

A Computer System for Solving Inverse and Optimization Problems

T. RODIÈ

Faculty of Natural Sciences and Engineering,
Aškerèeva 12, 1000 Ljubljana, Slovenia

I. GREŠOVNIK

C3M, Vandotova 55, Ljubljana, Slovenia

 ABSTRACT

A system for solving wide variety of inverse and optimization problems in solid mechanics is
introduced. The system consists of a general purpose finite element method (FEM) analysis system
“Elfen” and a shell which controls this system. The shell functions as a stand-alone programme, so
the system is physically divided into two separated parts. The “optimization part”, which corresponds
to the shell, possesses optimization and inverse problem solution algorithms. The “analysis part”,
which corresponds to a FEM system, serves for the definition of the objective function to which these
algorithms are applied. The shell has a user interface implemented in the form of file interpreter
which imposes a great flexibility at the definition of various optimization and inverse problems,
including parameter identification in constitutive modelling, frictional contact problems and heat
transfer. Concepts of the shell are discussed in detail.

 KEYWORDS
optimization system, software, engineering

INTRODUCTION

A system described in this paper combines a FEM analysis (Owen, 1980, Zienkiewicz, 1991) system
“Elfen” with a programme shell “Inverse” which utilizes the system for solving inverse (Grešovnik,
1996) and optimization problems.

Elfen is a general purpose FEM programme for solution of thermo-mechanical problems in solid
mechanics. Since it is capable of solving nonlinear problems involving large strains and
deformations, different material models, thermo-mechanical coupling and contact phenomena, it is
convenient for simulation of a large range of forming processes or product behaviour in operating
conditions.

Primary job of the shell is to perform the optimization or inverse problems solution algorithms and to
control the FEM analyses execution through these algorithms. Beside the algorithms, the shell
possesses a flexible user interface which enables the definition of a large set of problems, and an
interface to a FEM system which enables total control over its execution.

The objective of this paper is to describe the concepts of the shell which make the system suitable for
industrial use as well as for research purposes. A flexible user interface of the shell, implemented as
an interpreter, enables user to define a large range of different problems and to combine built-in
facilities in arbitrary way to construct the most suitable solution strategy for every individual
problem. This interface and the way how different parts of the shell interact with each other leave the
user a possibility to strongly interfere with the solution algorithms which are normally supposed to be
a static part of the system. On the other hand, user is still free to use the system as easy-to-use, taking
the advantage of the high-level pre-defined algorithms for more typical problems.

In the first part of the paper, some basic concepts of the shell are considered regarding a typical
optimization or inverse problem solution scheme. After that, structure of the shell is described and
connections between the shell’s structure and functionality are showed. These features are then
discussed from user’s point of view by pointing out the relationship between structure and
functionality of the shell. References to examples are also provided. Finally, directions for further
development are outlined.

BASIC CONCEPTS OF THE SHELL

Inverse and optimization problems are often formulated as minimization problems where an
objective function is minimized with respect to investigated parameters (Fletcher, 1987). The
dependence of the objective function on the design parameters is implicit because it is defined
through the system response. For each set of design parameters system response must be obtained
using a FEM simulation in order to evaluate the objective function at a given set of design
parameters. This implies the solution scheme of optimization problems to be, in general, similar to
the scheme shown in Figure 1.

Since a finite element analysis is a part of the optimization scheme, it seems natural to include
optimization algorithms directly into the existing FEM code and use this code as a subroutine which
is successively executed in the optimization loop. An advantage of such approach is that optimization
routines can access the FEM analysis’ database directly, which means quick transfer of data between
optimization and FEM part of the scheme. This includes transfer of design parameters, which are
iteratively updated in optimization algorithms, to FEM analysis, and transfer of analysis results back
to optimization algorithms.

On the other hand, time used for updating input and reading output of FEM analysis is usually
negligible in comparison with the time needed for analysis itself. Besides, the optimization and the
FEM part of an optimization system do not have much in common from the programming point of
view.

FEM programmes typically have a user interface where user defines the problem in a descriptive
way. A complex branching part takes care about proper translation of user’s description of a problem
to a sequence of algorithms resulting in solution of the problem. The branching part must ensure
fulfillment of the demand that a FEM programme should be capable of solving a large range of
different problems according to their physical nature and should also be able to use different solution
strategies.

 FEM analysis

Read input data:
• • • • geometric data
• • • • initial and boundary

conditions
• • • • material properties
• • • • solution parameters

Linearize governing equations

Solve the linearized system

Calculate residuals and
check for convergence

Write results

Increment time

Iteration loop

Time stepping loop

Initialization (reading of
starting guess and solution

parameters)

Prepare FEM input
(update parameters)

Read FEM analysis results
and evaluate the objective

function

Run FEM analysis

Compare results of last few iterations,
check for convergence and set a new

guess if necessary

Set parameters to
current guess

Write results and stop

Optimization loop

Figure 1. A simplified scheme of optimization of a physical system where a FEM
analysis programme is used for evaluation of system response at different sets of
design parameters.

For a limited range of optimization problems such descriptive problem definition would be sufficient
and in that case a modified FEM user’s interface could be used for a definition of a whole
optimization problem. For a general case such approach would be to rigid and difficult to implement.
It is therefore better to make a definition of a direct problem independent and separated from the
optimization problem definition, which follows and potentially includes the instructions for
redefining the direct problem according to changes in design of the system inside iterations of the
optimization loop. Such concept is used in the presented optimization shell. Because the shell has

totally different structure than a typical FEM programme, it is implemented as a stand-alone
programme which uses to run a FEM analysis programme as it’s subroutine for performing numerical
simulations of the physical system at different designs. The solution scheme coincides with the one in
Figure 1.

A FLEXIBLE SYSTEM FOR SOLVING OPTIMIZATION PROBLEMS

As mentioned above, one of the basic demands for a good optimization system is flexibility of user
interface through which optimization problems are defined. A physical system, which behaviour can
be simulated numerically, associates a whole range of possible optimization problems, each of which
can be approached different ways. An optimization shell should not feature only a possibility of
running optimization algorithms, but also provide other tools like tabulating various quantities
derived from system response at different sets of design parameters. Such additional tools are often
used to verify validity of results obtained by optimization algorithms or for pre-justification of
optimization potentials.

These demands have affected the way the optimization shell was designed. It was built around a file
interpreter which reads and executes functions or commands from a command file created by user.
Each function launches a specific action, behaviour of which is dependent on function arguments.
Apart from functions which perform optimization algorithms and other jobs, there are also functions
which control the program flow. With such scheme, user of the shell is not strictly limited with its
pre-built capabilities but can himself strongly interfere with solution algorithms. User can even
program his own solution algorithms and use only some supporting capabilities of the shell.

Figure 2 shows the structure and functionality of the optimization system. The core module of the
shell contains built-in routines for different jobs connected with optimization problems, such as the
objective function minimization algorithms or tabulating utilities. Global shell’s variables such as
current vector of parameters and value of the objective function are also a part of this module. The
core routines are invoked via user commands read by the file interpreter.

Some core routines iteratively invoke the FEM analysis for calculation of the objective function.
Instead of being static, this invocation is defined in a special block in file interpreter. This block is an
argument block of the “analysis” command of the file interpreter. It defines the objective function
evaluation and is executed anew each time the evaluation of the objective function is requested by
one of the core routines or by an explicit command in the command file. So the circle is closed, user
of the system can define the objective function by first defining a direct problem for FEM analysis
and then finishing the definition by writing the argument block of the “analysis” function in the
command file. Then he can cause execution of shell’s routines for the objective function
minimization by an appropriate command in the command file. This coincides with implementation
of the scheme in Figure 1.

Some further explanations of Figure 2 are necessary at this stage. The shell’s file interpreter includes
a system for evaluation of mathematical expressions (referred to as expression evaluator). Its primary

job is to enable the program flow control. The flow control functions of the interpreter such as if,
while, goto, etc. use the evaluator for evaluating the branching conditions. In addition, the interpreter
possesses commands for defining new variables and functions within the expression evaluator. So
user can program the shell in a way similar to writing programmes in the C or other high level
programming languages.

 Optimization shell

File
interpreter

Core

Expression
evaluator

Shell-FEM
interface

 Write to FEM
 input file

 Read FEM
 output file

 FEM System

 FEM output file

 FEM input file

FEM pre- & post-
processor

 FEM analysis
programme

 Shell input (command) file

 Shell output file

 Legend:

 A B

 A B

A is a data source for B

Module A calls routines from B, data
transfer through argument passing

Figure 2. Structure of the optimization system. Data sources for individual modules
and calling protocols are shown.

The file interpreter’s functions can use expressions instead of values for their numerical arguments.
At interpretation, these expressions are evaluated by the expression evaluator and replaced by
obtained numerical values.

An important feature of expression evaluator are its functions for accessing the global variables
defined in the shell’s core. By these functions, all the global variables are accessible wherever the
evaluator can be used, for example in conditions controlling the file interpretation flow or in
arguments passed to the file interpreter’s functions. Since every action of the shell is invoked with
these functions, unlimited data transfer between different shell’s modules is achieved and every result
of built-in or programmed algorithms can be used for further analysis with other algorithms. This
feature ensures the necessary flexibility at defining optimization problems and their solution
strategies.

1 Definition of the objective function

As can be seen from Figure 1, the definition of the objective function is an important step at solving
optimization problems. It consists of two major steps. In the first step user defines the direct problem
which will be solved by a FEM analysis system. In the second step, the definition is completed by
writing argument block of the shell’s file interpreter’s function “analysis”. This block is executed
every time the objective function is calculated within the shell and must therefore contain a
mechanism for transferring data between the FEM system and the shell’s core. This mechanism
works through global variables of the shell’s core.

Shell’s core functions which require evaluation of the objective function call another core function to
perform the task. This function requires vector of the design parameters as argument and returns the
value of the objective function. When called, it copies its argument to a pre-defined global variable
parammom representing the design parameters at a specific moment, then it invokes interpretation of
the “analysis” command’s argument block and at the end it returns the value of a pre-defined global
variable objectivemom, representing the value of the objective function at a specific moment, to a
calling function.

User must ensure that the design parameters are passed to the FEM system before the FEM analysis
is invoked, that results are collected after the analysis completion, and that the objective function is
evaluated using these results and its value is stored to global variable objectivemom. The shell-FEM
interface module provides the necessary instrumentation to do that within the argument block of the
file interpreter’s command “analysis”.

The design parameters are transferred to a FEM system by changing the FEM input file accordingly
to these parameters. If the design parameters coincide with specific parameters in the shell input file,
this can be done using built-in interface functions invoked by the file interpreter’s commands. For
more complicated cases, where a whole series of the FEM input parameters depend on a single
design parameter, user can write his own interface programme for updating the FEM input file
according to the design parameters, since the shell’s file interpreter provides commands for invoking
arbitrary programmes on the computer on which the shell is running. These commands are also used
to run the FEM analysis after the input file is updated.

Results are collected using interface’ functions which read the FEM output file. The expression
evaluator contains pre-defined function which call these interface’s function and can return any
elementary result of the FEM system. So the results can be directly combined into more complicated
expressions defining the recipe for calculating the objective function.

COMMAND FILE

The command file syntacs is simple. Interpreter searches through the file for known command names
and triggers appropriate actions. Each command (also referred to as interpreter’s function) can have
arguments in brackets. It depends on the associated action how the arguments are treated.

A simple example of a command file for solution of an inverse problem presented in Figure 3 is
shown in Box 1. Command “setfile” in the second line specifies the name of the file where the
shell’s results and other output will be written. When it is executed, the file is opened for writing and
after that all output from other actions is written to that file.

d

d

69000

63000

64000

65000

66000

67000

68000

3 4 5 6 7 8 9
Elongation [mm]

Force [N]

Elongation
[mm]

Force
[N]

2 62200 ()= F m
1

4 67800

6 68900

8 68000

Tension Test

()
() ()

χ
σ

2

2

2
1

C n
F F C ni

m
i

ii

N
,

,
=

−

=
∑

σ ε= C nMaterial law:

Measurements:

Inverse identification:

Figure 3. Example of inverse identification: Identification of hardening parameters in
tension test.

1. comment{ BEGINNING OF THE COMMAND FILE }
2. setfile{outfile “test.inv”} *{output file of the shell}
3. setvector{ meas 4 {1:62200} {2:67800} {3:68900} {4:68000} } *{ vector of measurements}
4. setvector{ sigma 4 {1 1 1 1} } *{ vector of measurement erors }
5. *{ Definition of a new function in expression evaluator: }
6. ${force[inc]: nodreac[inc,4,1] +nodreac[inc,5,1] +nodreac[inc,6,1] +nodreac[inc,7,1] +nodreac[inc,8,1] }
7. analysis
8. {
9. *{ beginning of the “analysis” block }
10. setfile{aninfile “test.dat”} *{ FEM system’s input file }
11. initinput{} *{ initialization of interface }
12. setparam{} *{ updating parameters in FEM system’s input data }
13. system{“elfen16 test”} *{ running a FEM programme }
14. setfile{anoutfile “test.res”} *{ FEM system’s output file }
15. initoutput{} *{ initialization of interface }
16. meas{1 “force[1]”} *{ setting components of simulated measuremets }
17. meas{2 “force[2]”}
18. meas{3 “force[3]”}
19. meas{4 “force[4]”}
20. }
21. setvector{ parammom 2 {1276 0.1124} } *{ setting vector of parameters }
22. analyse{} *{ running analysis at given prameters }
23. inverse *{ running inverse analysis }
24. {
25. nd LevMarqconst 0.001 300
26. 2 { { 1 : 1000 } { 2 : 0.1 } }
27. 2 {{ 1 : 0.1 } { 2 : 0.0001 }}
28. }
29. comment{ END OF THE COMMAND FILE }

Box 1. Example of command file for inverse problem presented in Figure 3.

The following “setvector” commands in lines 3 and 4 set the pre-defined vectors of measurements
and measurement errors which are input data for inverse analysis.

Command “$” defines mathematical expressions and functions in the expression evaluator. In line 6,
function “force” is defined as a sum of the first components of nodal forces in nodes 5, 6, 7 and 8.
Argument of the function tells in which increment to take the forces. Pre-defined function
“nodreac” , which is used in the definition, is a part of the FEM-shell interface (Figure 2). It returns
the specified nodal reaction as can be found in the result file of the FEM analysis system and its three
arguments specify the increment after which the force is took, the number of node in which the force
acts, and which component of the force to take. To work properly, at the time of evaluation of this
function, the result file must be open and the specified result must exist in that file. This means that
the appropriate actions which take care of that must be executed before the point of function
evaluation (this is done in lines 14 and 15 of the example). The interface module contains functions

which can return any fundamental result written in the result file of the analysis. These functions are
installed in the expression evaluator module and can be used everywhere the evaluator can be used.

Command “analysis” defines the objective function. Its argument block is executed every time the
objective function evaluation is required. In this case, it begins with specification of the analysis
input file in line 10. The file is opened and ready for reading after the command “setfile” is executed.
Information about the file are stored in local variables of the FEM-shell interface module (Figure 2),
so that they can be accessed by functions which update the design parameters in the input file for
direct analysis. Command “initinput” updates the data structures of the interface module which keep
information about how to update the parameters in the analysis input file. This information is
obtained from the input file in which the data which represents the investigated parameters are
marked by user. Command “setparam” then updates the parameter values in the analysis input file
using information obtained at execution of previous two commands. Parameter values are copied
from the pre-defined vector variable “parammom” defined in the core module. This way, the transfer
of parameter values between functions performing optimization algorithms and interface routines
which transfer these values to FEM analysis is ensured.

Direct analysis is then run by command “system” which runs arbitrary program available on the
system where the shell is running. Control is returned to the shell when the program run by the
“system” command exits.

After the direct analysis is finished, results are collected and the objective function is evaluated. The
analysis output file is specified and opened with the “setfile” command in the line 14 of the example.
The information about the file is stored in local variables of the FEM-shell interface to be accessible
for the interface functions which use this information. Before actual reading of analysis results,
interface auxiliary data structures are reset by the “initoutput” command. These structures serve for
speeding up reading of the analysis output data. The interface functions which read the data
simultaneously store all already obtained information about the analysis output file to these
structures, so that the information are available for consequent reads which could potentially need it.
After the execution of the “setfile” and “initoutput” commands, the functions which read the
analysis output data are ready to be used. In the lines 16 to 19, components of the pre-defined vector
of simulated measurements “measmom” is set by the commands “meas”. The first argument of this
command is the component which is set and the second argument is a mathematical expression,
which is evaluated by the expression evaluator and its value assigned to the specified component of
“measmom”.

The pre-defined global variables of the shell with specific meaning are used for data exchange
between routines defined in different modules of the shell. Optimization algorithms sequentially
evaluate the objective function at different value of parameters. This job is always done by running a
specific function defined in the core module. The function requires the parameters vector as an
argument and returns the value of the objective function. At its execution, the argument vector is
copied to global variable “parammom” and then interpretation of argument block of the “analysis”
command is performed by file interpreter. Commands written by users (in lines 10 to 12 of the
example) ensure that input to direct analysis is updated according to these values before the analysis
is run. At the end of the block, user programmes collecting of results. Both operations are carried out

by functions of the FEM-shell interface and since these functions use the same pre-defined variables
for parameters, measurements and the objective function value, the correct data transfer is ensured.

In the above example, it was not explicitly specified by user how the objective function should be
calculated. In such case, the function is automatically evaluated using vectors “sigma” , “meas” and
“measmom” according to the standard least-squares formula and the value is assigned to the pre-
defined global variable “objectivemom” immediately after the interpretation of the “analysis”
command’s argument block. This value is returned by the general core function called for the
objective function evaluation in the solution algorithms. In general case, user specifies the formula
for objective function evaluation with the “objective” command with mathematical expression
according to which the value is evaluated as an argument. In this expression, the functions
“getmeasmom” of the expression evaluator is typically used. It returns components of the
“measmom” vector which are evaluated in lines 16 to 19 of the above expression. Of course,
different core function for objective function evaluation is used when sensitivities (Michaleris, 1994,
Mroz, 1994) or Hessian matrix are evaluated beside the function value.

After the “analysis” command, commands which tell the system which calculations to perform,
follow. In line 22, the “analyse” commands runs the general core function for the objective function
evaluation with parameters which reside in global variable “parammom” at the moment of
execution, and writes a report about execution in the shell’s output file. Vector “parammom” was
set by the “setvector” command in line 21. The “analyse” command is often used to ensure that the
objective function was defined correctly.

At the end of the command file, inverse analysis is run by the “inverse” command. Arguments of
this command tell the shell which minimization algorithm should be used, the initial guess, tolerance
for function minimum, maximum number of iterations, etc. At execution of the “inverse” command,
its arguments are read and the appropriate solution algorithm defined in the core module is run with
these arguments. This coincides with the scheme in Figure 1. The steps which are within the
optimization loop (except the first and the last, which belong to the core function which performs the
algorithm), are executed when argument block of the “analysis” function is interpreted (this is
triggered in the general core function for the objective function evaluation which is iteratively called
at different parameter values within the solution algorithm). Step “prepare FEM input” coincides
with lines 10 to 12 of the above example, step “run FEM analysis”, which includes whole right half
of the scheme, coincides with line 13, and step “read FEM analysis results and evaluate the objective
functions” coincides with lines 14 to 19 of the example.

1 Flow Control

The example given above illustrated the minimum set of shell’s commands necessary to run a simple
inverse analysis. Only two available utilities of the core module were used (direct analysis at given
input parameters and objective function evaluation). Solution strategy was straight-forward, using a
standard sequence of algorithms foreseen by constructors of the shell. For a predicted set of different
kind of problems, which can be defined in such simple way, a descriptive user interface of the shell
would be sufficient and preferable for industrial use. On the other hand, this would impose serious
limitations in the range of problems and solution strategies which can be defined by the shell. To

impose enough flexibility at problem definition and choice of solution strategies, user must be as
much as possible allowed to interfere with built-in utilities of the shell.

Some additional flexibility is imposed by allowing user to control the flow of the command file
interpretation, i.e. to change sequence of execution with regard to the current state at a given point.
This is achieved by additional set of functions which examine a condition, given as a mathematical
expression, and decide what to do with regard to expression’s current value evaluated with the
expression evaluator. Conditional branching and loops can be made using such functions.
 Basic branching command is “if” which has the following syntacs:
 if { (condition) [trueblock] else [falseblock] }
At execution, the condition expression is evaluated with the expression evaluator. If its value is non-
zero, the trueblock block is interpreted, otherwise the falseblock is interpreted.
 Command “while” is used as a basic loop command. It’s syntacs is
 while { (condition) [loopblock] } .
At its execution, the loopblock block is interpreted as long as the condition’s value calculated each
time is non-zero.

 With the “function” command it is possible to define new commands which can be executed
by file interpreter. Its syntacs is
 function { functionname (arg1, arg2, ...) [definitionblock] }
functionname is a name of newly defined function which will be recognized by file interpreter from
the definition point. arg1, arg2, etc. are names of arguments used in the definitionblock block. Where
a command defined this way is called in the command file, the definitionblock of the function
definition is interpreted. If an argument name (one of arg1, arg2 etc.) preceded by the “$” character
appears in this block, it is replaced by an actual argument of the command. For example, the for loop,
which is not pre-defined, can be implemented using the function definition facility:

 function { for (start,cond,whattodo,forblock)
 [
 $start
 while { ($cond)
 [
 $forblock
 $whattodo
]}
]}

After this definition, we can for example print numbers from 1 to 5 to the standard output:

 for {={i:1} (i<=5) ={i:i+1}
 { write{ "i= "${i}\n} }
 }

2 Integration of the Expression Evaluator in the System

As has been seen, the expression evaluator plays an important role in the shell. Functions of the
FEM-analysis interface which read the analysis results are implemented as pre-defined functions of
the expression evaluator. These functions can be directly combined in expressions which, for
example, define the formulas for evaluation of simulated measurements as in the above example.
Other important use is in the conditions for looping and branching commands.

Beside the standard arithmetic functions and the FEM-analysis interface’ functions, the expression
evaluator possesses functions which can access practically all data existing in the shell at a given
point. Because of the global variables concept shown at the explanation of the above example, this
allows user to strongly interfere through the command file with the solution strategies and built-in
algorithms

Apart from the commands which always take expressions as arguments, expressions can be used
instead of any numerical argument of any file interpreter’s command. The following example shows
how the components of pre-defined vector “sigma” can be set to 1 percent of the components of
vector “meas”:
1. setvector{ sigma ${ getvector[“meas”,0]} } *{ Sets the dimensin of vector sigma }
2. while { (i<= getvector[“meas”,0])
3. setvector{ sigma { ${i} : ${0.01*abs[getvector[“meas”,i]] } }
4. ={ i : i+1 }
5. }
In the first line, the dimension of vector “sigma” is set to the dimension of vector “meas” (command
“setvector” called with single argument only sets vector’s dimension). Expression in the curled
brackets which follow the “$” sign is always replaced by its current value evaluated by the expression
evaluator. In this case, the pre-defined function “getvector”, which returns a specific component of a
specified vector (or its dimension if the component number is 0), is used. In the “while” loop, each
component of vector “sigma” is set to 1 percent of absolute value of the appropriate component of
vector “meas”.

 The file interpreter possesses functions which affect the expression evaluator itself. Function “=“
assigns a value to an evaluator’s variable. The first argument identifies the variable to which the
value of the expression defined by the second argument is assigned. Both arguments are separated by
colon. If the variable does not exist at the time when the command is called, it is created.

Function “$” is similar to “=“ , only that it assigns an expression instead of its value. The expression
is not evaluated when this command is executed. It is even allowed to use variables which are not yet
defined in the expression. For example, this code is legal:
 $ { a : sin[3*Pi/8] }
 = { Pi : 3.14 }
 write { ${a} \n }
Function “write” evaluates the expression in curled brackets following the “$” sign which is legal,
because all sub-expressions can be evaluated at the point of execution. The “$” commands can also
be used for the definition of new functions of the evaluator. In this case, names of function arguments
separated by commas must be specified in squared brackets following the function name. The second

argument of the command is in this case the expression which defines the function. If it includes
names of function arguments, these are replaced by actual arguments (by expressions, not values)
whenever the newly defined function is called within some other mathematical expression.

There is an additional mechanism of definition of the expression evaluator’s functions which allows
incorporation of interpretation of the command file’s portions when the function is evaluated.
function “definefunction” defines a new expression evaluator’s functions which causes interpretation
of a command file’s block every time it is evaluated. The syntacs is
 definefunction { (functionname) [definitionblock] }
The first argument of the command is function name in round brackets. The second argument is the
block in a square bracket which is interpreted each time the function is evaluated. Function defined
this way returns a value of the expression which is the argument of the last “return” command which
is executed at the definition block interpretation. If no “return” command is executed during the
interpretation of the definition block, function returns an unpredictable value. In the definition block
functions “argument” and “numargs” of the expression evaluator can be used. Function
“argument” returns the value of specific argument with which the defined function was called.
“numargs” returns the number of arguments with which function was called. Such functions can be
called with arbitrary number of arguments, but if the function “argument” with its argument greater
then the actual number of arguments is evaluated within the definition block, it will return an
unpredictable value. The example below shows the definition of function “fsum” , which returns the
sum of all its arguments:

definefunction { (fsum)
[
 ={i:1} ={ret:0}
 while
 { (i<=numargs())
 [
 ={ret:ret+argument(i)}
 ={i:i+1}
]}
 return {ret}
]}

For example, the expression “fsum[3,1,6]” will evaluate to 10 below the definition of the function.

CONCLUSION

A shell for solving optimization and inverse problems is described. The shell’s structure and user
interface, which is implemented as a command file interpreter, ensure efficient flexibility for defining
various problems and choosing different solution strategies. The presented concepts proved
successful in many practical cases including optimization of prestressing of cold forging dies (Rodiè,
1996), inverse identification of hardening parameters in plasticity (Rodiè, 1995) as well as
optimization pre-form shapes in forging and evaluation of friction factors and heat transfer
coefficients from experimental tests.

There are several possibilities for further developments of the shell. One of important issues is
incorporation of new solution algorithms, which is relatively straight-forward and does not require
changes of conceptual scheme of the shell.

Parallelization is another important issue. This means simultaneous execution of several direct
analyses at different input parameters on different processors. Such parallelization would be
independent from the parallelization of the finite element code and would additionally improve the
effectiveness. It would ease the fall of effectiveness with increasing number of processors, which is a
well known problem in parallelization of FEM codes. Currently, the preparation of conceptual
background including protocols is in progress. The next step will be parallelization of the solution
algorithms.

Development of general concepts for sensitivity analysis will be necessary in the future. A part of this
work will be done in the FEM analysis code, but generalization of sensitivity analysis will also
greatly affect the concepts of future FEM-shell interfaces. Recently, some work has been initiated on
integration of symbolic systems such as SMS (Korelc, 1997) with FEM code.

Establishing a connection between the shell and a symbolic system will probably prove beneficial in
the future. It would impose additional flexibility to the user interface of the shell by allowing
symbolic differentiation and other operations on expressions defined in the expression evaluator.
These operations could be implemented in the expression evaluator itself, but use of an existing
symbolic system would ease the job significantly.

Suitability of the system for industrial use will have to be carefully considered in the future. One of
the most important conditions for widely spread use of the system in industry is that it is easy-to-use.
This concerns system’s user interface at most. At the current stage, user defines an inverse or
optimization problem in two separated steps. At the first step, direct problem is defined using the
FEM system’s preprocessor. This definition is actually a sceleton of the problem definition because
real direct problem changes through the solution procedure according to the parameters. The second
step is writing of the shell’s command file.

It would be preferable to define shell’s behaviour at the same place as the direct problem, but this
would at the same time mean that concepts of both definitions should be similar. Descriptive way of
problem definition as is used in typical FEM system’s preprocessor would conflict with the demand
for flexibility at the problem definition. One solution of this problem would be to make pre-defined
forms with problem definitions for a few specific sets of problems which frequently appear in some
areas. In these forms, only data should be replaced for the definition of different problems and this
could be done using a possibly graphic preprocessor with traditional look.

 ACKNOWLEDGMENT

 Financial assistance for this work, provided by Ministry of Science and Technology, Republic
of Slovenia under the contract number P23-1533/0112-005/15827/95, and INCO Copernicus under
the contract number IC15-CT96-0709, is gratefully acknowledged.

 REFERENCES

1. FLETCHER, R. (1987), Practical Methods of Optimization (second edition), John Wiley & Sons,

New York.
2. GREŠOVNIK, I. (1996), "A Computer System for Solving Inverse Problems”, in Štok, B. (Ed.),

Kuhljevi Dnevi 96, Slovensko društvo za mehaniko, Ljubljana, p.p. 97-104, in Slovene.
3. KORELC, J. (1997), "Automatic Generation of Finite-element Code by Simultaneous

Optimization of Expressions", Theoretical Computer Science, Vol. 187.
4. MICHALERIS, P., TORTORELLI, D. A., VIDAL , C. A. (1994), "Tangent Operators and Design

Sensitivity Formulations for Transient Non-linear Coupled Problems with Applications to
Elastoplasticity", International Journal for Numerical Methods in Engineering, Vol. 37, pp.
2471-2499.

5. MROZ, Z. (1994), "Variational methods in sensitivity analysis and optimal design", Europ. J.
Mech. A/Solids, Vol. 13, pp. 115-149.

6. OWEN, D., HINTON, E. (1980), Finite Elements in Plasticity, Pineridge Press, Swansea.
7. RODIÈ, T., GREŠOVNIK, I. (1996), "Optimization of the Prestressing of a Cold Forging Tooling

system", in Delaunay, D. (Ed.), Preliminary Proceedings of the second International Conference
on Inverse Problems in Engineering, Engineering Foundation, New York, Vol. 2.

8. RODIÈ, T., GREŠOVNIK. I. and OWEN, D.R.J. (1995), "Application of error minimisation concept
to estimation of hardening parameters in the tension test", in Owen, D.R.J. and Onate, E. (Eds.),
Proceedings of the Fourth International Conference: Computational Plasticity - Fundamentals
and applications, Pineridge Press, Swansea, Vol. 1, pp. 779-787.

9. ZIENKIEWICZ, O. C., TAYLOR, R. (1991), The Finite Element Method, vol. 2 (fourth edition),
McGraw-Hill, London.

