(Submitted to Engineering Computations 1995)

INVERSE ESTIMATION OF EXPONENTIAL AND PIECE-WISE
LINEAR APPROXIMATIONS OF THE HARDENING CURVE
FROM THE TENSION TEST

I. GreSovnik
Centre for Computational Continuum Mechanics,
Ljubljana, Slovenia

T. Rodi
Faculty of Natural Sciences and Technology,
University of Ljubljana, Slovenia

D. R. J. Owen
Department of Civil Engineering,
University of Wales, Swansea, U.K.

Summary

An inverse numerical technique for estimation of exponential and
piece-wise linear approximations of the hardening curve is
considered. The technique is characterized by the finite element
method which is employed in an iterative procedure to minimize
the difference between measured and calculated values in a least-
square sense. The technique is applied to the tension test.

1. INTRODUCTION

The tension test (Figure 1) is widely used for tiechanical testing of
materials. However, accurate estimation of plastiaterial properties is
difficult due to the non-uniform stress/strain disition in the necking zofte
Bacause of this phenomenon, it is not possibleei@rchine the hardening
parameters directly by measuring elongations derift loads. In order to
determine true stress the Bridgman corre&i@often applied which requires
additional measurements of contractions at theomast part of the deformed
sample and curvature of the neck. The approaclhssdon the assumptions
that the contour of the neck is the arc of a ciestd that strains are constant
over the cross section of the neck.

In this paper an inverse appro&&hfor the estimation of hardening
parameters is considered. This approach does ngtiree additional
measurements at the necking zone and does notporede Bridgman’s
idealisations.
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Figure 1. Sample geometry.
2. EXPONENTIAL APPROXIMATION

An exponential hardening law is assumed to appmate the
relationship between the effective stress and effestrain:

g=Ce". (1)

The unknown parameter§, and n need to be derived from measured forces
at certain elongations of the samples. Two seriesneasurements were
performed for two different steel grades. The geoynef the samples is
shown in Figure 1, while the experimental datagaven in Tables 1 and 2 for
each series. Graphic presentation of the samefalathe first sample of each
series is given in Figure 2.

Table 1. Experimental data for thefirst series.

Elongation [mm] Force [N], Force [N], Force [N],
sample 1 sample 2 sample 3

3 65900 68800 66800

4 67800 69900 67800

5 68650 70600 68700

6 68900 70600 68700

7 68850 69200 68400

8 68000 66600 68200

9 65800 61300 65100

10 61800 54100 59300

Table 2. Experimental data for the second series.

Elongation [mm] Force [N], Force [N], Force [N],
sample 1 sample 2 sample 3

3 86000 85800 84700

4 87500 86300 85600

5 87800 86500 86400

6 86500 85900 84500

7 81700 84600 80900

8 74800 78200 72600
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Figure 2. Masured data for the first sample of each series.

Solution of the problem was found by searching tloe parameters
which give the best agreement between measuredeapédctive numerically
calculated quantities. The agreement can be definedifferent ways, but
most commonly used is the least-square concepttlymbscause of its
statistical backgrourfd®. The problem is solved by minimizing the function

vlen)=3E"-Fenf 2

i=1 O

where Fi(m) are measured forces at different elongatioﬁdﬁ,n) are the

respective quantities calculated with the finiteneént model by assuming
trial values of parametelS andn; o; are the expected errors of appropriate
measurements an is the number of measurements.

2.1 Results

The scatter of experimental data for the sameesenhich is evident
from Tables 1 and 2 is mainly due to differencessamples rather than
experimental errors. This has an effect on thenedéd parameterS andn.
The results are summarized in Tables 3 and 4.

Table 3. Calculated parameters C and n for thefirst series.

sample 1 sample 2 sample 3
C[ M Pa] 1271 1250 1258
n 0.1186 0.1010 0.1132




Table 4. Calculated parameters C and n for the second series.

sample 1 sample 2 sample 3
C[ M Pa] 1492 1511 1462
n 0.08422 0.09269 0.08318

It seems that the applied numerical model simsldé@haviour of the
investigated material adequately. This is indicat&doy the fact that the

obtained values of functioNZ(C,n) at its minimum were never much greater

than one, assuming that the measurement ewpms Equation 2 are one
percent of the related measured values.

3. PIECE-WISE LINEAR APPROXIMATION

The flow stress of the material is a result ofeléint hardening and softening
phenomena which interact during plastic deformatidns interaction is often

so complex that it is difficult to predict the forof the hardening curvé(é).

In such cases it would be desirable to find an @ppration of the hardeining
curve without making any preassumptions about ftisTcan be done in
several ways. In this paper, an approach wheretgointhe hardening curve
defining a piece-wise linear approximation are $ug considered.

The experimental measurements used for estimafidheopiece-wise linear

approximations are summarized in Table 5 and Fi§urEhe data are for the
first sample of the first series, but with 16 measuwents instead of 8 used for
evaluation of exponential approximation.

Table 5. Experimental data used to obtain a piece-wise linear approximation of the
hardening curve.

Elongation [mm] Force [N]
2 62200
2.5 64400
3 65900
3.5 67000
4 67800
4.5 68200
5 68650
5.5 68800
6 68900
6.5 69000
7 68850




7.5 68600
8 68000
8.5 67100
9 65800
9.5 64000
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Figure 3. Measurements used for calculating a piecewise approximation of the
hardening curve (measurements are for the first sample of the first series).

The points on the hardening curve were obtainedniyimizing the
function

N (EM_e(F 7 7 W
/Yz(ﬁl’ﬁZl""aM)zz(Fi E(U;ZUZ""’UM)) | 3)

where parameter®; are values of the curvé(E) at arbitrary equivalent
strainsg; . Yield stress was known from experiments.

3.1 Results

A piecewise-linear approximations of the hardeniogrve were
calculated for the first sample of the first seriggh 4, 6, 8 and 10 points. The
results are shown in Figures 4 to 7. The exponlehaaening curve with
parametersC =1271IM Pa andn = 0118¢ (as obtained by the inverse analysis
assuming the exponential hardening law) is drawneach figure for
comparison. It is evident from these graphs thitutated piecewise linear
approximations are in relatively good agreementhwihe calculated
exponential approximation.



o(MPa)
1200

1100

1000

Exponential law
e———e Pijece-wise linear

900

0.1 0.2 0.3 0.4 0.5 0.6 0.7

&

Figure 4. Comparison between exponential and piece-wise linear (4 points)
approximations of the hardening curve.
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Figure 5. Comparison between exponential and piece-wise linear (6 points)
approximations of the hardening curve.
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Figure 6. Comparison between exponential and piece-wise linear (8 points)
approximations of the hardening curve.
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Figure 7. Comparison between exponential and piece-wise linear (10 points)
approximations of the hardening curve.

4. NUMERICAL TESTS

A number of numerical tests were performed to stigate the stability
and uniquenes of the inverse solutions for the e&pbal approximation of
the hardening curve.

Several inverse analyses were performed with \@fferent initial
guesses and they always converged to the samdsreSuis is the first
indication that the problem is not ill-posed. Fertlexamination was made by

plotting the)(2 function (Figures 8 and 9). It is evident fromgbdigures that



this function has a distinctive global minimum vath local oscillations in its
vicinity.
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Figure 8. Dependence of function X2 on parameter n at measured data for sample 1 of
series 1. Parameter Cisset to 1271 MPa.
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Figure 9. Dependence of function X2 on both parameters for the same measured data
asinFigure 2.

To test the stability of the solutions, a Monterl€asimulatiot” was
performed. It was assumed that the correct valdidsoth parameters were
known. For this purpose, the previously calculatehlies for the first sample
of the first series were taken, namely=1271MPa andn=01186 (see

Table 1). With these values, so called “exact memsants” Fi(o) were



obtained with the same finite element model usedHe inverse analysis of

the real measurements. The “simulated measuremelﬂigm) were

successively obtained by adding random errofs to the “exact
measurements”. Errors were distributed normally as

dP_ 1 2
LI e LI 4
T \/E[GXD[ 28,2} (4)

where 5 is the standard deviation of distribution. Thistdbution is often

used to simulate measurement errors which do neg¢ laaclearly defined
origin®

For each set of “simulated measurements” param€eand n were
calculated. Three different sets gf were chosen so that ratios

R =‘§—0‘ (5)

were uniform within each set. Fifty numerical expents were performed for
R =001, twenty for R=01 and twenty forR =0.001. Then average values
Z and dispersions, of the searched parameters were calculated fér sstc

according to

L
Z_Ez‘lzl (6)
and
> 1 _o\2
SR P Gt/ (7)

The results are summarized in Table 10. Figure hOws the whole
distribution of calculated parametersit 001.
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Figure 10. Results of the Monte carlo simulation for R = 0.01.

Table 6. Results of Monte Carlo simulations. Average values and dispersions of
calculated parameters at different R .

R=0,001 R=001 R=01
c 1271.4 1271.8 1287
Sc 0.58 4.9 69
n 0.118628 0.11867 0.1163
S, 0.00016 0.0015 0.014

5. CONCLUSION

An inverse estimation of the exponential and pwte linear
approximations of the hardening curve from the itandest is presented.
Force measurements at different elongations wezd as input to the inverse
analysis. The solution system is implemented asngpatational shell arround
the Elfen finite elemeHf! code. An important advantage of this approach is
that parameters are derived by using the same meaherodel which is then
applied in direct simulations.

Numerical tests show that the evaluation of thepoeential
approximation is well conditioned, that no problemigh uniquenes of the
solutions were present and that it provides béditténen all piece-wise linear
approximations considered in this paper. This ssiggthat exponential law
describes characteristics of the investigated radhteell.
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