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Summary 
 

An inverse numerical technique for estimation of exponential and 
piece-wise linear approximations of the hardening curve is 
considered. The technique is characterized by the finite element 
method which is employed in an iterative procedure to minimize 
the difference between measured and calculated values in a least-
square sense. The technique is applied to the tension test.  

 
1. INTRODUCTION 
 
 The tension test (Figure 1) is widely used for the mechanical testing of 
materials. However, accurate estimation of plastic material properties is 
difficult due to the non-uniform stress/strain distribution in the necking zone[1]. 
Bacause of this phenomenon, it is not possible to determine the hardening 
parameters directly by measuring elongations at different loads. In order to 
determine true stress the Bridgman correction[2] is often applied which requires 
additional measurements of contractions at the narrowest part of the deformed 
sample and curvature of the neck. The approach is based on the assumptions 
that the contour of the neck is the arc of a circle and that strains are constant 
over the cross section of the neck. 
 
 In this paper an inverse approach[3-8] for the estimation of hardening 
parameters is considered. This approach does not require additional 
measurements at the necking zone and does not incorporate Bridgman’s 
idealisations. 
 



 
 Figure 1. Sample geometry. 
 
2. EXPONENTIAL APPROXIMATION 
 
 An exponential hardening law is assumed to approximate the 
relationship between the effective stress and effective strain: 
 
  nCεσ =  . (1) 
 
The unknown parameters, C  and n  need to be derived from measured  forces 
at certain elongations of the samples. Two series of measurements were 
performed for two different steel grades. The geometry of the samples is 
shown in Figure 1, while the experimental data are given in Tables 1 and 2 for 
each series. Graphic presentation of the same data for the first sample of each 
series is given in Figure 2.  
 
 Table 1. Experimental data for the first series. 
 

Elongation [mm] Force [N], 
sample 1 

Force [N], 
sample 2 

Force [N], 
sample 3 

3 65900 68800 66800 
4 67800 69900 67800 
5 68650 70600 68700 
6 68900 70600 68700 
7 68850 69200 68400 
8 68000 66600 68200 
9 65800 61300 65100 
10 61800 54100 59300 

 

 
 Table 2. Experimental data for the second series. 
 

Elongation [mm] Force [N], 
sample 1 

Force [N], 
sample 2 

Force [N], 
sample 3 

3 86000 85800 84700 
4 87500 86300 85600 
5 87800 86500 86400 
6 86500 85900 84500 
7 81700 84600 80900 
8 74800 78200 72600 
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 Figure 2. Masured data for the first  sample of each series. 
 
 Solution of the problem was found by searching for the parameters 
which give the best agreement between measured and respective numerically 
calculated quantities. The agreement can be defined in different ways, but 
most commonly used is the least-square concept, mostly because of its 
statistical background[9,10]. The problem is solved by minimizing the function 
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where ( )m
iF  are measured forces at different elongations; ( )F C ni ,  are the 

respective quantities calculated with the finite element model by assuming 
trial values of parameters C and n; σi  are the expected errors of appropriate 
measurements and N  is the number of measurements. 
 
2.1 Results 
 
 The scatter of experimental data for the same series which is evident 
from Tables 1 and 2 is mainly due to differences in samples rather than 
experimental errors. This has an effect on the estimated parameters C and n. 
The results are summarized in Tables 3 and 4. 
 
 Table 3. Calculated parameters C and n for  the first series. 
 

 sample 1 sample 2 sample 3 

[ ]C M Pa  1271 1250 1258 

n  0.1186 0.1010 0.1132 
 



 
 Table 4. Calculated parameters C and n for  the  second series. 
 

 sample 1 sample 2 sample 3 

[ ]C M Pa  1492 1511 1462 

n  0.08422 0.09269 0.08318 
 

 
 It seems that the applied numerical model simulates bahaviour of the 
investigated material adequately. This is indicated[9,10] by the fact that the 

obtained values of function ( )χ2 C n,  at its minimum were never much greater 

than one, assuming that the measurement errors σi in Equation 2 are one 
percent of the related measured values.   
 
 
3. PIECE-WISE LINEAR APPROXIMATION 
 
The flow stress of the material is a result of different hardening and softening 
phenomena which interact during plastic deformation. This interaction is often 
so complex that it is difficult to predict the form of the hardening curve ( )σ ε . 

In such cases it would be desirable to find an approximation of the hardeining 
curve without making any preassumptions about it. This can be done in  
several ways. In this paper, an approach where points of the hardening curve 
defining a piece-wise linear approximation are sought is considered.  
 
The experimental measurements used for estimation of the piece-wise linear 
approximations are summarized in Table 5 and Figure 3. The data are for the 
first sample of the first series, but with 16 measurements instead of 8 used for 
evaluation of exponential approximation. 
 
 
 Table 5. Experimental data used to obtain a piece-wise linear approximation of the 
hardening curve. 
 

Elongation [mm] Force [N] 
2 62200 

2.5 64400 
3 65900 

3.5 67000 
4 67800 

4.5 68200 
5 68650 

5.5 68800 
6 68900 

6.5 69000 
7 68850 



7.5 68600 
8 68000 

8.5 67100 
9 65800 

9.5 64000 
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 Figure 3. Measurements used for calculating a piecewise approximation of the 
hardening curve (measurements are for the first sample of the first series). 
 
 The points on the hardening curve were obtained by minimizing the 
function 
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where parameters σi  are values of the curve ( )σ ε  at arbitrary equivalent 

strains εi . Yield stress was known from experiments. 
 
 
3.1 Results 
 
 A piecewise-linear approximations of the hardening curve were 
calculated for the first sample of the first series, with 4, 6, 8 and 10 points. The 
results are shown in Figures 4 to 7. The exponential harening curve with 
parameters C M Pa= 1271  and n = 01186. (as obtained by the inverse analysis 
assuming the exponential hardening law) is drawn in each figure for 
comparison. It is evident from these graphs that calculated piecewise linear 
approximations are in relatively good agreement with the calculated 
exponential approximation. 
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 Figure 4. Comparison between exponential and piece-wise linear (4 points) 
approximations  of the hardening curve. 
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 Figure 5. Comparison between exponential and piece-wise linear (6 points) 
approximations    of the hardening curve. 
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 Figure 6. Comparison between exponential and piece-wise linear (8 points) 
approximations  of the hardening curve. 
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 Figure 7. Comparison between exponential and piece-wise linear (10 points) 
approximations  of the hardening curve. 
 
4. NUMERICAL TESTS 
 
 A number of numerical tests were performed to investigate the stability 
and uniquenes of the inverse solutions for the exponential approximation of 
the hardening curve. 
 
 Several inverse analyses were performed with very different initial 
guesses and they always converged to the same results. This is the first 
indication that the problem is not ill-posed. Further examination was made by 

plotting the χ2  function (Figures 8 and 9). It is evident from these figures that 



this function has a distinctive global minimum without local oscillations in its 
vicinity. 
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 Figure 8. Dependence of function χ2  on parameter n at measured data for sample 1 of  

series 1. Parameter C is set to 1271 MPa. 
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 Figure 9. Dependence of function χ2  on both parameters for the same measured data 

as in Figure 2. 
 
 To test the stability of the solutions, a Monte Carlo simulation[11] was 
performed. It was assumed that the correct values of both parameters were 
known. For this purpose, the previously calculated values for the first sample 
of the first series were taken, namely C MPa= 1271  and n = 01186,  (see 

Table 1). With these values, so called “exact measurements” ( )Fi
0

 were 



obtained with the same finite element model used for the inverse analysis of 

the real measurements. The “simulated measurements” ( )Fi
m

 were 

successively obtained by adding random errors ri  to the “exact 
measurements”. Errors were distributed normally as 
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where si  is the standard deviation of distribution. This distribution is often 
used to simulate measurement errors which do not have a clearly defined 
origin[10] . 
 
 For each set of “simulated measurements” parameters C and n were 
calculated. Three different sets of  si  were chosen so that ratios 
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were uniform within each set. Fifty numerical experiments were performed for 
R = 001. , twenty for R = 01.  and twenty for R = 0001. . Then average values 
z  and dispersions Sz  of the searched parameters were calculated for each set, 
according to 
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The results are summarized in Table 10. Figure 10 shows the whole 
distribution of calculated parameters at R = 001. . 
 



1265 1270 1275 1280

0.117

0.118

0.119

0.121

0.12
n

C [MPa]

 
 

 Figure 10. Results of the Monte carlo simulation for R = 001. . 
 
 
 Table 6. Results of Monte Carlo simulations: Average values and dispersions of  

 calculated parameters at different Ri . 

 
 R = 0 001,  R = 001,  R = 01,  

C  1271.4 1271.8 1287 

SC  0.58 4.9 69 

n  0.118628 0.11867 0.1163 

Sn  0.00016 0.0015 0.014 

 

 
5. CONCLUSION 
 
 An inverse estimation of the exponential and piece-wise linear 
approximations of the hardening curve from the tension test is presented. 
Force measurements at different elongations were used as input to the inverse 
analysis. The solution system is implemented as a computational shell arround 
the Elfen finite element[12] code. An important advantage of this approach is 
that parameters are derived by using the same numerical model which is then 
applied in direct simulations.  
 
 Numerical tests show that the evaluation of the exponential 
approximation is well conditioned, that no problems with uniquenes of the 
solutions were present and that it provides better fit then all piece-wise linear 
approximations considered in this paper. This suggests that exponential law 
describes characteristics of  the investigated material well.  
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