A Computer System for Solving I nverse and Optimization Problems

T. RODIE

Faculty of Natural Sciences and Engineering,
Askereeva 12, 1000 Ljubljana, Slovenia

I. GRESOVNIK

C3M, Vandotova 55, Ljubljana, Slovenia

ABSTRACT

A system for solving wide variety of inverse andtiopzation problems in solid mechanics is
introduced. The system consists of a general perfinoge element method (FEM) analysis system
“Elfen” and a shell which controls this system. T8fell functions as a stand-alone programme, so
the system is physically divided into two separgieds. The “optimization part”, which corresponds
to the shell, possesses optimization and invereblgm solution algorithms. The “analysis part”,
which corresponds to a FEM system, serves for dfi@ition of the objective function to which these
algorithms are applied. The shell has a user eterfimplemented in the form of file interpreter
which imposes a great flexibility at the definitiafi various optimization and inverse problems,
including parameter identification in constitutiveodelling, frictional contact problems and heat
transfer. Concepts of the shell are discussedtailde

KEYWORDS
optimization system, software, engineering

INTRODUCTION

A system described in this paper combines a FENysisg Owen, 1980, Zienkiewicz, 1991) system
“Elfen” with a programme shell “Inverse” which utiés the system for solving inverse (GreSovnik,
1996) and optimization problems.

Elfen is a general purpose FEM programme for smubf thermo-mechanical problems in solid
mechanics. Since it is capable of solving nonlingaoblems involving large strains and
deformations, different material models, thermo-hascal coupling and contact phenomena, it is
convenient for simulation of a large range of fargiiprocesses or product behaviour in operating
conditions.

Primary job of the shell is to perform the optintiaa or inverse problems solution algorithms and to
control the FEM analyses execution through thegerihms. Beside the algorithms, the shell
possesses a flexible user interface which enabkegi¢finition of a large set of problems, and an
interface to a FEM system which enables total abmtver its execution.

The objective of this paper is to describe the epix of the shell which make the system suitalyle fo
industrial use as well as for research purposdtexble user interface of the shell, implemented a
an interpreter, enables user to define a largeerarigdifferent problems and to combine built-in
facilities in arbitrary way to construct the moaititable solution strategy for every individual
problem. This interface and the way how differeatt® of the shell interact with each other leawe th
user a possibility to strongly interfere with trewugion algorithms which are normally supposeddo b
a static part of the system. On the other hand,issill free to use the system as easy-to-w@seng
the advantage of the high-level pre-defined atbors for more typical problems.

In the first part of the paper, some basic conceptthe shell are considered regarding a typical
optimization or inverse problem solution schemeteAthat, structure of the shell is described and
connections between the shell's structure and ioimality are showed. These features are then
discussed from user’s point of view by pointing dbe relationship between structure and

functionality of the shell. References to exammes also provided. Finally, directions for further

development are outlined.

BASIC CONCEPTSOF THE SHELL

Inverse and optimization problems are often formagdaas minimization problems where an
objective function is minimized with respect to @stigated parameters (Fletcher, 1987). The
dependence of the objective function on the degigrameters is implicit because it is defined
through the system response. For each set of desigimeters system response must be obtained
using a FEM simulation in order to evaluate theeotiye function at a given set of design
parameters. This implies the solution scheme ofropation problems to be, in general, similar to
the scheme shown in Figure 1.

Since a finite element analysis is a part of thénopation scheme, it seems natural to include

optimization algorithms directly into the existikRgEM code and use this code as a subroutine which
is successively executed in the optimization ldapadvantage of such approach is that optimization
routines can access the FEM analysis’ databasetlglireshich means quick transfer of data between

optimization and FEM part of the scheme. This idel transfer of design parameters, which are
iteratively updated in optimization algorithms,REM analysis, and transfer of analysis results back
to optimization algorithms.

On the other hand, time used for updating input ezatling output of FEM analysis is usually
negligible in comparison with the time needed foalgsis itself. Besides, the optimization and the
FEM part of an optimization system do not have minchommon from the programming point of

view.

FEM programmes typically have a user interface wheser defines the problem in a descriptive
way. A complex branching part takes care aboutgrtqanslation of user’s description of a problem
to a sequence of algorithms resulting in solutibthe problem. The branching part must ensure
fulfillment of the demand that a FEM programme dtolbe capable of solving a large range of
different problems according to their physical matand should also be able to use different saiutio
strategies.

Initialization (reading of
starting guess and solution e _I
parameters) FEM analysis |
Optimization loop > Read input data: I
I e geometric data I
Set parametersto initial and boundary
current guess I conditions |
e material properties
| « solution parameters |
Prepare FEM input
(update parameters) I Time stepping loop I
“ I Iteration loop I
Run FEM analysis | Linearize gover ning equations I
y . Solvethelinearized system
Read FEM analysis results I |
and evaluate the objective 1
function I Calculateresidualsand I
; I check for convergence I
Compareresultsof last few iterations, ‘
check for convergenceand set a new | I nerement time |
guessif necessary | |
4 l. Write results l
Writeresultsand stop

Figure 1. A simplified scheme of optimization of a physicistem where a FEM
analysis programme is used for evaluation of systegponse at different sets of
design parameters.

For a limited range of optimization problems suelsatiptive problem definition would be sufficient
and in that case a modified FEM user's interfacelccde used for a definition of a whole
optimization problem. For a general case such @gbravould be to rigid and difficult to implement.
It is therefore better to make a definition of @aedt problem independent and separated from the
optimization problem definition, which follows angotentially includes the instructions for
redefining the direct problem according to chanigedesign of the system inside iterations of the
optimization loop. Such concept is used in the gmésd optimization shell. Because the shell has

totally different structure than a typical FEM pragme, it is implemented as a stand-alone
programme which uses to run a FEM analysis programsrit’'s subroutine for performing numerical
simulations of the physical system at differentigies. The solution scheme coincides with the one in
Figure 1.

AFLEXIBLE SYSTEM FOR SOLVING OPTIMIZATION PROBLEMS

As mentioned above, one of the basic demands ¢mod optimization system is flexibility of user
interface through which optimization problems ae@irted. A physical system, which behaviour can
be simulated numerically, associates a whole rahgessible optimization problems, each of which
can be approached different ways. An optimizatiballsshould not feature only a possibility of
running optimization algorithms, but also providther tools like tabulating various quantities
derived from system response at different setsesfgth parameters. Such additional tools are often
used to verify validity of results obtained by opization algorithms or for pre-justification of
optimization potentials.

These demands have affected the way the optimizatiell was designed. It was built around a file
interpreter which reads and executes functionsoarngands from a command file created by user.
Each function launches a specific action, behavaiwvhich is dependent on function arguments.
Apart from functions which perform optimization atlghms and other jobs, there are also functions
which control the program flow. With such schemsgrof the shell is not strictly limited with its
pre-built capabilities but can himself stronglyeriere with solution algorithms. User can even
program his own solution algorithms and use onimssupporting capabilities of the shell.

Figure 2 shows the structure and functionalityhe bptimization system. The core module of the
shell contains built-in routines for different jobennected with optimization problems, such as the
objective function minimization algorithms or tahtihg utilities. Global shell’'s variables such as

current vector of parameters and value of the élbgdunction are also a part of this module. The

core routines are invoked via user commands redlebfjle interpreter.

Some core routines iteratively invoke the FEM asialyfor calculation of the objective function.
Instead of being static, this invocation is defime@ special block in file interpreter. This bloiskan
argument block of the “analysis” command of the fiterpreter. It defines the objective function
evaluation and is executed anew each time the awatuof the objective function is requested by
one of the core routines or by an explicit commamthe command file. So the circle is closed, user
of the system can define the objective functiorfilst defining a direct problem for FEM analysis
and then finishing the definition by writing thegament block of the “analysis” function in the
command file. Then he can cause execution of shelbutines for the objective function
minimization by an appropriate command in the comenfle. This coincides with implementation
of the scheme in Figure 1.

Some further explanations of Figure 2 are necesdathis stage. The shell’s file interpreter in@ad
a system for evaluation of mathematical expressimefserred to as expression evaluator). Its primary

job is to enable the program flow control. The floantrol functions of the interpreter suchifs
while, goto,etc. use the evaluator for evaluating the bramchonditions. In addition, the interpreter
possesses commands for defining new variables amttiéns within the expression evaluator. So
user can program the shell in a way similar to imgitprogrammes in the C or other high level
programming languages.

Shell input (command) fiIeEI -

FEM System
Optimization shell Legend:
FEM pre- & post- -
processor E
File = Expression Module A calls routines from B, data
| interpreter | evglalor i transfer through argument passing
| Ve Fem inputfle = a
Shal-FEM i A is a data source for B
N interface
" Write to FEM FEM analysis
Core input file : - programme
= Read FEM
oupuiie [i
L] FEM output file EI T

| Shell output file EI

Figure 2. Structure of the optimization system. Data soufoesndividual modules
and calling protocols are shown.

The file interpreter’s functions can use expressimstead of values for their numerical arguments.
At interpretation, these expressions are evaluéiedhe expression evaluator and replaced by
obtained numerical values.

An important feature of expression evaluator asefiinctions for accessing the global variables
defined in the shell's core. By these functioné tla¢ global variables are accessible wherever the
evaluator can be used, for example in conditionstrobing the file interpretation flow or in
arguments passed to the file interpreter’'s funstidgince every action of the shell is invoked with
these functions, unlimited data transfer betweéeréint shell’s modules is achieved and every tesul
of built-in or programmed algorithms can be usedftother analysis with other algorithms. This
feature ensures the necessary flexibility at de§nobptimization problems and their solution
strategies.

1 Definition of the objectivefunction

As can be seen from Figure 1, the definition ofdbgective function is an important step at solving
optimization problems. It consists of two majorpsteln the first step user defines the direct pobl
which will be solved by a FEM analysis system.He second step, the definition is completed by
writing argument block of the shell’s file interpe€s function ‘analysis™ This block is executed
every time the objective function is calculated hivit the shell and must therefore contain a
mechanism for transferring data between the FEMesysand the shell’'s core. This mechanism
works through global variables of the shell’s core.

Shell’s core functions which require evaluatiorthe# objective function call another core function t
perform the task. This function requires vectothe design parameters as argument and returns the
value of the objective function. When called, ip@s its argument to a pre-defined global variable
parammonrepresenting the design parameters at a specificenty then it invokes interpretation of
the “analysis” command’s argument block and atehe it returns the value of a pre-defined global
variable objectivemomrepresenting the value of the objective funct&ra specific moment, to a
calling function.

User must ensure that the design parameters asegss the FEM system before the FEM analysis
is invoked, that results are collected after thalysis completion, and that the objective functi®n
evaluated using these results and its value igdttar global variablebjectivemomThe shell-FEM
interface module provides the necessary instrurtientéo do that within the argument block of the
file interpreter's commanddhalysis.

The design parameters are transferred to a FEMmyBy changing the FEM input file accordingly
to these parameters. If the design parametersideimdth specific parameters in the shell inpu fil
this can be done using built-in interface functiomgoked by the file interpreter's commands. For
more complicated cases, where a whole series ofFEM input parameters depend on a single
design parameter, user can write his own interfaaagramme for updating the FEM input file
according to the design parameters, since the'sffidl interpreter provides commands for invoking
arbitrary programmes on the computer on which ttedl $s running. These commands are also used
to run the FEM analysis after the input file is aptl.

Results are collected using interface’ functionscihread the FEM output file. The expression
evaluator contains pre-defined function which dakse interface’s function and can return any
elementary result of the FEM system. So the resaltsbe directly combined into more complicated
expressions defining the recipe for calculatingdbgective function.

COMMAND FILE

The command file syntacs is simple. Interpretercdess through the file for known command names
and triggers appropriate actions. Each commanad (aferred to as interpreter’s function) can have
arguments in brackets. It depends on the asso@atexh how the arguments are treated.

A simple example of a command file for solutionasf inverse problem presented in Figure 3 is
shown in Box 1. Commantketfile” in the second line specifies the name of the Miileere the
shell’s results and other output will be writtenh®& it is executed, the file is opened for writangl
after that all output from other actions is writterthat file.

Tension Test

i

IRYYW

Material law: G = Cgn

M easur ements:
Force [N]
69000
68000 Elongation Force
67000 [mm] [N]
66000 2 62200 | =™
65000 4 67800
64000
63000 6 68900
8 68000

3 4 5 6 7 8 9
Elongation [mm]

GRECU)

N
x*(Cn)=3 >
i=1 O,

| nver seidentification:

Figure 3. Example of inverse identification: Identificatioh hardening parameters in
tension test.

comment{ BEGINNING OF THE COMMAND FILE}
setfile{outfile “test.inv"} *{output file of the shell}
setvector{ meas 4 {1:62200} {2:67800} {3:68900} {4.68000} }*{ vector of measurements}
setvector{ sigma 4 {1 11 1} } *{ vector of measurement ego}
*{ Definition of a new function in expression evalor: }
${force[inc]: nodreac[inc,4,1] +nodreac]inc,5,1] +theac][inc,6,1] +nodreac][inc,7,1] +nodreac]inc,g,1]
analysis
{
*{ beginning of the “analysis” block }
10. setfilefaninfile “test.dat”} *{ FEM system’s input file }
11. initinput{} *{ initialization of interface }
12. setparam{} *{ updating parameters in FEM system’s input dagt
13. system{“elfen16 test”} *{ running a FEM programme }
14. setfile{anoutfile “test.res”} *{ FEM system’s output & }
15. initoutput{} *{ initialization of interface }
16. meas{1 “force[1]"} *{ setting components of simulatecheasuremets }
17. meas{2 “force[2]"}
18. meas{3 “force[3]"}
19. meas{4 “force[4]"}
20. }
21. setvector{ parammom 2 {1276 0.1124}} *{ setting vector parameters }
22. analyse{} *{ running analysis at given prameters }
23. inverse *{ running inverse analysis }
24. {
25. nd LevMarqgconst 0.001 300
26. 2{{1:1000}{2:0.1}}
27. 2{1:0.1}{2:0.0001}
28.}
29. comment{ END OF THE COMMAND FILE}

CeoN>Or~WNE

Box 1. Example of command file for inverse problem préseérnn Figure 3.

The following “setvector” commands in lines 3 and 4 set the pre-definedovedf measurements
and measurement errors which are input data farssvanalysis.

Command'$” defines mathematical expressions and functiotisaérexpression evaluator. In line 6,
function “force” is defined as a sum of the firsingponents of nodal forces in nodes 5, 6, 7 and 8.
Argument of the function tells in which incremerd take the forces. Pre-defined function
“nodreac”, which is used in the definition, is a part ofe tREM-shell interface (Figure 2). It returns
the specified nodal reaction as can be found inghkelt file of the FEM analysis system and iteéhr
arguments specify the increment after which thedas took, the number of node in which the force
acts, and which component of the force to takew®ddk properly, at the time of evaluation of this
function, the result file must be open and the gigecresult must exist in that file. This meanatth
the appropriate actions which take care of thattnigs executed before the point of function
evaluation (this is done in lines 14 and 15 ofeékample). The interface module contains functions

which can return any fundamental result writtenthie result file of the analysis. These functiore ar
installed in the expression evaluator module amobeaused everywhere the evaluator can be used.

Command‘analysis” defines the objective function. Its argument blezlexecuted every time the
objective function evaluation is required. In tlogse, it begins with specification of the analysis
input file in line 10. The file is opened and reddyreading after the commafisktfile” is executed.
Information about the file are stored in local ahies of the FEM-shell interface module (Figure 2),
so that they can be accessed by functions whiclatapthe design parameters in the input file for
direct analysis. Commarichitinput” updates the data structures of the interface neoghbich keep
information about how to update the parametersha dnalysis input file. This information is
obtained from the input file in which the data whicepresents the investigated parameters are
marked by user. Commaridetparam” then updates the parameter values in the anahysis file
using information obtained at execution of previtw® commands. Parameter values are copied
from the pre-defined vector variabligarammom?” defined in the core module. This way, the transfer
of parameter values between functions performinggmopation algorithms and interface routines
which transfer these values to FEM analysis is tsu

Direct analysis is then run by commatsystem” which runs arbitrary program available on the
system where the shell is running. Control is metdrto the shell when the program run by the
“system” command exits.

After the direct analysis is finished, results endlected and the objective function is evaluatdte
analysis output file is specified and opened whiin“setfile” command in the line 14 of the example.
The information about the file is stored in localiables of the FEM-shell interface to be accessibl
for the interface functions which use this inforroat Before actual reading of analysis results,
interface auxiliary data structures are reset ly'ittitoutput” command. These structures serve for
speeding up reading of the analysis output data ihterface functions which read the data
simultaneously store all already obtained infororatiabout the analysis output file to these
structures, so that the information are availabtecbnsequent reads which could potentially need it
After the execution of thésetfile” and “initoutput” commands, the functions which read the
analysis output data are ready to be used. Inks L6 to 19, components of the pre-defined vector
of simulated measuremeriteeasmom”is set by the commandmeas”. The first argument of this
command is the component which is set and the seaogument is a mathematical expression,
which is evaluated by the expression evaluatorisndalue assigned to the specified component of
‘measmom”.

The pre-defined global variables of the shell wsiecific meaning are used for data exchange
between routines defined in different modules @& #hell. Optimization algorithms sequentially
evaluate the objective function at different vatiigparameters. This job is always done by running a
specific function defined in the core module. Thdtion requires the parameters vector as an
argument and returns the value of the objectivestfan. At its execution, the argument vector is
copied to global variablgparammom” and then interpretation of argument block of ‘tealysis”
command is performed by file interpreter. Commanalgten by users (in lines 10 to 12 of the
example) ensure that input to direct analysis datgd according to these values before the analysis
is run. At the end of the block, user programmekecting of results. Both operations are carriet ou

by functions of the FEM-shell interface and singese functions use the same pre-defined variables
for parameters, measurements and the objectivéidunealue, the correct data transfer is ensured.

In the above example, it was not explicitly spedfiby user how the objective function should be
calculated. In such case, the function is autoraliyievaluated using vectofsigma”, “meas” and
“measmom” according to the standard least-squares formuliatla® value is assigned to the pre-
defined global variablé‘objectivemom” immediately after the interpretation of tlianalysis”
command’s argument block. This value is returnedthsy general core function called for the
objective function evaluation in the solution aljums. In general case, user specifies the formula
for objective function evaluation with th#bjective” command with mathematical expression
according to which the value is evaluated as amurmaemt. In this expression, the functions
“getmeasmom” of the expression evaluator is typically used.rdturns components of the
“measmom” vector which are evaluated in lines 16 to 19 & Hbove expression. Of course,
different core function for objective function euation is used when sensitivities (Michaleris, 1,994
Mroz, 1994) or Hessian matrix are evaluated besiddunction value.

After the “analysis” command, commands which tell the system whichutations to perform,
follow. In line 22, the'analyse” commands runs the general core function for thectibe function
evaluation with parameters which reside in globatiable “parammom” at the moment of
execution, and writes a report about executiotheshell’s output file. Vectdiparammom” was

set by thé'setvector” command in line 21. Th@analyse” command is often used to ensure that the
objective function was defined correctly.

At the end of the command file, inverse analysisuis by the“inverse” command. Arguments of
this command tell the shell which minimization aigam should be used, the initial guess, tolerance
for function minimum, maximum number of iteratiomsc. At execution of thénverse” command,

its arguments are read and the appropriate solatgorithm defined in the core module is run with
these arguments. This coincides with the schem€gigare 1. The steps which are within the
optimization loop (except the first and the lashieia belong to the core function which performs the
algorithm), are executed when argument block of “dr@alysis” function is interpreted (this is
triggered in the general core function for the obye function evaluation which is iteratively cdl

at different parameter values within the solutidgoathm). Step “prepare FEM input” coincides
with lines 10 to 12 of the above example, step ‘FM analysis”, which includes whole right half
of the scheme, coincides with line 13, and stepdrEEM analysis results and evaluate the objective
functions” coincides with lines 14 to 19 of the exde.

1 Flow Control

The example given above illustrated the minimumo$ethell’'s commands necessary to run a simple
inverse analysis. Only two available utilities betcore module were used (direct analysis at given
input parameters and objective function evaluati@uolution strategy was straight-forward, using a
standard sequence of algorithms foreseen by castsuof the shell. For a predicted set of différen

kind of problems, which can be defined in such s&nway, a descriptive user interface of the shell
would be sufficient and preferable for industrisgeuOn the other hand, this would impose serious
limitations in the range of problems and solutitrategies which can be defined by the shell. To

impose enough flexibility at problem definition antoice of solution strategies, user must be as
much as possible allowed to interfere with builuiflities of the shell.

Some additional flexibility is imposed by allowingser to control the flow of the command file
interpretation, i.e. to change sequence of exetuwtith regard to the current state at a given point
This is achieved by additional set of functions ethexamine a condition, given as a mathematical
expression, and decide what to do with regard foression’s current value evaluated with the
expression evaluator. Conditional branching angdoman be made using such functions.

Basic branching command‘i$’ which has the following syntacs:

if { (condition) [trueblock] else [falseblock] }

At execution, theonditionexpression is evaluated with the expression et@luk its value is non-
zero, therueblockblock is interpreted, otherwise tfadseblockis interpreted.

Commandwhile” is used as a basic loop command. It's syntacs is

while { (condition) [loopblock] } .

At its execution, théoopblockblock is interpreted as long as tbenditioris value calculated each
time is non-zero.

With the“function” command it is possible to define new commands ivban be executed

by file interpreter. Its syntacs is
function {functionnamd argl, arg2, ...) [definitionblock] }

functionnameés a name of newly defined function which will tecognized by file interpreter from
the definition pointargl, arg2, etc. are names of arguments used ird#faitionblockblock. Where
a command defined this way is called in the commaled the definitionblock of the function
definition is interpreted. If an argument name (ofiargl, arg2 etc.) preceded by the “$” character
appears in this block, it is replaced by an acingliment of the command. For example, the for loop,
which is not pre-defined, can be implemented usiiegunction definition facility:

function { for (start,cond,whattodo,forblock)
[
$start
while { ($cond)
[
$forblock
$whattodo
I}
I}

After this definition, we can for example print nbers from 1 to 5 to the standard output:
for {={i:1} (i<=5) ={i:i+1}

{ write{ "i= "${ij\n} }
}

2 Integration of the Expression Evaluator in the System

As has been seen, the expression evaluator playm@ortant role in the shell. Functions of the
FEM-analysis interface which read the analysisItesare implemented as pre-defined functions of
the expression evaluator. These functions can bectli combined in expressions which, for
example, define the formulas for evaluation of dated measurements as in the above example.
Other important use is in the conditions for logpand branching commands.

Beside the standard arithmetic functions and th®faBalysis interface’ functions, the expression
evaluator possesses functions which can accesticpicall data existing in the shell at a given

point. Because of the global variables concept shatmhe explanation of the above example, this
allows user to strongly interfere through the comdhéle with the solution strategies and built-in

algorithms

Apart from the commands which always take expressis arguments, expressions can be used
instead of any numerical argument of any file ipteter’'s command. The following example shows
how the components of pre-defined vectsigma” can be set to 1 percent of the components of
vector‘meas”:

1. setvector{ sigma ${getvectof‘meas”,0]}} *{ Sets the dimensin of vector sigma

2. while{ (i<= getvectof‘meas”,0])

3. setvector{ sigma { ${i} : ${0.01*abs[getvectof‘meas”,i]] } }

4. ={i:i+l}

5. }

In the first line, the dimension of vecttsigma” is set to the dimension of vectoneas” (command
“setvector” called with single argument only sets vector’s elsion). Expression in the curled
brackets which follow the “$” sign is always repddy its current value evaluated by the expression
evaluator. In this case, the pre-defined functmgetvector”, which returns a specific component of a
specified vector (or its dimension if the componeamber is 0), is used. In thehile” loop, each
component of vector “sigma” is set to 1 percentio$olute value of the appropriate component of
vector‘meas”.

The file interpreter possesses functions whickcafthe expression evaluator itself. Functish
assigns a value to an evaluator’'s variable. Thet airgument identifies the variable to which the
value of the expression defined by the second aegtiis assigned. Both arguments are separated by
colon. If the variable does not exist at the tinfeewthe command is called, it is created.

Function“$” is similar to"=" , only that it assigns an expression instead ofdtge. The expression
is not evaluated when this command is executasl.elten allowed to use variables which are not yet
defined in the expression. For example, this cedegal:

${a: sin[3*Pi/8] }

={Pi:3.14}

write{ ${a} \n }
Function“write” evaluates the expression in curled brackets fatigwthe “$” sign which is legal,
because all sub-expressions can be evaluated pbihieof execution. Th&s” commands can also
be used for the definition of new functions of thaluator. In this case, names of function argument
separated by commas must be specified in squasettdis following the function name. The second

argument of the command is in this case the exjoresghich defines the function. If it includes
names of function arguments, these are replaceactwal arguments (by expressions, not values)
whenever the newly defined function is called witkome other mathematical expression.

There is an additional mechanism of definitionttd £xpression evaluator’s functions which allows
incorporation of interpretation of the command '§il@ortions when the function is evaluated.
function“definefunction” defines a new expression evaluator’s functionsiwlbauses interpretation
of a command file’s block every time it is evaluit&he syntacs is

definefunction { (functionnamg [definitionblock] }
The first argument of the command is function nameound brackets. The second argument is the
block in a square bracket which is interpreted dank the function is evaluated. Function defined
this way returns a value of the expression whidhésargument of the lasteturn” command which
is executed at the definition block interpretati¢hno “return” command is executed during the
interpretation of the definition block, functiontuens an unpredictable value. In the definitioncklo
functions “argument” and “numargs” of the expression evaluator can be used. Function
“argument” returns the value of specific argument with whtble defined function was called.
“numargs” returns the number of arguments with which functtieas called. Such functions can be
called with arbitrary number of arguments, buth# function“argument” with its argument greater
then the actual number of arguments is evaluatetirwthe definition block, it will return an
unpredictable value. The example below shows tfiaitien of function“fsum”, which returns the
sum of all its arguments:

definefunction { (fsum)
[

={i:1} ={ret:0}

while

{ (i<=numargs))

[
={ret:ret+argumeni)}
=i:i+1}

I}

return {ret}

I}

For example, the expressitisum[3,1,6]” will evaluate to 10 below the definition of thenfttion.

CONCLUSION

A shell for solving optimization and inverse prabke is described. The shell's structure and user
interface, which is implemented as a command fiiterpreter, ensure efficient flexibility for defirg
various problems and choosing different solutiorategies. The presented concepts proved
successful in many practical cases including otition of prestressing of cold forging dies (Rodié,
1996), inverse identification of hardening parameten plasticity (Rodie, 1995) as well as
optimization pre-form shapes in forging and evaaratof friction factors and heat transfer
coefficients from experimental tests.

There are several possibilities for further develepts of the shell. One of important issues is
incorporation of new solution algorithms, whichredatively straight-forward and does not require
changes of conceptual scheme of the shell.

Parallelization is another important issue. Thisange simultaneous execution of several direct
analyses at different input parameters on differpracessors. Such parallelization would be
independent from the parallelization of the finllement code and would additionally improve the
effectiveness. It would ease the fall of effecties® with increasing number of processors, whieh is

well known problem in parallelization of FEM codeSurrently, the preparation of conceptual

background including protocols is in progress. Tieet step will be parallelization of the solution

algorithms.

Development of general concepts for sensitivityysig will be necessary in the future. A part abth
work will be done in the FEM analysis code, but gratization of sensitivity analysis will also
greatly affect the concepts of future FEM-sheleifdces. Recently, some work has been initiated on
integration of symbolic systems such as SMS (KorE®7) with FEM code.

Establishing a connection between the shell angrdslic system will probably prove beneficial in
the future. It would impose additional flexibilitto the user interface of the shell by allowing
symbolic differentiation and other operations orpressions defined in the expression evaluator.
These operations could be implemented in the egesevaluator itself, but use of an existing
symbolic system would ease the job significantly.

Suitability of the system for industrial use wike to be carefully considered in the future. Ohe o
the most important conditions for widely spread akthe system in industry is that it is easy-te-us
This concerns system’s user interface at most.h&t durrent stage, user defines an inverse or
optimization problem in two separated steps. Atfthst step, direct problem is defined using the
FEM system’s preprocessor. This definition is altyua sceleton of the problem definition because
real direct problem changes through the soluti@tguure according to the parameters. The second
step is writing of the shell’s command file.

It would be preferable to define shell's behaviatithe same place as the direct problem, but this
would at the same time mean that concepts of befihitons should be similar. Descriptive way of
problem definition as is used in typical FEM systepreprocessor would conflict with the demand
for flexibility at the problem definition. One sdian of this problem would be to make pre-defined
forms with problem definitions for a few specifiets of problems which frequently appear in some
areas. In these forms, only data should be repléwetihe definition of different problems and this
could be done using a possibly graphic preprocesgbrtraditional look.

ACKNOWLEDGMENT
Financial assistance for this work, provided byigliry of Science and Technology, Republic

of Slovenia under the contract number P23-1533/@BZ15827/95, and INCO Copernicus under
the contract number IC15-CT96-0709, is gratefutiyreowledged.

No

REFERENCES

FLETCHER, R. (1987), Practical Methods of Optimization (second editiaighn Wiley & Sons,
New York.

GRESOVNIK, |. (1996), "A Computer System for Solving Inveeoblems”, in Stok, B. (Ed.),
Kuhljevi Dnevi 96 Slovensko drusStvo za mehaniko, Ljubljana, p.p. 84;1n Slovene.

KoORELC, J. (1997), "Automatic Generation of Finite-element d€o by Simultaneous
Optimization of ExpressionsTheoretical Computer Sciencéol. 187.

MICHALERIS, P., TORTORELLI, D. A., VIDAL, C. A. (1994), "Tangent Operators and Design
Sensitivity Formulations for Transient Non-lineaoupled Problems with Applications to
Elastoplasticity”, International Journal for Numerical Methods in Engering, Vol. 37, pp.
2471-2499.

MRoOz, Z. (1994), "Variational methods in sensitivity aysa$é and optimal design'Europ. J.
Mech. A/SolidsVol. 13, pp. 115-149.

OwWEN, D., HINTON, E. (1980),Finite Elements in PlasticityPineridge Press, Swansea.

RoODIE, T., GRESOVNIK, I. (1996), "Optimization of the Prestressing of a CbBlurging Tooling
system”, in Delaunay, D. (EdPreliminary Proceedings of the second InternatioBGahference
on Inverse Problems in Engineeririgngineering Foundation, New York, Vol. 2.

RODIE, T., GRESOVNIK. I. andOweN, D.R.J. (1995);" Application of error minimisation concept
to estimation of hardening parameters in the tentet”, in Owen, D.R.J. and Onate, E. (Eds.),
Proceedings of the Fourth International Conferen€amputational Plasticity - Fundamentals
and applicationsPineridge Press, Swansea, Vol. 1, pp. 779-787.

ZIENKIEWICZ, O. C., TAYLOR, R. (1991), The Finite Element Method, vol. 2 (fourth edition)
McGraw-Hill, London.

