
1. INTRODUCTION 
The construction of the Feldsee project of the Austrian 
hydropower company KELAG started in 2006 and is 
scheduled to be completed by the end of 2008. The basic 
idea is connecting two existing reservoirs, Feldsee at 
2200 m a.s.l. and Wurten at 1700 m a.s.l. in a daily 
pump storage scheme with a peak power output of 70 
MW. Since the startup and shutdown procedures of the 
turbine have to be rapid (due to the chosen operation 
scheme and capacity of the reservoirs), the dynamic head 
reaches 820 m at the lowest part of the pressure tunnel. 
Motivated by the great cost-saving potential, the design 
of the pressure tunnel lining treated the surrounding rock 
mass as an integral and primary load bearing element.  

This approach is justified when having the following 
facts in mind: the rock mass is composed of massive, 
unweathered gneiss with widely spaced joints of low 
persistence and the overburden is high enough to allow 
the development of tensile cracks induced by the internal 
pressure loading without endangering the global stability 
of the slope. Assuming the lateral pressure coefficient of 

0,4, the calculations have shown that the crack depth 
under peak internal load does not exceed 10 meters. This 
is well within boundaries deduced from the hydropower 
project Häusling, successfully constructed in similar 
ground conditions. The final solution features pre-cast 
concrete elements with a thin steel lining in the lowest 
part of the tunnel  and pre-cast concrete elements with a 
GFRP (Glass Fiber Reinforced Polymer) lining in the 
upper part (Figure 1).  
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Figure 1: The longitudinal section of the Feldsee project 
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Using the rock mass as a load bearing element for high pressure hydro-tunnels can lead to considerable reductions in the 
wall thickness of the steel pipe. For a safe and economical design it is imperative to correctly assess the mechanical 
properties of the rock mass. The Feldsee project of the Austrian hydro-power company KELAG included an extensive  
large scale field test program, aiming at the identification of these parameters. The plate load tests were conducted in the 
tunnel, measuring the force, the absolute displacements of both plates and the displacements in the surrounding rock mass 
at various depths. Since the results of this kind of test are subject to various influences (problem geometry, loadplate 
stiffness, mortar bedding), the application of usual closed-form solutions for determining the elastic parameters is 
questionable. Coupling of a fully three-dimensional numerical model with an optimization routine was used to back-
analyze the elastic parameters. The measured data featured asymmetric displacement patterns (and thus: locally differing 
stiffness) inherent to a heterogeneous rock mass which cannot be properly accounted for in a homogenous numerical 
model. A simple smoothing and averaging technique was applied to filter out the influences of the heterogeneity and 
measurement noise. Using the commercial code FLAC3D and its built-in language FISH, the model has been 
parameterized and coupled with the optimization shell INVERSE. The obtained results are discussed and compared to the 
currently available semi-empirical equations.  

 



High pressure grouting under pressure of 40 bar in the 
gap between the pre-cast segments and the rock mass is 
planned, effectively pre-stressing it and ensuring its 
tightness by preventing the generation of cracks. The 
tightness is granted by the bond with the rock mass after 
the pre-stressing mortar has hardened, activating the 
rock mass as an abutment for lining. Since the crack 
initiation/yield strains of the materials incorporated in 
the inner lining dictate the maximum radial deformations 
under a respective internal pressure load, the load 
displacement behavior of the rock mass and its 
contribution to the overall system stiffness represent one 
of the key design parameters. In order to verify the 
assumptions made in the initial design phase, an 
extensive field test program has been conducted.  

2. TEST CONFIGURATION 
The choice of test locations and the test configuration 
aimed on establishing an envelope of the lowest 
expectable rock mass properties. Five test cross sections 
have been selected (Figure 2), each of them identified by 
the rock mass quality relatively lower then the one 
encountered in the major part of the tunnel.  
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Figure 2: The position of the measurement cross sections 

It was decided to perform plate load tests enhanced with 
an extensive extensometer-based deformation 
measurement program. In every test location two plate 
load tests have been performed: one with the loading 
direction parallel to the foliation orientation and the 
other one perpendicular to it, addressing the rock mass 
anisotropy inherent to metamorphic rocks.  

The test has been performed with simultaneous loading 
of both sidewalls, each of them acting as an abutment for 
the other. The outer diameter of the used load plate was 
0.8 m, with a circular opening (0.1 m wide) for the 
extensometer head in the center of the plate. The 
hydraulic system allowed loading up to 6000 kN, hence 
allowing maximum average contact normal stress of 
11.93 MPa. One plate has been connected to the piston 
via ball joint, thus eliminating the influence of eccentric 
deformation behavior and the occurrence of bending 
moments in the frame.  

In order to ensure tight contact between the load plate 
and the rock mass, a layer of high strength mortar 
(measured tangential Young’s modulus of 30,000 MPa) 
has been cast between the contact steel plate (thickness 

of 10 mm) and the rock mass (Figure 3). The thickness 
of the mortar layer varied according to the roughness of 
the sidewall, but never exceeded 30 cm.  

The displacement monitoring was performed by utilizing 
a single magnetic extensometer aligned with the axis of 
the load plate. It measured the displacement of four 
magnets which were stiffly bonded with the rock mass. 
On every side, they were positioned at the depths of 
approx. 30, 50, 125 and 230 cm measured from the 
outward rim of the load plate (Figure 3). 
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Figure 3: The test geometry and sensor set-up (in cm) 

The displacement of the load plates has been monitored 
by three cable displacement sensors. With the 
assumption that the third, external fixing point does not 
move during the test (which is justified, when we take 
into account the magnitude of the observed load plate 
and extensometer displacements), the absolute 
displacements of both load plates are easily calculable.  

3. IMPLEMENTATION BACKGROUND 
The numerical parameter estimation from data which do 
not allow direct measurement of physical parameters is 
being used for years in the field of mechanical 
engineering and related disciplines. The reason for its 
slow development in the field of rock mechanics lies in 
the character of the accessible data: the input 
information for a numerical back analysis should allow 
unambiguous identification of the model parameters. 
Simply put, the true values of the stress field in the rock 
mass are usually not known and have to be assumed. 
Hence, a back analysis performed solely on the basis of 
the measured deformations leads to a mathematical 
problem without a singular solution - there is an infinite 
number of mechanical parameters leading to the same 
displacement field (if the “other side of the equation”, 
the kinetic quantities, are unknown). Another obstacle is 
being presented by the highly complex mechanical 
behavior of the rocks: the state-of-the-art constitutive 
laws represent mere approximations of differing quality 
– none of them generally applicable to all situations.  



The plate load test however, especially in this particular 
case, does yield enough information for a back-analysis, 
since both the displacements and the respective force are 
determined. The test set-up has been regarded as very 
favorable due to the existence of displacement 
measurements in the rock mass, minimizing the possible 
ambiguities in the solution. Another favorable aspect 
was the high quality of the rock mass itself: the stress 
level in the secondary stress state has been deemed well 
below the rock mass strength (thus minimizing the non 
linear aspects of the deformation behavior of the 
ground).  

3.1. Technical implementation 
The inverse identification of model parameters based on 
a numerical model and measurements can be simply 
defined: we seek for parameters x of the model such that 
the model response corresponds as much as possible to 
the measurements obtained in the test. The identification 
problem is thus defined as: 

minimize Rxxf ∈),(  

subject to Iixci ∈≤ ,0)(  

and nkuxl kkk ,...2,1, =≤≤ . 

In the above formulation, f(x) is the objective function 
that measures the discrepancy between actual 
measurements and the corresponding quantities 
calculated by the numerical model. The functions ci(x) 
are constraint functions that ensure physical consistency 
of parameters (for instance: positive real value for 
Young’s modulus). The values lk and uk define the 
meaningful a priori bounds for the sought after 
parameters. The requirements for the technical 
implementation of such a procedure are straightforward.  

• bilateral communication between the numerical 
model and the optimization routine minimizing 
the objective function;  

• automatic assignment of the input parameters in 
the numerical model and 

• reading of the target model values and the 
calculation of the objective function value 

have to be granted. In our case, all of these requirements 
have been met by using the built-in scripting language of 
the FLAC3D commercial solver.  

The communication has been ensured by defining input 
and output file formats being generated and interpreted 
by FLAC3D and the optimization shell INVERSE. The 
set of target values has been also provided in the form of 
an external file, being loaded into memory at the 
beginning of every new analysis (Figure 4).  
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Figure 4: the implemented architecture and relationships 
between INVERSE, FLAC3D model and target values 

In order to ensure numerical stability of the model, the 
model geometry was generated prior to the start of the 
back-calculation procedure and has been restored in 
every new run. 

3.2. Numerical model 
The model geometry and the associated mesh have been 
generated in the commercial FE and modeling package 
ABAQUS and then transferred into FLAC3D. Although 
the accuracy drawbacks associated with tetrahedron 
meshes are generally well-known and documented [1], it 
was still decided to use these elements, since they allow 
meshing of almost arbitrary geometries and with very 
high element size gradients. Simply put, because the 
calculation speed is such a crucial factor when 
performing parameter identification as proposed here, 
the used mesh has to be highly efficient and only 
relevant parts of the model have to feature high 
calculation accuracy. 

Before the back analysis of the ground properties was 
started, rigorous testing of the model behavior has been 
performed: 

• Since the stiffness of the load plate has high 
influence on the stress field in its vicinity, the 
contact plate, the mortar and the rock mass have 
been modeled in an axisymmetric FE model. 
The check of both extreme cases of infinitely 
stiff (rigid) plate with prescribed uniform 
displacements of the contact area and infinitely 
soft plate with uniform normal stress loading 
lead to the conclusion that the influence of the 
load plate stiffness is negligible on the 
displacement field behind the mortar layer (in 
the expected range of mechanical parameters of 
the rock mass). Therefore the loading has been 
applied as uniform loading at the contact 
boundary between load plate – mortar while 
omitting the plate geometry, thus considerably 
reducing the number of elements in the model; 



• The displacement field calculated by the used 
model (with the “mortar region” having the 
same material properties assigned as the 
surrounding rock mass) has been checked 
against the displacement field obtained from the 
closed-form solution [2]. The results are 
plausible – the far field results should be ignored 
due to truncation effects of the boundary 
conditions (Figure 5).  
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Figure 5: comparison between the displacements obtained 
from the Boussinesq solution (black) and the displacement 
field from the used numerical model (dots).  

The initial work with the numerical model used the 
double yield constitutive law provided with FLAC3D. It 
has the ability to model arbitrary volumetric plastic 
increments and utilize two different load-displacement 
relationships for the branches of first loading and un-/re-
loading. However, its usage proved to slow down the 
calculations considerably and result in rather sluggish 
response to the changes of the model parameters – the 
reason lying probably in its combination with tetrahedral 
elements.  

Consequently, the calculations have been performed 
using elastic parameters, with the model switching 
“manually” between the respective first loading and re-
/un-loading parameters. Although this might not be 
regarded as the most elegant solution to the problem, it 
proved to be numerically stable, fast and yielded very 
plausible material parameters.  

3.3. Treatment of the test data 
The test results imply a considerable amount of 
heterogeneity, with (sometimes) very different 
displacements measured at the respective sides of the 
tunnel. Additional problems were posed by the high 
amount of logged data (calculating all logged loading 
steps would have lead to an extreme increase of 
calculations times without a significant improvement of 
the results) and the fact that certain amount of time had 
to pass before the rock mass reached its new equilibrium 
under every loading step (Figure 6a).  

In order to counter these circumstances, we decided to 
attempt the inverse analysis of test results obtained from 
the horizontal test ran at the tunnel chainage 179. They 
exerted almost a symmetrical response in all 
measurements, so we averaged the test results from the 
left and right side, thus allowing the calculation of a 
half-model with symmetrical boundary conditions. The 
filtering of the measurement data and the identification 
of relevant points in the load-displacement plot was 
solved in a straightforward way. The calculation of the 
first derivative (approximated by the backward finite 
difference) of the load-time curve allowed very reliable 
determination of the relevant test points, considerably 
reducing the amount of data. In the next step, the final 
target values have been chosen manually, using 
engineering judgment. 

a)

0,00

2,00

4,00

6,00

8,00

10,00

12,00

0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60

Displacement [mm]

C
on

ta
ct

 n
or

m
al

 s
tr

es
s 

[M
Pa

]

 

b)

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

0 10 20 30 40 50 60 70 80 90 100 110

Test time [min]

C
on

ta
ct

 n
or

m
al

 s
tr

es
s 

[M
Pa

]

 

c)
0,00

2,00

4,00

6,00

8,00

10,00

12,00

0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60

Displacement [mm]

C
on

ta
ct

 n
or

m
al

 s
tr

es
s 

[M
Pa

]

Figure 6: the applied filtering procedure. With the calculation 
of the derivative of the loading with respect to time (b) the raw 
data (a) can be filtered towards the more transparent set (c). 
The red circles in (c) mark the target values. 



The un-/re-loading loops have been taken into account 
by the selection of their starting point, their turning point 
(lowest load reached) and their ending point (where the 
applied load dictated a switch to the first-loading 
branch). 

3.4. Definition of the objective function 
The objective function was implemented as a weighted 
square of normalized errors. This somewhat cryptic 
verbal definition is actually very simple to explain: due 
to the fact that the magnitude of the displacement 
readings decreases with the increasing extensometer 
depth, the influence of the deep readings would be 
completely lost in the overall sum of squared errors. 
Hence, some kind of normalization of the results had to 
be implemented, giving every reading the same weight 
and importance. On the other hand, the readings from 
the extensometers 3 and 4 feature a great amount of 
noise (Figure 7), sometimes even featuring negative 
tangential moduli in the loading-unloading loops. The 
contribution of the deep extensometers to the overall 
evaluation of the fit between the numerical model and 
measurements should therefore be decreaseable in a 
controlled fashion.   
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Figure 7: Load-displacement path of the extensometer 4 
(distance from the load plate: 230 cm) 

Incorporating the above requirements, the objective 
function can be written as: 
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wherein x is the vector of model parameters, u*
ji are the 

target values measured by the sensor i for the loading 
step j, uji represents the associated values obtained from 
the numerical model and wi are the weights assigned to 
the readings of the sensor i.  

3.5. Model parameterization 
The vector of material parameters has been kept rather 
small in all cases: during the testing phase and synthetic 
runs with “dummy” data, the input for the double yield 
constitutive law was defined as x={K, Kc}, wherein K 

and Kc represent the elastic and plastic bulk modulus 
(defining the relationship between volumetric plastic 
strain and hydrostatic stress component), respectively. If 
the Poisson’s ratio ν is known, all other model 
parameters can be derived from these two values 
(assuming, as already stated, that no deviatoric yielding 
takes place in the model).  

After the switch to linear elastic material behavior as 
documented in 3.3, the model parameters vector was 
defined as x={E, R}, wherein E represents the un-/re-
loading Young’s modulus and R represents the ratio 
between the moduli of the un-/re-loading and first 
loading loops. This formulation ensures model 
consistency in all cases, eliminating the need for 
constraining the first loading modulus to be lower then 
or equal to the modulus of the un-/re-loading loop.  

3.6.  The applied optimization algorithm 
The optimization problem is usually most efficiently 
solved by Quasi-Newton or conjugate gradient methods 
in the cases where constraints are not present [3,4,5] or 
by sequential quadratic programming methods in case of 
constrained problems [3,6]. In order to apply these 
methods, gradients of the objective and constraint 
functions must be provided. 

In our case the main obstacle with providing gradients 
was that the analytical derivatives with respect to model 
parameters could not be obtained from the FLAC3D 
model, hence leaving the numerical differentiation as the 
only alternative. It is widely agreed that application of 
the above mentioned methods in combination with finite 
difference approximation of gradients still provides the 
most efficient approach for the solution of a wide range 
of problems with twice differentiable response functions. 
Many practical examples confirm this, but with a 
significant caveat that must be considered in all cases 
where complex numerical models are used for 
calculation of the response functions, namely that the 
effect of numerical noise in response functions must be 
carefully observed [7]. Since numerical differentiation is 
sensitive on noise, automatic application of optimization 
techniques using numerical gradients is prone to 
erroneous results or complete breakdown of the solution 
procedure. 

In the presented example, the level of numerical noise 
contained in the response functions was first studied on a 
synthetic case, in which the same numerical model was 
used as in the real case, but with measurements 
artificially generated by the numerical model with the 
assumed values of the searched material parameters. Use 
of such synthetic cases is applicable for verification and 
performance studies of solution procedures because the 
precise solution is known in advance. 

Figure 8 shows the objective function tabulated on a line 
between two points in the parameter space, where 



synthetic measurements generated by the same model 
are used in the definition of the objective function. The 
same numerical model was used as for true parameter 
identification. The objective function is tabulated 
between the assumed “true parameters” x*={500,2000} 
and between x={15000, 5000}. Geometrically growing 
sampling intervals with elongation factor 1.4 were used, 
which enables zooming of very small intervals close to 
the first point with reasonable number of calculated 
points. The objective function seems to be smoothly 
differentiable when plotting the whole sampled interval 
(Figure 8a). Numerical noise is observable when a small 
and densely sampled interval is zoomed in (Figure 8b). 

The results indicated that the level of noise contained in 
the response is too high to safely apply numerical 
differentiation of the response without taking costly 
measures to increase precision of numerical 
computations. This being said, it has to be stated that the 
amount of noise when using FLAC3D can be reduced to 
a certain degree with the applied criterion of model 
equilibrium. We used the maximum gridpoint velocity of 
10-7 “m/s” as the criterion, the calculation stopping the 
solving procedure after all gridpoint velocities have 
fallen below this limit. In parameter studies this 
threshold proved to be a good compromise between 
computation speed (one model run taking between 5 and 
10 minutes) and result precision. The bottom line is that 
it is impossible to remove the noise completely from 
model response; due to the discretization and numerical 
roundoff errors it is inherent to every numerical method.  

After considering the above circumstances we decided to 
use an optimization method that does not make direct 
use of gradient information or perform noise sensitive 
numerical operations. 

The Nelder-Mead simplex method [5,8] was identified 
as a method of choice as it provides a reasonable 
compromise between the efficiency and robustness. This 
method maintains a simplex defined by n+1 points in the 
design space in which the objective function is 
evaluated. Throughout iterations, it accommodates the 
simplex by merely comparing function values in its 
apices. The simplex searches the design space according 
to a set of possible steps designed to prevent 
degeneration and ensure progress towards minimum 
(Figure 9). Which step is taken in each iteration is 
decided by successive attempts of moving particular 
simplex apices followed by evaluation of new function 
values and comparison with the old ones. 

The Apex with the highest function value (or “the worst 
point”) is first reflected over the center of other apices 
(step a in Figure 9). If the function value in the reflected 
point is smaller than original one then expansion is 
attempted (step b). Otherwise, the algorithm tries to 
move the worst point towards the point of reflection, 
which causes contraction of the simplex (steps c and d). 

If this also doesen’t yield a better point then all other 
apices are moved towards the best pont (step e). 
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Figure 8: Tabulated objective function between two points in 
the parameter space utilizing a synthetic model. Figure a) 
shows the full interval and b) zooms the part close to the 
origin. Linear factor running from 0 in the first point to 1 in 
the second point of the line is shown in the horizontal axis, 
and the objective function value on the vertical axis. 
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Figure 9: Possible steps of the simplex algorithm in two 
dimensions with characteristic points: a) reflection, b) 
expansion, c) outside and d) inside contraction, and e) shrink. 

Relative robustness of the method can be assigned to the 
fact that very little information about the minimized 
function is directly analyzed and exploited, while the 
method is still capable of reasonable response to features 
such as change in the gradient direction or ratio between 
gradient size and mean curvature. The order of local 
convergence is linear, but the rate may become slow if 
problem parameters are not well scaled [8]. 



In the presented example, the NLPSimp (nonlinear 
programming simplex) method [9] was used, which is a 
modification of the Nelder-Mead method adapted for 
solving constrained optimization problems. One of the 
modifications is related to the definition of a new 
comparison operator, which compares the calculated 
response first by values of violated constraint functions 
(if any) and then by the value of the objective function. 
Bound constraints are treated in a specific way such that 
the numerical simulation is never performed at the 
parameters that are out of the prescribed way. This is 
achieved by a combination of parameter transformation 
that project out-of-bounds parameters to the 
correspoinding bounds, and addition of a penalty term to 
the objective function in order to discriminate between 
parameters in infeasible region according to the amount 
of constraint violation. Such treatment of bound 
constraints is beneficial in the cases where infeasible 
parameters would cause breakdown of the numerical 
model (e.g. a negative Young’s modulus or the Poisson’s 
ratio greater than 0.5). 

4. RESULTS 
The back analysis of the ground properties from the 
horizontal test at the chainage 179 was performed in 
three steps. 

First, the elastic parameters E and ν have been identified 
based only on the loading branch of the test. This has 
lead to the estimation of the Poisson’s ratio ν. Assuming 
that it stays constant both throughout the first loading 
and un-/re-loading branch ([1], 10), this parameter was 
fixed in the further back-analysis runs, hence reducing 
the number of sought after model parameters. The 
procedure yielded plausible parameters (Table 1). 
Table 1: Results obtained from the first back-analysis run and 
the evolution of the associated objective function 

Young’s modulus E  
(first loading branch) 

[MPa] 3,387.03

Poisson Ratio ν [-] 0.10

Start value of the objective function: [-] 4.594

Final value of the objective function: [-] 0.739

 

The experience from this first back analysis run showed 
that the convergence of the optimization algorithm 
slightly increases if the weights of the extensometer 3 
and 4 measurements are set to 0.25, while no adverse 
effects on the final result can be observed. The load plate 
displacement appeared to be physically inconsistent with 
the rest of the measurements, with a certain amount of 
contact stiffness not accountable for in the model. 
Hence, the weight of the load plate displacement was set 

to zero, and the extensometer 1 and 2 displacement 
measurements have been assigned the weight of 1.0.  

4.1. Complete loading-unloading analysis 
In the next step, the entire set of target values was used, 
featuring multiple switches between first loading and un-
/re-loading loops. The parameters obtained show 
plausible agreement with the parameters obtained from 
closed-form solutions [2,10].  
Table 2: Results of back analysis for the entire set of target 
values 

Young’s Modulus E  
(un-/re-loading branch)

[MPa] 8,949.36

Ratio between E and V  [-] 2.53

Deformation Modulus V 
(first loading branch) [MPa] 3537.29

Start value of the objective function [-] 32.90

Final value of the objective function [-] 0.679

 
4.2. Complete analysis incorporating high 

performance mortar bedding 
After both back-analysis runs proved to be convergent 
and stable, the back analysis of rock mass properties 
incorporating the influence of the high performance 
mortar was started. The results, if compared to the ones 
in Table 2, show a plausible decrease of the rock mass 
properties, since the stiff mortar bedding acts as a load 
distributing element, reducing the concentration of 
stresses below the load plate (Table 3).  
Table 3: rock mass parameters with the influence of bedding 
mortar incorporated 

Young’s Modulus E  
(un-/re-loading branch)

[MPa] 7,716.31

Ratio between E and V  [-] 2.49

Deformation Modulus V 
(first loading branch) [MPa] 3,098.93

Start value of the objective function [-] 18.34

Final value of the objective function [-] 0.700

 

After inspecting the plots of calculated and measured 
load-displacement relationships for every sensor 
position, a very good fit between Extensometer 1 and 
associated model response was observed, however the 
deeper extensometers featured stiffer behavior than 
anticipated. The reason lies in the zone around the cavity 
damaged by blasting, inducing micro-cracks and thus 
considerably reducing the stiffness of the rock mass. 
Attempting the identification of the mechanical 
properties of the unaffected zone, the weight assigned to 
Extensometer 1 was reduced to 0.25, effectively 



allowing the algorithm to freely fit the measurements 
obtained from the deeper positions. The results are 
presented in Table 4.  
Table 4: Rock mass parameters obtained from deeper 
extensometers 

Young’s Modulus E  
(un-/re-loading branch) 

[MPa] 9525.94

Ratio between E and V  [-] 2.78

Deformation Modulus V 
(first loading branch) [MPa] 3426.59

Start value of the objective function [-] 21.46

Final value of the objective function [-] 0.649

 

As expected, the results show an increase of the rock 
mass parameter values (when compared to the results 
presented in table 3), confirming the existence of a 
damage zone. Unfortunately, a rigorous identification of 
the damage zone extent would also dictate geometrical 
parameterization, which is currently technically 
impossible. The considerable amount of noise in the 
readings of Extensometers 3 and 4 represents one further 
obstacle, rendering the combination of geometrical case 
studies (variation of the damage zone extent already 
incorporated while generating the model mesh) and back 
analysis for parameter determination unfeasible.  

4.3. Discussion 
The obtained results have been checked on their 
plausibility by comparing them to the state-of-the-art 
closed-form solutions [2, 10]. The results are presented 
in Figure 10. 
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Figure 10: Rock mass parameters obtained by different 
relationships (grey: un-/re-loading modulus, red: first loading 
modulus) 

The presented comparison backs the correctness of the 
results. Although the boundary influence in the 
numerical model poses a drawback that has to be 
accepted when performing this kind of back-analysis, the 
ability to incorporate additional influences of 

geometrical and mechanical deviations from the 
idealized closed-form solutions represents (in certain 
cases) a valuable addition. The relative error (with 
respect to the results of back-analysis with the mortar 
layer) of the Ünal and ISRM results shows that the 
bedding has a considerable influence on the outcome of 
the analysis (Table 5). 
Table 5 Overview of the relative error with respect to the 
back-analysis results 

 V [%] E [%] 

Ünal solution 16.3 4.7 

ISRM recommendation 21.0 6.3 

 

5. CONCLUSION 
The motivation for this work has been somewhat broad: 
apart from wanting to determine the rock mass 
properties with as low amount of simplification as 
possible, we also wanted to test the developed 
optimization algorithm and its behavior when coupled 
with FLAC3D. The conclusions, when applied to the 
field of rock mechanics, lie at hand: 

• The back analysis is applicable only when an 
unambiguous set of measurement data is 
available. Hence, if trying to identify the 
material parameters, some information about the 
stress field must be available as well. 

• The state-of-the-art optimization algorithms 
developed and implemented by C3M are 
efficient, stable and can be used with the 
commercial Itasca Code FLAC3D. 

• The used constitutive law must be able to depict 
the true material behavior at a satisfactory level; 
otherwise the obtained fit is meaningless. 

• If the requirements stated above are met, the 
inverse identification of material parameters 
using numerical models can be deemed as 
probable to succeed, disregarding the issue of 
enormous calculation times in some cases.  

The future work will concentrate on solving problems 
with the stability of the double-yield model, since it 
would allow the incorporation of arbitrary (also non-
linear) volumetric hardening relationships. This would 
allow meaningful parameter identification also in cases 
of measurements featuring non-linear load-displacement 
relationships. Another aim is the combination of the 
double yield model with elastic orthotropy. In ideal case, 
the back analysis would consider the measurements 
obtained from both vertical and horizontal tests and end 
in identifying the rock mass properties which are 



invariant to the test orientation. On the long term, the 
back analysis of rock mass properties based on absolute 
displacement monitoring in tunnel construction is 
envisioned.  
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