
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The interval of the points is large so that we can not approximate well all the data with 

a single linear approximation of the form (31). We want to construct a smooth approximation 
that will closely approximate the data in a wide domain. This can be achieved by approximate 

 on the domain Ω  by an approximation of the form ( )xf
 

 . (57) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑
=

=+++=
n

i
iinn fafafafay

1
2211 ... xxxxxxxxx

 
The approximation is similar to  (31), except that the coefficients depend on x. We 

want to find such , , …, ( )x1a ( )x2a ( )xna  ( )xy  is smooth and it well approximates the given 
data. We construct the approximation as follows. 

 

For a certain point  we define the function . We 

require that the coefficient functions 

Ω∈0x ( ) ( ) ( )xxxx i

n

i
il fay ∑

=

=
1

00 ,

( )xia  are such that for each , 0x ( )xx ,0ly  will closely 
approximate the values in those points that are close to . We will therefore calculate the 
coefficients  by the weighted least square approximation of the data, with large weights 
for points close to  and small weights for points that are more distant from . According 
to (

0x
( )0xia

0x 0x
37), (38) and (39),  will be calculated according to the formula ( )0xia

 
 ( ) dxaC =0 , 
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and 
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2
0 x

 
We can compute coefficients ( )xia  in a similar manner for any point . If we 

want the approximation generated in this way to be smooth in x, then weights corresponding 
to sampling points must also smoothly depend on x. We achieve this by making the weights 
smooth functions of x, and we ensure a good approximation of sampling values by making the 
weights fall when the distance of x from the corresponding sampling points grow. 

Ω∈x

 
Therefore, in each point  we calculate the approximation according to  (Ω∈x 37), 

where the coefficient  are calculated by the solution of the equation ( )xia
 

 
( )

( ) ( ) ( ) ( )[ ]xxxxa
dxaC
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 , (58) 
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with the following coefficients of the system matrix C: 
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2 xxxx )

 
and the following components of the right-hand side vector d: 
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In some cases we will define all ( )xkw  as 
 
 ( ) ( )kk ww xxx −= , (61) 
 

where for example ( ) ( )22
2 / d

w e
−

=
x

x . By making the weights assigned to sampling points fall 
quickly enough with the distance from the distance, the influence of the sampling points is 
localized, i.e. limited to some neighborhood of the points (Figure 2). We can choose 
weighting functions that decay more slowly at large distances, or design  with compact 

support such that  for 
( )w x

( ) 0w =x 02
r>x . In this case, samples that are too distant from the 

evaluation point do not have any influence on the value of approximation at that point. In 
general, the 2-norm will be replaced with more general norm T=

A
x x A x  in order 

accommodate the approximation to eventual drastic anisotropy of function behavior in 
different directions. 
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Figure 2: Construction of a diffuse approximation in a given point - sampling points 
with their influence ranges. 
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Figure 3: A possible choice for a one-dimensional weighting function w. 

 

5.4 Demonstration: MLS approximation of a Noisy Function 

5.4.1 Approximation of a Function of One Variable 
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In this section, approximation of a function of a single variable is demonstrated at 
different noise levels and sample points. The moving least squares approximation with 
quadratic polynomial basis functions (i.e. 1, x and x2) was used for approximation of the 
function 

 

 ( ) ( ) / 2
0;

sin 4 0.5*
;

jx

j j

x x
f x x e

f x x

<⎧⎪= + + ⎨Δ ≥⎪⎩
. (62) 

 
on the interval (0,6), with xj=4.7 and Δfj=-4. The function is difficult to approximate with low 
order polynomials. Characteristics of approximation are shown with regard to numbers of 
samples on basis of which the approximation is calculated and level of noise that is added to 
the samples. Sampled values were calculated as 
 

 ( ) ( ) ( ) ( )Rnd () 0.5mf x f x R= + − , (63) 
 
where Rnd() is a function that produces uniform random numbers between 0 and 1 and R is 
the chosen noise level. According to the discussion in Section 2, the model function defined 
by (62) is regarded as the “true response” to be approximated, and (62) defines the values of 
the response we can actually sample (i.e. measure or calculate) and which contain some level 
of spatially uncorrelated random noise. In addition, a jump discontinuity is added at xj in order 
to observe the transition behavior of the approximation at the points where the “true response” 
itself is discontinuous. The study is illustrated by figures below where the values of 
approximation parameters are specified in graphs. 

 
 

5.4.1.1 Approximation without noise (demonstrates accommodation): 
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Parameters: 
Level of noise: 0 
Effective range: 0.48 

Sample 

Number of samples: 10 
Effective number of samples (within 
ef. range): 0.8 
Statistics: 
Mean square difference: 0.512706 
Root mean square dif.: 0.716035 
Mean abs. dif.: 0.406272 

Approximation 

“True response”

 

Figure 4: Very few sampling points with regard to function variation; pure 
approximation but some basic features are visible. 
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Parameters: 
Level of noise: 0 
Effective range: 0.24 
Number of samples: 20 
Effective number of samples (within 
ef. range): 0.8 
Statistics: 
Mean square difference: 0.199822 
Root mean square dif.: 0.447015 
Mean abs. dif.: 0.124143 

 

Figure 5: Small number of samples (20), but approximation is pretty good due to 
quadratic basis, except near the jump. 
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Parameters: 
Level of noise: 0 
Effective range: 0.12 
Number of samples: 100 
Effective number of samples (within 
ef. range): 2. 
Statistics: 
Mean square difference: 0.0268035 
Root mean square dif.: 0.163718 
Mean abs. dif.: 0.0293136 

 

Figure 6: Dense sampling, good approximation over whole interval. 
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5.4.1.2 Moderate noise 
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Parameters: 
Level of noise: 0.4 

Number of samples: 10 
Effective range: 0.48 

Effective number of samples (within 
ef. range): 0.8 
Statistics: 
Mean square difference: 0.540404 
Root mean square dif.: 0.735122 
Mean abs. dif.: 0.45243 

 

Figure 7: Bad approximation due to scarce sampling, effect of noise is secondary 
(noise level: 0.4). 
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Parameters: 
Level of noise: 0.4 

Number of samples: 20 
Effective range: 0.24 

Effective number of samples (within 
ef. range): 0.8 
Statistics: 
Mean square difference: 0.242171 
Root mean square dif.: 0.492108 
Mean abs. dif.: 0.257606 

 

Figure 8: Effect of noise is expressed (cf. Figure 5). 

 
 

06_05_C3M_D1.3.2.1  Page 26 of  56 



   Specifications for software to determine sensitivities for optimization  
of the design of underground construction as part of IOPT 

 
 

 

 0 1 2 3 4 5 6

0

1

2

3

4

5

6

 

Parameters: 
Level of noise: 0.4 

Number of samples: 100 
Effective radius: 0.36 

Effective number of samples (within 
ef. radius): 6. 
Statistics: 
Mean square difference: 0.106975 
Root mean square dif.: 0.327071 
Mean abs. dif.: 0.140399 

 

Figure 9: Effect of noise is leveled out a little by taking more samples (cf. Figure 8). 

 
 

Severe noise 
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Parameters: 

Sample 

Level of noise: 2 

Number of samples: 20 
Effective range: 0.48 

Effective number of samples (within 
ef. range): 1.6 
Statistics: 
Mean square difference: 0.778786 
Root mean square dif.: 0.882489 
Mean abs. dif.: 0.643668 

“True response”

Approximation 

 

Figure 10. 
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Parameters: 
Level of noise: 2 

Number of samples: 100 
Effective radius: 0.36 

Effective number of samples (within 
ef. radius): 6. 
Statistics: 
Mean square difference: 0.184012 
Root mean square dif.: 0.428966 
Mean abs. dif.: 0.324891 

 

Figure 11. 
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Parameters: 
Level of noise: 2 

Number of samples: 500 
Effective radius: 0.48 

Effective number of samples (within 
ef. radius): 40. 
Statistics: 
Mean squae difference: 0.169956 
Root mean square dif.: 0.412258 
Mean abs. dif.: 0.279733 

 

Figure 12: Amplitude of noise is large compared to span of features that can be 
approximated by basis functions. Improvement with oversampling becomes slow. 

 

Effect of effective range of weighting functions 
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Parameters: 
Level of noise: 0.8 
Effective range: 0.06 
Number of samples: 50 
Effective number of samples (within 
ef. range): 0.5 
Statistics: 
Mean square difference: 0.180278 
Root mean square dif.: 0.424592 
Mean abs. dif.: 0.344225 

 

Figure 13: Small range, approximation degenerates to interpolation. 
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Parameters: 
Level of noise: 0.8 
Effective range: 0.24 
Number of samples: 50 
Effective number of samples (within 
ef. range): 2. 
Statistics: 
Mean square difference: 0.145319 
Root mean square dif.: 0.381208 
Mean abs. dif.: 0.266488 

 

Figure 14: Range close to optimal; stabilization with respect to noise effect is good, 
model function can still be followed. 
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Parameters: 
Level of noise: 0.8 
Effective range: 0.72 
Number of samples: 50 
Effective number of samples (within 
ef. range): 6. 
Statistics: 
Mean square difference: 0.27648 
Root mean square dif.: 0.525814 
Mean abs. dif.: 0.414411 

 

Figure 15: Too large range, high frequency components of the model function are not 
recapitulated well. 
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Parameters: 
Level of noise: 0.8 
Effective range: 3. 
Number of samples: 50 
Effective number of samples (within 
ef. range): 25. 
Statistics: 
Mean square difference: 0.56657 
Root mean square dif.: 0.752709 
Mean abs. dif.: 0.613458 

 

Figure 16: Effective range too large, details of the model function are pretty smeared. 
However, this feature can be useful at the initial stage of optimization procedures. 
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Parameters: 
Level of noise: 0.4 
Effective range: 0.36 
Number of samples: 100 
Effective number of samples (within 
ef. range): 6. 
Statistics: 
Mean square difference: 0.102182 
Root mean square dif.: 0.319659 
Mean abs. dif.: 0.161963 

1st order, 
approximation 

2nd order, 
approximation 

1st order, true 
response 

2nd order, “true 
response” 

 

Figure 17: Derivative approximation. First and second order Taylor expansion of the 
model function and its approximation are shown. 

 
 
 
 

Two Dimensional Demonstration 

This example was taken from two-parametric optimisation of a forming operation. The 
objective and constraint functions sampled on a grid of 15x15 points are shown in Figure 18. 
The substantial level of noise was preventing application of efficient optimisation techniques. 
Therefore, response functions were approximated on the basis of sampled values (Figure 19) 
and an approximated optimisation problem was solved where the original response functions 
were replaced by the corresponding approximations Figure 20. Beside facilitating solution of 
the optimisation problem, such approximations are useful for visualisation of the response, 
which can give additional insight on the impact of the design parameters on system 
performance. 
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Figure 18: Sampled objective (left) and constraint function (right). 
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Figure 19: MLS approximation of functions from Figure 18. 
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Figure 20: Contours of the MLS approximation of functions from Figure 18, with 
solution of the approximated problem marked. 

 

6 Software specification 

6.1 Software Framework Used by C3M 

For solving inverse and optimization problems, C3M is developing a software 
environment that enables efficient incorporation of new material models, analytical sensitivity 
analysis and optimization. By this system, finite elements formulations and material laws are 
defined at symbolic level. The element stiffness, loads and corresponding element sensitivity 
routines are then generated by the symbolic mechanics system, which also generates the 
routines that can be readily incorporated in the global finite element environment. 

 
After the complete direct problem is set up in the above environment for the finite 

element analysis, the numerical analysis can be connected with the optimization program 
Inverse in order to perform parametric studies, inverse identification of material and other 
parameters or process optimization. Figure 21 shows a general scheme for solving 
optimization problems when evaluation of the response functions include finite element 
simulation of the system under consideration. The right-hand part of the scheme is performed 
by the simulation software while the left-hand side is performed by the optimization program 
Inverse. 

 

06_05_C3M_D1.3.2.1  Page 33 of  56 



   Specifications for software to determine sensitivities for optimization  
of the design of underground construction as part of IOPT 

 
 

Initialisation (reading of starting guess
and solution parameters)

• Read analysis results and evaluate
the objective function

• Check for convergence and set  a
new guess if necessary

• Set parameters to current guess
• Prepare FEM input according to

parameter values
• Run direct analysis

Write results and stop

Optimisation loop

  FEM analysis

Read input data

Solve the problem

Output the results

 
 

Figure 21: Solution scheme for optimization problems. 

 
Structure of the optimisation program is shown schematically in Figure 22. The 

software is centered around a command file interpreter that act as a user interface for 
accessing of program’s functionality. The user defines the solution scheme for the 
optimisation problem in the command file that is interpreted by Inverse. Interpreter functions 
enable access to built-in functionality of the program including optimisation algorithms and 
interfacing utilities. In a special analysis block of the command file, user of the system 
defines how the response functions (i.e. objective and constraint functions) are computed. 
When the optimization problem is solved according to the scheme in Figure 21, includes use 
of utilities for interfacing the simulation software in order to prepare input for numerical 
analysis according to the current values of the design parameters and read the simulation 
results that are used for the evaluation of the response functions and eventually their 
derivatives with respect to design parameters. Link between optimisation algorithms and user 
definition of the response functions is established through pre-defined interpreter variables. 
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Figure 22: Outline of the optimization program Inverse. 

 
In principle, Inverse can be used to utilise any simulation software for solving 

optimisation problems. A general file interface enables exchange of information with 
simulation environment through its input and output files. A direct interface may be 
constructed for a specific simulation code in order to improve control over performance of the 
numerical analysis through direct memory access to problem data and by access to the 
relevant functions. An example is direct interface with the commercial finite element system 
Elfen. 

 
Additional documentation for Inverse is available at [6]-[9]. In particular, [9] can be 

used as quick introduction, while the download area[7] is a good starting point for using the 
program and includes references to further information. 

 
For has direct access to the finite element driver[11],[12],[13], an interface with the 

symbolic system Mathematica has been built. The finite element driver is the environment 
that utilises the symbolically generated finite element code and has been used as simulation 
environment for the example described in Section 7, and is controlled by the Mathematica 
interpreter. The interface between Inverse and Mathematica functions on the interpreter-to-
interpreter level. This means that interpreter of Inverse can be accessed through the 
Mathematica interpreter and vice versa.  

 

6.2 Application programming interface for sensitivity and optimization 
procedures 

 

06_05_C3M_D1.3.2.1  Page 35 of  56 



   Specifications for software to determine sensitivities for optimization  
of the design of underground construction as part of IOPT 

 
 

The idea of approximation based optimisation and sensitivity analysis techniques has 
been outlined in Section 2 and approximation methods intended for use with these techniques 
were introduced in Section 5.  

 
An example of approximation based optimization algorithm can be outlined by the 

following prototype algrithm: 
 

1. Choose the center point x0 (initial guess) and the trust region parameter r. 
2. Sample response functions in a chosen number of points contained in the sampling 

region  centered around xi. ri ,xΩ
3. Build approximations of the objective and constraint functions. 
4. Solve the problem with approximated objective and constraint functions, subjected in 

addition to step length constraints defined by r. Set a new xi to the solution of this 
problem. 

5. Update r according to algorithm progress and with respect to agreement of samples in 
the last iterate with approximations in previous iterates. 

6. If not converged, repeat the procedure from step 2, otherwise post-process the 
collected data and finish with xi as problem solution. 

 
The primary design target is to spend as few function evaluations as possible for 

converging to the solution of the optimization problem with the requested accuracy, as well as 
to ensure stability in presence of noise. It is crucial for pursuance of this goal that sampling is 
performed economically. Usually less samples are calculated in each iteration than the 
minimum needed for the approximation, and are therefore combined with samples acquired in 
previous iterations. Attempt is also made to choose sampling points in a way that ensures 
maximal accuracy of approximations. In order to achieve that, a set of randomly generated 
sampling points can be generated and then improved by updating sampling point co-ordinates 
via the solution of a suitably defined optimization sub-problem. 

 
There are several sub-problems that can be treated individually in such an algorithm, 

such as the problem of choice of the sampling points, approximation problem, approximated 
optimisation problem with step restriction, convergence check, problem of updating adaptive 
parameters. A library called IoptLib (investigative optimisation library) is being built to 
provide the basic utilities for solution of these sub-problems. The design of such a library 
should enable efficient combination of such utilities in order to form complex solution 
schemes, which can be quickly adapted to particular problems and requirements. For this 
purpose, the library specifies internal standards of how particular utilities exchange 
information, which includes definition of standard data formats and function prototypes where 
this turns beneficial. The library will be provided as free open source code written entirely in 
plain ANSI C, which will ensure high level of platform independency and enable easier 
exchange of ideas and solutions between researchers in the field of optimisation and users of 
optimisation algorithms. 

 
The approximation based algorithms used in this project will be developed on the 

basis of IoptLib. The definition of user interfaces for accessing optimisation techniques will 
therefore be adopted in this specification. Accommodation to the standards provided by the 
library has been partially carried out in the optimization program Inverse, and specifications 
provided by the library are also reflected in the extensions to interface with Mathematica , 
which are provided in the Mathematica notebook opt_inverse.nb  that can be downloaded 
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from [7]. This interface is used in formulation of the optimisation procedures for the test case 
outlined in Section 7. 

 

6.2.1 Standard Analysis Function 
 
The core part of the interface specification is the definition of the standard analysis 

function prototype, which defines the form of functions that compute the system response at 
given values of the design parameters, cf. equation (1). Such functions are iteratively called 
by the algorithms for solution of the optimisation problems, and must be provided by the 
caller. The caller of an algorithms provides the algorithm with his or her particular definition 
of the optimisation problem to be solved. 

 
Beside the obvious task of transferring the values of the design parameters to the 

analysis function and obtaining results after its execution, the function prototype should 
provide means of making precise definition of the response functions by additional “definition 
parameters” and easy utilization of existing definitions of response functions in definition of 
modified or derived problems. Above all, this requirement is important form the point of view 
of library design, however it also has applicability in the design of solution environments for 
optimization problems.  

 
As illustration of the first requirement, one can define a generic analysis function for 

quadratic problems (i.e. with quadratic objective function and linear constraints) where 
coefficients of the quadratic and linear functions must be provided in order to precisely define 
the problem. In a similar way, one can provide coefficients and basis functions of 
approximations of the response functions in order to define the approximated problem, which 
is solved within the approximation-based optimisation scheme. In the restricted step approach 
is used in such a scheme, the approximated problem must in addition include the step 
restriction constraints, which are precisely specified in each iteration. If we have e.g. a generic 
analysis function based on approximated response (where coefficients and basis functions of 
approximations are provided as definition data) and another analysis function for definition of 
step restriction constraints (where the definition data consists e.g. of the centre of the 
restricted region and its size), then it must be possible to define a combined analysis function, 
which precisely defines the overall optimisation sub-problem (i.e. approximated original 
problem with added step restriction constraints) that must be solved within the approximation 
based optimisation scheme. In this way, the second requirement mentioned above is satisfied. 

 
In order to fulfil the important requirements for the form of functions that perform 

response evaluation, the standart analysis prototype is defined (in C) as follows:  
 
 

typedef  
  int (*analysis_bas_f) ( 
      vector param,int *calcobj,double **addrobj, 
      int *calcconstr,stack *addrconstr, 
      int *calcgradobj,vector *addrgradobj, 
      int *calcgradconstr,stack *addrgradconstr,void *cd); 

 
This defines a function type with which the analysis functions in the libraries that call 

optimisation algorithm must be consistent. The meaning of function arguments is explained in 
Table 1. 
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Table 1: Meaning, types and dimension of arguments of the standard analysis 
functions. (type analysis_bas_f). In the table below, integer numbers numparam , 
numconstraints and numobjectives denote number of parameters, number of constraints 
and number of objective functions (only 0 or 1 are possible), respectively.  

 
Argument Meaning Remarks 
vector param Vector of design 

parameters. 
In general, it must be allocated with correct dimension, i.e. 
numparam. 

Flag pointers Input/output. Define 
what to evaluate and 
inform what has 
been evaluated.  

Input/output. Pointer to non-zero value means that evaluation is 
requested, NULL or pointer to 0 means evaluation is not requested. 
Output (when evaluation is requested): if evaluation is requested 
then pointed value is set to 0 if evaluation or return of 
corresponding results could not be done or if the corresponding 
response is not defined in the problem corresponding to the analysis 
function. 

int *calcobj Objective function 
evaluation. 

Requests evaluation of the objective function. 

int *calcconstr Constraint functions 
evaluation. 

Requests evaluation of constraint functions (all in a package). 

int *calcgradobj Evaluation of 
gradient of the 
objective function. 

Requests evaluation of the gradient of the objective functions. 

int 
*calcgradconstr 

Evaluation of 
gradients of 
constraint functions. 

Requests evaluation of gradients of constraint functions. 

Storage addresses Define address for 
storage of calculated 
response 

Output. For each type of response there is an argument specifying 
storage address. Arguments must not be NULL when evaluation of 
given response is requested (but may be NULL when it is not). 
Storage is allocated/reallocated by the analysis function when 
necessary and kept untouched when evaluation of corresponding 
response is not required. When a given kind of response is 
requested but it is not defined, the storage would be untouched, but 
corresponding flag would be set to 0. 

double **addrobj Objective function 
storage. 

**addrobj is set to the value of the objective function. *addrobj is 
set to NULL when objective function is not defined. 

stack *addrconstr Storage for 
constraint functions. 

Stack holds numconstr elements of type double *, which hold 
values of constraint functions. 

vector 
*addrgradobj 

Storage for 
objective function 
gradient. 

Vector of dimension numparam, elementa are components of the 
objective function gradient. 

stack 
*addrgradconstr 

Storage for 
gradients of 
constraint 
functioins. 

Stack of numconstr elements of type vector. Vectors are of 
dimension numparam and hold gradients of individual constraint 
functions. 

Definition data Additional exchange 
of information. 

Intended for different roles: precise definition of analysis response 
(e.g. coefficients of quadratic objective functions), may be used for 
data transfer between the algorithm, analysis and user (state & 
requests), seamless upgrade of analysis (e.g. non-derivative analysis 
upgraded by numerical differentiation) etc. 

void *cd  Input and/or output, not compulsory. Type and structure of the 
pointed data is arbitrary, it is interpreted within the analysis 
function. May be NULL when additional data is not necessary. 
Caller of the analysis function must know and obey the rules for 
type and layout of the pointed data, which are defined on the 
analysis side. 

Info mode When calcobj, calcconstr, calcgradobj and calcgradconstr are all NULL, the analysis 
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All flag pointer 
arguments are 
NULL 

function operates in Info mode. It does not evaluate anything, but checks all storage 
address arguments that are different than NULL and allocates or re-allocates the addressed 
storage if necessary in such a way that all the dimensions of the allocated storage are 
consistent with the problem defined by the analysis function (e.g. addrgradconstr will 
point to stack with nconstr vector elements of dimension numparam, provided that there 
are also constraints in the response). 

Return value (int)  0 if everything is OK, usually a negative error code of the 
calculation could not be performed correctly. 

 
It must be mentioned that the specified form of standard analysis function also enables 

easy definition of wrapper functions that can be used to convert other forms of analysis 
functions to the standard form. This enables utilisation of external libraries that can not be 
modified by users and connection of provided functionality with the optimization algorithms 
that conform with IOptLib standards. For example, simulation environments may provide 
their own routines for evaluation of response functions which provide access to the definitions 
of the optimisation problems that are set up interactively in the graphical user interface of the 
simulation environment. 

 
The return value and evaluation flags provide the means of complete control over 

what is evaluated and possible exceptional situations that may occur. Evaluation flags are 
input and output parameters and provide a valuable information to the calling optimisation 
algorithm. For example, an algorithm may be designed in such a way that they can try to 
avoid regions in the parameter space where the objective function can not be evaluated. In this 
case the return values of evaluation flags provide information that is as valuable as the values 
of the response functions themselves, while less sophisticated algorithm may choose not to 
utilise this information and only check the return value in order to detect exceptions. 

 
The argument cd is a pointer of undetermined type and provides the possibility for 

specification of the additional definition data that precisely specifies how the computation of 
response functions is performed. For example, it can contains coefficients of quadratic and 
linear functions that define the quadratic programming problem (QP). This also provides 
means for combination of different objective and response functions, e.g. for combining the 
approximation of the original problem with restricted step constraints. In the latter case, cd 
would contain both function pointers (corresponding functions) and definition data pointers 
for approximate response and restricted step constraints. 

 
The definition data is used only by the analysis function itself and by the code that sets 

up the precise definition of the problem (and must therefore be aware of the definition of the 
analysis function). This is the reason that use of the pointer of unspecified type (i.e. void * in 
C) will not cause any conflicts. In the case that definition data is necessary, definition of the 
optimization problem consists of both the analysis function and definition data, and both must 
be provided to the algorithm that is called to solve the problem. For the algorithm, the 
meaning of the definition data is irrelevant. The algorithm does not need to interpret the 
pointed data, but only passes the pointer to the analysis function. For the algorithm, cd is 
merely an address of the memory location where the analysis function that it calls will find 
the necessary data.  

 
In some cases, analysis function will contain the complete definition of the problem 

without the need to provide supplemental definition data. In such cases, the NULL pointer can 
simply be passed to the analysis function (since it will be ignored anyway). 
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6.2.2 Calling of Optimisation Algorithms 
Beside the algorithm specific data such as initial guess, tolerances, maximal number of 

iterations, a number of flags that define the behaviour of the algorithm and other data, the 
caller must provide the definition of the optimization problem to be solved. According to the 
present specification, this is done in the standard manner by passing the pointer to the analysis 
function and to the definition data. The algorithm will then call the analysis function and pass 
it the definition data pointer any time it will need to evaluate the response (i.e. objective and 
constraint functions) at different design parameters. Algorithms designed in compliance with 
the present specification will strictly obey this rule. 

 
The function that calls such an algorithm may be defined in the following way: 
 

int optimize (vector initial, double tolerance, int maxiterations, ..., 
vector *optimum, analysis_bas_f analysis, void *cd). 

 
In this hypothetical example, initial is the vector of starting values of parameters 

(initial guess), tolerance is the parameter that defines when satisfactory convergence is 
achieved according to the applied criterion, maxiterations is the macimum number of 
iterations after which the algorithm stops even if convergence is not achieved, and optimum is 
the output argument through which the calculated optimal parameters are passed to the caller. 

 
The last two arguments define the optimization problem that is solved by the 

algorithm. analysis is the pointer of the analysis function that is called by the algorithm to 
evaluate the response. cd is the pointer to definition data used by the analysis function that 
completely defines how the evaluation of response functions is performed, and is passed to 
the analysis function each time it is called by the algorithm. 

 

6.2.3 Specification for Functions for Numerical Differentiation of the Response 
 
As regards definition of the optimization problem (i.e. evaluation of the response 

functions), similar agreements apply as for optimization algorithms. 
 
The result of numerical differentiation are gradients of the response, which are already 

accounted for in the definition of the analysis function prototype. The functions for numerical 
differentiation can therefore be regarded as functions that adds gradients to the original non-
gradient response, for which it must perform additional evaluations of the non-gradient 
response at different parameters around the evaluation point. Therefore, the standard analysis 
function prototype can be conveniently used: 

 
int numgradanalyse ( 
      vector param,int *calcobj,double **addrobj, 
      int *calcconstr,stack *addrconstr, 
      int *calcgradobj,vector *addrgradobj, 
      int *calcgradconstr,stack *addrgradconstr,void *cd); 

 
The definition of the original problem (for which derivatives are not provided) is 

contained in the cd, as well as eventual additional parameters required by the numerical 
differentiation algorithm. The precise structure of the data pointed to by cd will dependent on 
the method that is used. The agreement is, however, that the first two fields in the data pointed 
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to by cd are the function pointer of the original (non-derivative) analysis function and the 
pointer to its definition data. 

 
For example, in the finite difference method defined by the equation (11) is used, the 

additional parameters include the vector of step sizes for numerical differentiation for each of 
the design parameters. In this case, cd is of the following type: 

 
typedef struct _numdifcd_fd { 
    analysis_bas_f analysis; 
    void *analysisdata; 
    vector stepsiyes; 
} *numdifcd_fd; 

 
The last field of the structure is of the vector type declared as 
 

typedef struct _vector { 
    int d;      /* dimension (num. of comp.) */ 
    double * v; /* table of elements, STARTS WITH 1! */ 
} *vector; 

 

6.3 Optimisation Related Integration Issues7 

 
The present document introduced some general aspects of sensitivity analysis and 

provided specifications that are relevant for integration of the sensitivity and optimization 
module with simulation modules in order to perform optimization related tasks. A test case 
has been set up (Section 7) to demonstrate actual realization of such a task based on the 
provided specifications, and this section addresses some practical issues related to the specific 
tasks within the project where optimization procedures will be applied. 

 
These tasks are divided to back analysis of geological conditions and to upscaling of 

rock mass properties from parameters that can be determined by laboratory tests to the model 
parameters that can be used at the full scale of the tunnel excavation area. The significance of 
these tasks is in improvement of methods for prediction of ground behaviour, for which a shift 
from rough and partially descriptive (qualitative) characterisation of rock mass behaviour to 
more accurate quantitative characterisation is necessary. 

 

6.3.1 Solution scheme shown on an artificial back analysis example 
 
The task of back analysis is to determine a set of unknown geological material and 

shape parameters and eventually the initial stress state, which apply to the rock mass around 
the excavation area. The unknown parameters should be determined on basis of on site 
measurements of the ground response (e.g. displacements after excavation). This can be done 
                                                 
7 Although the title of this deliverable refers to a software to determine sensitivities, specifications given in 
section 6.2 also apply for optimization modules. It is optimization procedures that are actually important for 
tasks in TUNCONSTRUCT as currently envisaged, while numerical differentiation will eventually be integrated 
in the module and used implicitly (only developers will really be aware of it), as mentioned in the Introductory 
part of this document. We therefore consistently refer to optimization procedures rather than sensitivity, to make 
the specification more relevant from application point of view. 
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by solving an appropriate optimization problem, where a function is minimized that measures 
discrepancy between the actual measurements and equivalent quantities calculated with 
numerical model. 

 

6.3.1.1 Analysis function 
 
The problem is solved according to the scheme in Figure 21. Concerning the software 

architecture, the basic task at the simulation side is to provide a function (subroutine) for 
calculation of the discrepancy function. More generally, we will call this function the direct 
analysis function. It acts as the function for evaluation of response functions from (1). 
Specification of function prototype is provided in Section 6.2.1. What this function typically 
contains is best explained on example (Figure 23). The example is purely hypothetical and 
unrealistic, but is chosen in order to demonstrate what must be provided on the simulation 
side. 

 
 
 

α 
 

 

Figure 23: Numerical models for different inclination angles α. 

 
Let us assume that two different kinds of rocks with known material properties and 

contact conditions between them are arranged in layers whose inclination angle is unknown. 
We measure displacements around the excavated area after excavation, and would like to 
estimate the unknown inclination angle on basis of these measurements. In order to perform 
the problem, we define the discrepancy function to be minimized, e.g. 

 

  , (64) ( ) ( ) ( )( ) 2

1

m
m

i i
i

f d dα α
=

= −∑
 

Where ( )md  are measured displacements in m points around the circumference of the cavity, 
( )id α  are equivalent quantities calculated by the numerical model (Figure 23). We minimise 

f to find the parameter α at which the discrepancies between the actual and simulated 
measurements (in term of the above measure) are the smallest and assume that actual 
inclination angle of the layers must be something close to this value8. 

 
The body of the direct analysis function will comprise the following basic steps: 
 

                                                 
8 Under specific circumstances, the mean value and expected error in parameters can be estimated 
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1. Take current optimization parameters (input arguments of 
the function; α in this case) 

2. Prepare numerical model according to parameters (see 
Figure 23) 

3. Run numerical simulation of the excavation process with 
this model 

4. Extract the relevant quantities from simulation results (in 
this case, displacements ( )id α ) 

5. From measured data (which must be available somewhere, 
e.g in the file; in our case, measured displacements ( )md ) 
and from equivalent calculated data ( )id α , calculate the 
response functions and eventually their gradients (in our 
case the discrepancy function f) 

6. Store the response functions in output arguments and 
return 

Figure 24: Discretized model with design parameters that can be varied and their 
reference values corresponding to the picture. 

 
It is also nice if the function checks for possible errors and returns the error code if 

something suspicious is detected that could corrupt the results. Input and output arguments 
should comply with specification provided in Section 6.2.1. In general, things will be a bit 
more complex for the following reasons: 

 
• In general, there will be more than one parameters x (in our case, x={α}). 
• Beside the objective function f(x), constraints may also be specified in the 

problem, in which case the analysis function must be able to calculate the 
constraint functions ci(x). 

• The analysis function may also provide gradients of the response functions 
• Some optimization algorithms don’t need evaluation of all response functions 

at every step, and calculation of only part of the response may be significantly 
cheaper than calculation of everything. This is why evaluation flags are 
envisaged, which define what should be evaluated at a particular call. 

 
Figure 26 contains a list of possible parameters to be identified in the described 

example. Notion of constraints can also be easily illustrated. In the present example, the finite 
element mesh can be too distorted when α exceeds some moderate range. Numerical model 
can give useless results in this case, which can in turn cause the optimisation procedure to fail. 
To prevent that, we can define that the parameter may not exceed a given range, e.g. 

l rα α α≤ ≤ , which can be done (c.f. (1)) by defining two constraint functions: 
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 . (65) 
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Many algorithms will relatively easily recover from strange results of the model9 if it 
is clearly indicated that constraints are violated at given parameters. With regard to our case, 
actual inclination angle may lie outside the range defined by (65). In this case, the algorithm 
would probably converge to the closest point on the boundary of the allowed region, which 
would give us a chance to re-define the geometry in such a way that regular models would be 
produced over a different range, and run optimization problem again. 

In general, constraint functions will not be explicit functions of parameters but will 
incorporate results of the numerical analysis (similarly as the objective function). For 
example, we may require that a measure the measure of maximal distortion of any element of 
the mesh after loading is below some accepted limit (for which all nodal displacements must 
be calculated). 

 
Remark on parameterization: 
Point 2 of the Figure 24 is referred to as parameterisation. Parameterization utilities 

and utilities for processing of results of numerical simulation (that enable definition of 
response functions on basis of the simulation results) are the two additional things that must 
be provided at the analysis side in order to utilize a simulation environment for solving 
optimization problems. They are tightly bound to the simulation environments since they 
depend on representation of data in a particular environment. 

In practice, two different approaches can be used. In one approach a set of utilities that 
enable virtually any kind of parameterization is provided in advance. These utilities can be 
used by any user of the simulation environment independently of their developers for 
formulation of a large variety of problems. It must be mentioned however that the set of 
problems that can be covered in this way is inevitably limited. The approach can still be 
applied for well defined standard sets of problems. 

In the second approach, parameterization is prepared on a case to case basis. This 
requires that when a user of the simulation environment wants to set up a new optimization 
problem, a support of the developer who prepares parameterization is provided. 

 

6.3.1.2 Optimization functions 
 
The task of the optimisation module is to solve the problem (1), for which some input 

is needed from the calling environment that requests the solution. Optimization module will 
provide a set of optimization algorithms implemented as functions (routines). Input of the 
algorithm (i.e., the corresponding function that contains its implementation) will consist of 
standard parameters such as the initial guess, required tolerances10, etc., the inevitable 
definition of the problem (the previously described direct analysis function / routine). Output 
will consist of the optimal parameters and eventually the values of response functions at these 
parameters. 

 
                                                 
9 Many optimization algorithms expect certain nice properties from the response functions they operate on, e.g. a 
given continuity class. As a rule of thumb, the more sophisticated and efficient the algorithm is, the more 
important the the response properties. And efficiency (in terms of number of function evaluations spent to obtain 
the solution with a given accuracy) gets quite important when a single evaluation of the response takes hours or 
even days. 
10 What this actually is will depend on the algorithm. There are a lot of different possibilities with respect to on 
what one can impose a tolerance, e.g. accuracy of optimal parameters, accuracy of function value, maximal size 
of the gradient norm, etc. Specifics will be provided in algorithm specifications. 
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An example algorithm function prototype is stated in Section 6.2.2. No uniform 
specification is provided for this because algorithms differ widely with respect to input and 
output parameters. If we tried to provide a standard function prototype, the argument list 
should account for all possible variants, which would bring little benefit for the price of 
uncountable possibilities for incorrect use. Each time a new algorithm will be provided for a 
particular purpose, it will come with exact specification of input/output arguments and 
probably a short description of a range of problems for which it is suitable11. Each algorithm 
separately will be linked with environment where it is used according to specification. 

 
It is important to note that the algorithm will repeatedly call the direct analysis 

function that is provided through its input. The analysis function is provided by the calling 
environment that calls the optimization algorithm. The algorithm will call the analysis 
function autonomously (i.e. the calling environment will not have any influence on this). 

 
Side remark: 
Specification of the analysis function in Section 6.2.1 anticipates an additional 

specification parameter (denoted cd) that can be used to precisely specify (apart form 
optimization parameters x) how the response is evaluated. This data differs form optimisation 
parameters in that it is typically not changed during the optimization procedure, in fact the 
optimization algorithm has nothing to do with it12. This piece of data provides a possibility 
for the calling environment to communicate with its direct analysis function without the need 
for using global data (which is usually not an elegant solution). This data will be passed as 
input argument to the optimisation algorithm. The optimization algorithms will be obliged to 
pass the data to the analysis function each time it is called. The mechanism will be 
consistently implemented, but its use can be avoided (by simply not using the data in the 
analysis function). 

 
In the solution scheme in Figure 21, the analysis function consists of the right-hand 

side of the figure plus the following steps: 
 

• Prepare FEM input according to parameter values 
• Run direct analysis 
• Read analysis results and evaluate the objective function 

 
Everything else is a part of the optimization algorithm. Typically, these two 

components will be incorporated in a broader environment that will enable manipulation of 
numerical models, definition of analysis functions and execution of optimization requests. 
Implementation of such environment (e.g. in terms of user interfaces) is not the subject of this 
document. Figure 25 shows  

 
                                                 
11 Unfortunately, this will be a rather abstract and dry description not having anything to do with actual 
problems. 
12 This will not allways be the case, but this fact is relevant for nobody but developers of the optimizatiion 
module. 
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Figure 25: Function of an optimization algorithm within solution environment. 

 

6.3.1.3 Putting things together, dependence on the specific case and organisation 
issues 

 
The presented solution schemes utilize the “black box” concepts. The optimization 

algorithm uses the analysis function merely as an entity for calculation of the response 
functions without interfering with what these functions are. Similarly, the analysis function is 
just packed and passed to the algorithm, without questioning what the algorithm will do with 
the results. The algorithm represents merely a mathematical procedure for solving the 
problem while the analysis function contains the definition of the problem to be solved. It is 
up to designer of the analysis function to define which optimization problem should be solved 
e.g. for calculating the appropriate parameters in back analysis, and it is up to the algorithm to 
do the job in an efficient and reliable manner and spit out the results. 

 
Before all this is a technical arrangement with a number of advantages. Exchange of 

information between the optimization module and simulation kernels is reduced to a 
minimum and standardised. This enables independent development of algorithm and of the 
analysis model and easy connection of those when things are finished. 

 
In practice, the optimization part, the simulation part and the definition of the problem 

are interrelated. The particular problem may impose requirements on the optimization side 
that will call for some special algorithmic solutions (e.g. problematic handling of constraint 
violation). For efficient and successful solution of the problem, it is crucial that s suitable 
optimization algorithm is used13. On the other hand, details in definition of the response 
functions may have a great impact on performance of the optimization algorithm, e.g. because 
of affecting smoothness of the response. 
                                                 
13 There is no such thing as optimization algorithm suitable for all kinds of problems. 
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Ideally, complex problems should therefore be solved by close co-operation of experts 

in different areas involved. Technically, the black box concept should still be advantageously 
applied as a technical instrument for making development and co-operation efficient. 
Collaboration should be practiced at a higher level where specific problems are analysed and 
discussed from different aspects before the solution schemes are defined and applied. 

 
Common rules of collaborative work should be followed. This means that clear and 

concise specifications of work to be done & interactions are provided in advance, and in 
particular that each partner provides completed implementations on the side for which that 
partner is specialised, together with clearly described interfaces that require minimal effort 
when connecting different modules.  

 

7 Test Case for Validation of Inverse and Sensitivity Procedures 
In order to validate the sensitivity and back-analysis procedures, a synthetic case was 

set up with assumed conditions at a tunnel construction site. The simulation and analytical 
differentiation procedures (including parameterisation of the design) were set up in the finite 
element driver[11],[12]. This is a finite element environment that offers advantage of symbolic 
derivation of expressions and automatic generation of finite element code, together with very 
flexible environment for problem definition supported by the symbolic system Mathematica.  

 
The test case consists of a 2D finite element model for computation of displacements 

after excavation of the tunnel. Figure 26 shows the discretization of the excavation area and 
parameterization of the model. Parameters of the model include geometric parameters 
(thicknesses, height and inclination of geological layers), material parameters for the two 
types of rocks (elastic modulus, Poisson coefficients and yield stress) and tractions on the 
border of the discretized region before excavation caused by the weight o fsurrounding rocs. 

 
For back-analysis it is assumed that we can measure displacements of material points 

in the circumference of the excavated domain. The objective function is defined as sum of 
squared differences between the “measured” displacements and the corresponding 
displacements calculated by the numerical model at given trial parameter values. Actual 
parameters are obtained by minimisation of the objective function. Since this is a synthetic 
case that serves for validation of procedures, the “measured displacements” are obtained by 
numerical analysis of the model with the assumed (or reference) parameter values. In this way 
we know exactly which parameters must be obtained by the back analysis and can therefore 
verify the performance of back analysis procedures under specified conditions. 
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dh2 

dh3 
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E1, ν1, Sy1 

E2, ν2, Sy2 

Shape parameters 
• h1=0.3 m 
• h2=3.3 m 
• h3=7.0 m 
• dh1=0.8 m 
• dh2=1.1 m 
• dh3=1.5 m 
• α=(45.) Degree 
 
Material parameters 
• E1=10*10^9 N/m^2 
• ν1=0.25 
• Sy1=13*10^6 N/m^2 
• E2=100*10^9 N/m^2 
• ν2=0.1 
• Sy2=14*10^6 N/m^2 
 
Boundary tractions 
• Pres=5*10^6 N/m^2 
 
 

 

Figure 26: Discretized model with design parameters that can be varied and their 
reference values corresponding to the picture. 

 
Sensitivity analysis has been performed by analytical differentiation of the numerical 

model. Derivatives of nodal displacements and the objective function with respect to all 
parameters have been calculated. Detailed results are in shown in the presentation for the 
workshop while in this document a few characteristic results are presented in figures below. 

 
 
 
 

 

 

Figure 27: Displacements around the excavated area. 
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Figure 28: xx and yy components of strain. 

 

 

Figure 29: Derivatives of nodal co-ordinates with respect to height of the first layer, 
h1. 

 
 

 

Figure 30: Derivatives of nodal co-ordinates with respect to inclination angle of 
layers, α. 
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Figure 31: Derivatives of nodal displacements with respect to height of the first layer, 
h1. 

 
 

 

Figure 32: Derivatives of nodal displacement with respect to inclination angle of 
layers, α. 

 
 
 

 

Figure 33: Derivatives of nodal displacement with respect to yield stress of rocks that 
form the layer. 
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Figure 34: Derivatives of nodal displacement with respect to prescribed normal 

tractions. 

 

8 Plans for Integration with the optimization related tasks within 
TUNCONSTRUCT 

 
The present document introduced some general aspects of optimization and provided 

precise specifications (Section 6) to be used for integration of the optimization module with 
simulation modules in order to perform optimization related tasks. A test case has been set up 
(Section 7) to demonstrate actual realization of such a task based on the provided 
specifications, which can be used as a reference example for further work when other cases 
are set up. 

This section addresses the specific tasks within the project where optimization procedures 
will be applied. It also specifies the optimization procedures to be developed and their 
application in TUNCONSTRUCT. 

After discussions and review of practical situations in tunnel building, it has been 
established that application of automatic design optimization procedures would not be 
relevant for tunnel design. Because of an extensive variation of geological conditions and 
large amount of uncertainty in their knowledge, the most suitable design procedure is based 
on selection of different pre-defined construction methods, which are selected on basiss of 
general evaluation of geological conditions and possible system behaviour. 

On the other hand, improvement of numerical models that can be used for predictions 
is of great importance. Estimation of initial stress state and ground behaviour is currently the 
most critical for accuracy of the models used to determine system behaviour. We have 
therefore decided to concentrate the optimization related activities on the problem of back 
analysis and upscaling of laboratory data. 

 

8.1 Up-Scaling and homogenization of lab data using back analysis of 
reference projects 

The currently used up-scaling systems (GSI, RMR) are purely empirical and establish a 
connection between merely descriptive values of the rock mass (joint roughness classes and 
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weathering state, block size/joint spacing) and mechanical parameters for the rock mass. Such 
approach has the advantage of being fast, and since the mentioned up-scaling systems are 
widely used and also updated to correlate with the observed mechanical response, it can be 
generally said that they are able to determine the order of the magnitude of the mechanical 
rock mass parameters. Nevertheless, the downsides of the approach are clear: 
 

a) non-transparent transition from the lab test results to the rock mass parameters (due to 
the empirical nature of the system); 

b) omitting the influence of the discontinuity orientation  
c) questionable applicability to highly heterogeneous rock mass types (e.g. flysch, etc.) 
d) generally, a non-mechanical approach to the problem. 

 
We decided to start with a quantitative approach, using numerical simulations with a 

variation of the geometrical and mechanical parameters. Finding a set of smeared parameters 
can be treated as an optimization problem, with the aim of finding a solution at which the 
discrepancy function has a minimum.  

8.1.1 Current status 
After coordinative talks with IRMT the work on the up-scaling and homogenization of the 
rock mass parameters, it has been concluded that the current technical abilities of C3M are 
best suited to address the issue of the highly heterogeneous rock masses (for example: flysch). 
Provided with geological site data, C3M will conduct a series of calculations to determine the 
sensitivities of the ground response with respect to the variation of the lithological and 
geometrical parameters (Figure 1.). With the aforementioned discrepancy function, a set of 
elasticity and strength parameters can be calculated, with the given condition that the solution 
is achieved when the discrepancy function is at its minimum. 

 
 

Figure 35: Geological composition of the excavated cross section. 

 
 
For the task of pure back analysis of data from existent tunneling sites, a number of practical 
issues were discussed where members of C3M obtained valuable information from IMRT 
with regard to practical situations in tunnel construction. C3M provided feedback with respect 
to technical issues envisaged in back analysis (such as simulation software abilities, 
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expectations for plausibility of back analysis in different situations with respect to geological 
structures and related uncertainties). Possible candidates for back analysis have been 
discussed such as spacing between geological layers, joint properties and initial stress, with 
emphasis of practical applicability in tunnel construction. The back analysis procedure has 
been roughly defined at conceptual level, while technical details and specific problems remain 
to be determined.  

 

8.2 Development and application of optimization procedures to support 
tunnel design 

 
Optimization methods based on successive approximation of the response functions 

will be developed for problems related to tunnel construction. The general framework for 
designing such algorithms has been outlined in Section 6.2. One of advantages of this 
framework is that it can be adapted to problems with large amount of noise. Since 
approximations are constructed by simultaneously considering response in a large number of 
sampled points, the effect of noise on algorithm progress is reduced. This effect is exposed in 
Section 5 through simple instructive demonstration of approximation properties with respect 
to noise14. Ability of handling noisy response is considered crucial for application to 
problems in tunnel construction. In simulation of system behaviour with accounting for 
inhomogeneous ground structure (which will be involved in back analysis & optimization), 
the source of noise is not only on the numerical side, but discontinuity of the response (with 
respect to optimization parameters) are inherently incorporated in physics of the system. 
Smearing procedures are possible at the level of calculation of response, but approaching the 
problem in this way can easily corrupt optimization results. 

 
Schemes based on successive approximations allow for rich variability of 

implementations and enable good adaptation to specific problems. It is e.g. possible to build 
reliability based optimization procedures on these schemes15, and it is possible to design 
algorithms that require gradients of response functions or not. This is important because we 
do not expect that main simulation codes used in TUNCONSTRUCT will provide analytical 
differentiation of numerical models (Section 4). 

 
Approximateion based schemes have some technical features that are important for 

practical application. Approximations based on sampled response enable visualization and 
application of other analysis techniquees, algorithm restarts can be better supported and 
parallelization is easier. 

 
Aside the advantages, there are many implementation details to be solved. The most 

significant for good algorithm performance is adaptive co-ordination of procedures for 
response sampling, determination of the restricted region and approximation strategy (choice 
of approximation approach and weights). For these components, universal solutions are not 
yet available. For determination of the sampling and restricted region in multidimensional 
cases, choice of orientation and scaling is the most important, and harmonization of 
approximation with these is crucial for algorithm stability. Beside mathematical 
                                                 
14 Integration of response approximations in muti-dimensional optimization algorithms is a rather different thing, 
but the basic ideas can be grasped form these examples. 
15 By now, we have not identified problems where this would be necessary, but this can change in thefuture. 
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instrumentation that is applied to algorithmic design, a large degree of intuition and heuristics 
is always involved, and numerical experimentation plays a crucial role for confirmation of 
efficient approaches. 

 
The optimization procedures will largely rely on the IOptLib (investigative 

optimization library)[11], which is being designed as a framework of efficient development 
and testing of algorithms, especially of approximation based techniques. The main emphasis 
is given on ability of easy combination of components for solving different tasks and 
flexibility of their modification, but a good testing environment and technical support for 
incorporation in solution environments are also accounted for. 

 
A number of algorithm components (such as sampling and approximation) are already 

provided. Further work on components will concentrate on unification of procedures for 
scaling of the design space, validation procedures for support of adaptive schemes, general 
testing procedures and test examples. After this, components will be used to built variants of 
algorithms for basic testing, after which they will be ready for testing on applications. as new 
information on performance is available, refinements will continue and algorithms can be 
tailored to situations encountered during solution of practical problems. Swiftness of this 
process will depend on the amount of time available for these tasks, which we should define 
in the near future. 

 
Beside the foreseen approximation based methods, application of other algorithms is 

possible in different situations. This can include e.g. the SQP or BFGS if analytical model 
when derivatives are available and the amount of noise is small16, or methods derived from 
the Nelder-Mead method when derivatives are not available. 

 
Optimization procedures suitable for design optimization (formulated according to 

equation (1) with continuum design parameters) can be based on the same framework than 
procedures for upscaling and back analysis. For optimization of design, treatment of 
constraints is more important.  

 
In order to encourage awareness of importance of efficient collaborative approach 

(Section 6.3) and enable testing of analysis software incorporated in optimization scheme, it is 
intended that a template for simple, portable and safe way of linkage of optimization 
procedure with analysis cores will be provided for interested partners. This will be provide 
implementation of specifications for interaction with optimization procedures (Section 6) 
through simple file I/O operations and program execution, and will enable quick hard-coded 
implementations for solving optimization problems. With implementation of the analysis by 
re-running the simulation code each time, potential problems with improper memory cleaning 
and re-initialization will be avoided. 

8.3 Application to specific tasks 

 
First we envisage determination of material parameters of the ground model by up-

scaling of the laboratory data. This procedure would yield material parameters for the 
homogenized model, based on comparison (and minimization of discrepancy) of the system 
                                                 
16 Which is not expected other than for some special cases. 
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response (in terms of selected measurement data) calculated by the up-scaled homogeneous 
model and by the inhomogeneous model taking into account actual geological structure. 

 
In the case of back analysis, the determination of model parameters would be done 

directly for the inhomogeneous model, based on in situ measurements. Initial stress, joint 
properties, intact rock properties and geometrical parameters such as joint spacing would be 
the subject of back analysis. Analysis software used for this has not yet been determined. 

 
After testing the performance of back analysis procedures , it will be possible to  link 

the optimization modules with simulation software developed in TUNCONSTRUCT.  
Specifications for integration of optimization utilities described in Section 6 should be used 
for this purpose.  

 

9 Conclusion 
 
Theoretical aspects and software implementation issues related to evaluation of 

sensitivities for upscaling and back-analyses are provided in this deliverable. Based on these 
considerations precise specification how solvers available in TUNCONSTRUCT could be 
integrated into sensitivity and optimisation procedures are described. It is pointed out that 
analytical differentiation methods are feasible in conjunction with AceGen system while 
numerical differentiation procedures will be available for other solvers (EKATE, BEFE++, 
FLAC3D, ELFEN). The necessary conditions to apply inverse and optimization procedures 
with these solvers are parametric description of the direct problem, reliable evaluation of 
responses for different sets of parameters and provision of objective/constraint functions 
according to the specification. The direct models will be set up by the partners who must 
ensure that their direct analysis software can be run automatically based on parameterized 
data sets. 
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