
Software Framework for Application of Automatic
Optimization Techniques to Metal Forming

Igor Grešovnik

Abstract

An optimization environment is presented that
has been designed for application in forming
technology and in other engineering fields. A
number of difficulties that can be encountered
when dealing with realistic industrial problems
call for a multidisciplinary solution approach. An
optimization shell has therefore been developed
with an open and extensible architecture that
enables harmonized operation of a variety of
tools specialised for different tasks, which is
necessary for efficient solution of optimization
problems. The concept is demonstrated on
selected examples: optimization of tool shape in
sheet forming, optimal pre-stressing of cold
forging dies, and optimal design of material with
periodic microstructure.
Computational complexity of the numerical
models and substantial noise in numerical results
are common difficulties that aggravate
employment of classical optimization techniques
An algorithm based on successive local
approximations of the response functions with
restricted step approach has been constructed in
order to overcome these difficulties. Current
work is focused on the design of an optimization
library in order to promote systematic
development of such algorithms.

1 Introduction

Intensive application of automatic optimisation
to the design of forming technologies has not
been often reported until recently. The
complexity of the forming processes from the
physical modelling and numerical point of view
often aggravate successful utilization of
optimization techniques, which would result in
observable economic benefits. In spite of this,
there is a strong potential for optimisation in
forming industry due to high production volumes
and a number of practical problems that have not
yet been adequately solved. Earlier work in this
area focused predominantly on inverse
identification of model parameters [1],[2],
making an important contribution to

understanding of material response and contact
conditions. Other works addressed a limited
number of fundamental issues related to
optimization [3]-[5]. This enabled automatic
optimization of process parameters such as tool
or pre-form shape, loading path, lubrication, pre-
stressing conditions, tool materials, etc., in order
to achieve objectives such as precise tolerances,
better performance of the products, targeted
structural changes in material, durability of tools,
reliability and low cost of the process.

When solving realistic industrial examples, a
number of problems are encountered, which can
only be overcome by close collaboration
between numerical analysts and industrial
designers and require application of up-to-date
expertise in different engineering fields.

The first prerequisite is a good knowledge of
material behaviour. This is seldom satisfactory,
therefore preliminary research supported by
numerical tools is required to derive adequate
material models and to obtain trusted values of
model parameters.

Boundary conditions must be determined
precisely enough to allow accurate simulation of
the process. Heat transfer and friction between
the bodies in contact must be estimated. These
phenomena are hard to investigate because
complex microscopic phenomena play a crucial
role and it is not always possible to perform
meaningful in-situ measurements. Numerical
support to the design of forming technology
often requires adaptation of traditional
manufacturing procedures, since these do not
ensure enough uniform processing conditions.

When simulating forming processes, highly non-
linear, path dependent material behaviour with
coupled thermal, mechanical and other
phenomena is dealt with, large deformations are
involved and sometimes multi-scale simulation
approach must be adopted. This together with
complex geometry leads to large-scale numerical
models where parallel solution schemes may be
considered.

When the above mentioned issues are adequately
solved, numerical simulation can be employed to
support the design of the forming process or
formed part. This requires knowledge of the
process at a technologist’s level and eventually
of the broader aspects such as the state of the
market, production capacities, cost breakdowns,
etc. This is necessary to define the objectives and
constraints for optimisation procedures in such a
way that results will suggest advantageous
changes in the design while not conflicting with
technological limitations.

Mastering the described requirements is usually
achieved in a step by step manner for a certain
class of applications. In the scope of this work, a
software framework is being designed for
supporting the application of automatic
optimisation in forming technology. The
framework is flexible enough to be applicable to
a large variety of problems. It supports
multidisciplinary development and systematic
updating of solution methodologies for classes of
similar problems.

In the subsequent sections, a rough outline of the
framework is given first, followed by analysis of
some individual features and brief description of
selected application areas.

2 Optimization Environment

Rather than building a large, complex
homogeneous system that could alone deal with
complete problems, the adopted approach was to
connect and harmonise smaller specialised units.
By having in mind such a modular system, an
optimisation shell [6]-[10] has been developed
whose primary aim is to control the execution of
external analysis programmes within the
optimisation loop.

Early experience with practical problems
identified the need for high flexibility with
respect to problem definition and combination of
solution utilities. The shell was therefore built
around a powerful interpreter designed for
driving numerical applications (Figure 1). An
shell interface library for accessing the
interpreter and other shell functionality enables
easy integration of diverse software tools. These

are driven in an integrated scheme with
centralised data access and synchronised
execution flow ([9],[10]). Beside for the solution
of practical optimization problems, the system is
also intended to serve as development and
testing environment.

The optimization shell connects optimization
algorithms with the evaluation of the objective
and constraint functions at a given set of design
parameters, which typically involves a finite
element numerical analysis [12] of the process.
Interpretation of a specific analysis block of code
in the command file is performed each time the
evaluation is required by an algorithm. The user
defines the evaluation of the objective and
constraint functions within this code block.
Execution of the numerical analysis is controlled
by interface functions attached to the interpreter,
as well as data exchange between the shell and
the numerical analysis environment. Exchange of
the current values of design parameters and
simulation results between the optimisation
algorithm and the numerical analysis is enabled
through pre-defined shell variables. Intermediate
functions take care of this, which enables
straightforward linking of optimization
algorithms from their original libraries [9].

Current development of modules incorporated in
the optimization shell is focused on general
utilities that are closely related to optimization.
The simulation and sensitivity analysis tools
have been mainly developed separately from the
optimization shell and integrated in the pre-
application stage. An interfacing methodology
has been elaborated for the finite element
simulation systems, which enables the shell to
have a full control over execution of the finite
element analysis and access to its data. Such
approach proved suitable for setting up
optimization schemes, while possible
applications exist beyond that. The scheme can
be applied to add flexibility to the simulation
environment itself, even when used as stand-
alone, e.g. to enable user interference during the
analysis or to enable easy switching between
available solvers, to facilitate evaluation of user-
defined quantities expressed as integral over the
time or spatial domains, etc.

Algorithms and
utilities

Data
handling

Optimisation
algorithms

External utility links
Optimisation Shell

Data
exchange

Simulation
programme

Simulation
interface

Command file
Interpreter

Shape
transformms

Execution
control

External
utilities

Inverse
algorithms

Figure 1: Functional scheme of the optimization system.

2.1 Incorporation and Usage of
Algorithms

One of the crucial demands for the optimisation
system is the possibility of providing a number
of different optimisation algorithms and other
utilities. It is also desirable that algorithms are
implemented and accessed in a unified way. It
should be easy to switch between different
algorithms even without any particular
knowledge of their function.

Incorporation of new algorithms into the shell is
straightforward. Each algorithm is represented in
the shell by the corresponding interpreter
function, which the user calls to perform the
algorithm. In order to define such a function, a
corresponding C function must be implemented,
linked with the shell code and installed to the
interpreter system under a given name. The type
of such a function is prescribed. Its only
argument is a pointer to the structure that
represents the shell interpreter, through which all
data regarding the state of the environment can is
accessible. The algorithm must be called within
the body of this C function.

The user of the shell will define input and output
data of the algorithms through arguments of the
corresponding interpreter function. These data

must be extracted within the corresponding C
function that calls the algorithm by using the
appropriate shell interface library functions. All
of these functions conveniently take as argument
the pointer to the structure that represents the
interpreter. During the interpretation of the
command file, this structure contains all the
necessary data for extracting arguments as have
been passed by the user, and the corresponding
shell interface library functions take care of
extraction and necessary conversions.
Incorporation of new algorithms into the shell
does therefore not require any particular
knowledge of the shell structure.

Algorithm output is treated in a similar manner
than its input, except that the corresponding
arguments that the user passes to the relevant
interpreter function usually specify names of
interpreter variables that will store the output
data. Again, the shell interface library functions
are called to obtain the storage locations
corresponding to these variable names, and to
copy the output data to these locations. Since
algorithm implementations usually come with
their own format of input and output parameters,
some simple data conversions between the data
types known to the algorithm and the shell
supported data types are necessary.

File operations Stacks

Expression
evaluator

Simulation
interface

General file
interface

Shell
Variables

File interpreter

Matrix and vector
operations

Nonlinear
programming FSQP

algorithm

Shell functionality

Figure 2: Organization of shell modules. Arrows show dependencies.

Shell functionality with the incorporated
algorithms and other utilities is arranged in a
hierarchical structure. A cutout of this structure
is shown in Figure 2, with indicated relations
between different modules. A more elaborate
discussion of the shell structure and function can
be found in chapter 4 of [9].

3 Direct Shape
Parameterization Approach

Many problems in forming are related to the
shape of the tools or work piece. Include
geometric design in automatic process, one must
be able to represent these shapes continuously in
terms of a finite number of design parameters, in
a form suitable for numerical simulation. A
number of practical approaches to this task
employ concepts of parametric design developed
for computer graphics and CAD [13], a practical
example of which can be found in [14].

A different approach has been developed in order
to meet the requirements imposed by practical
problems in metal forming. These are related to
the efficiency when used with large scale
problems, ability to adopt the existent
preliminary design produced by technologists as
a starting guess in optimization, sufficient
generality with respect to geometrical layouts for
which the approach is applicable. Furthermore,
the approach should be well suited for
combination with the sensitivity calculation in
order to enable efficient optimization techniques,
and should work both with fixed topology of the
finite element mesh and automatically generated
mesh.

In light of the above stated goals, a direct
parameterization technique has been constructed
where the geometry of objects considered in
numerical simulation is defined by parameter
dependent maps [16]. A framework for the
parameterization is based on two-stage
transforms from the reference to physical domain
and is sketched in Figure 3.

The part of the object that is parameterized is
mapped to the reference domain where the co-
ordinates of material points are deemed
independent of shape parameters. In order to
obtain different initial boundary shapes of the
object, a parameter dependent transform is
applied to the reference co-ordinates of material
points consisting the object, such that

() () ()() ()pFx ,,, 000 ηξ== yx ,

where

() ()()pgfpF ,,,, ηξηξ = .

()0x denotes initial co-ordinates of a material

pint, ξ and η are its reference co-ordinates, p
are shape parameters and F is the composed map
applied to obtain physical co-ordinates from the
reference ones.

The reference geometrical layout is obtained by
mapping a chosen initial design from the
physical to reference system by applying the
inverse map, ()() ()()()pxfgpxF ,, 01101

ii

−−− = , at

some initial parameters that are chosen to
produce that design. This can comprise the finite
element mesh of the parameterized domain in the

case of fixed mesh topology, or just the
boundary definition in the case that automatic
mesh generation is applied. Derivatives of the
initial co-ordinates of material points are
obtained by differentiating F with respect to the
shape parameters, where the chain rule is
applied:

() ()
()

()
jj

ii

pd

d

d

d

pd

d pgfpF ,,

,

,,, ηξ
ηξ
ηξηξ

= .

The term initial co-ordinates is used here for
non-deformed configuration in the physical
space, at any values of the shape parameters. In
the case of fixed mesh topology, the reference
co-ordinates (ηξ ,) are calculated in advance for
all nodes of the mesh. When automatic mesh
generation is applied, they must be obtained for
each node of the generated mesh by application

of 1−F to its physical co-ordinates.

ξ

η

ΓR

ΩR

(ξi,ηi)

(0,1)

(1,0)

(0,0)

ξ

η

Γg(p1)

Ωg

(0,1)

(1,0)

(0,0)

Γg(p0)

ΓF(p1)

ΓF(p0)

ΩF

F(ξi,ηi, p1)

F(ξi,ηi, p0)

g(ξ,η,p) f(ξ’,η’)

F (ξ,η) = f (ξ’,η’) = f(g(ξ,η,p))

x

y

Reference domain Intermediate domain
Physical domain

(ξi ',ηi ')p0

(ξi ',ηi ')p1

r1

r2

r3

r4

Figure 3: Representation of the shape parameterization approach.

The basic property of the applied shape
transform is that its second stage f is independent
of shape parameters and is designed in such a
way that g acts on a simple domain. f and g can
therefore be explored independently and the
above described prototype parameterization
algorithm can be used. The second stage f was
fixed for 2D and 3D case, for 2D being

() () ()
()ξη

ηξηξ

4321

41211
2 ,

rrrr

rrrrrf

−+−
++−++−+=D

.

The points 1r through 4r define the

parameterized region in the physical space. The
inverse 1−f can be calculated analytically in 2D,
while a modified Newton algorithm is used for
calculation of inverse in 3D.

f is considered only on a domain in the reference
space above the unit interval in 2D or unit square
in 3D (Figure 3); points outside this region are
not mapped within the domain affected by the
parameterization. In certain cases, f is not unique

on the considered domain. The problem is
treated by restriction of this domain in such a
way that f is unique on the restricted domain.
This is achieved by a-priori restricting the range
of values of the first stage transform by
composition of an additional function
(monotonous by limited range) upon the last co-
ordinate of the image of g.

Since f is considered only on a domain above the
unit interval in 2D (or unit square in 3D), the
parameter dependent part of F is conveniently
defined (in 2D) as a stretch according to some
parameter dependent function s, i.e.

() ()()ηξξηξ ⋅= ppg ,,,, s ,

where s is a parametric family of curves defined
over a unit interval (2D case) or surfaces defined
over a unit square. This is a convenient feature
because inversion of g involves merely direct
calculation of s, and the complexity of
calculation is reduced to calculation,
differentiation and inversion of f and to
calculation and differentiation of s. Different
ways of defining s were considered. In 2D case,

cubic splines, Bezier curves, linear combination
of gauss-like curves and the diffuse
approximation of a set of values were
considered. Bezier surfaces and linear
combination of Gauss-like surfaces were
considered in the 3D case.

The appropriate algorithms for evaluation of s
and its parametric derivatives were developed in
a separate module with the application interface
that enables seamless integration in the routines
for manipulating the complete transform. This is
demonstrated e.g. in the technical specification
of application interface for spline calculation
[17].

3.1 Example Applications of Shape
parameterization

The first example of application of shape
parameterization is in can forming. Market
demands encourage can manufacturers to
produce cans in variety of attractive shapes. For

this purpose, additional forming stages are
introduced in the production process. During the
shaping stage, a cylindrical metal sheet is formed
by a tool placed inside the sheet and expanded
outwards in radial direction (Figure 4).

Non-uniform expansion of the sheet causes its
thinning and can eventually lead to tearing of the
material. The spring-back effect is responsible to
considerable changes in can shape after
unloading where tools are drawn back, because
of which the final can shape is not directly
related to tool shape.

The tool shape was optimized with the intention
of compensating for the spring-back effect in
view of achieving the desired shape of the can
within given tolerance and at the same time
minimizing the peak effective stress within the
can after forming. Other objectives such as
maximizing the volume of the can were also
considered.

Figure 4: Stages of the can shaping. Contour of the tool and the blank is shown a) before, b) during and c)
after the tool expansion. The produced can shape is shown on the right hand side.

Figure 5 shows the resulting shape obtained by
maximization of volume, with prescribed
constraint on admissible shapes and maximal
effective stress attained during forming. The
sequential quadratic method was used for solving
the problem. Derivatives of the objective and
constraint functions were obtained by direct
differentiation of the finite element model [19].
In further work, improvement of the shaping
process by optimization of kinematics of tool
segments and tribological conditions has been
considered [18].

9 parameters
107 dir.analyses, 30 iterations

30

32

34

36

38

40

42

0 50 100 150 200 250

min
max
final

Figure 5: Final can shape with indicated upper
and lower admissible shape constraints.

Another typical application is optimal pre-
stressing of cold forging tools (Figure 6) [9].

Cold forging dies are subjected to high
operational loads which often lead to fatigue
failure. To reduce growth of fatigue cracks the

dies are used in a pre-stressed condition. This is
achieved by putting the die in a stress ring. The
stress field must be such that plastic cycling and
tensile stress concentrations during loading are
minimized at critical locations. This can be
achieved by optimizing the geometry of the

interface between the stress ring and die insert in
such a way that the resulting pressure field at the
interface induces the desirable stress field inside
the die (Figure 6 b).

a)
Critical locations

 b)

5

10

15

20

2

4

6

8

10

0

500

1000

0

500

1000

Figure 6: a) Cold forging tools with critical locations where cracks tend to occur. b) Optimal pressure
around the interface between the die and stress ring.

4 Optimization of Internal
Structure of Inhomogeneous
Material

The problem of optimal design of material
structure has been addressed. The example
includes optimization of shape of inclusions in a
periodic microstructure [20],[21] with respect to
given criteria concerning the overall response of
a specimen under a prescribed loading (Figure
7). A specimen supported at its bottom ends is
loaded by a vertical force acting in the middle of
its topper surface. The specimen consists of
periodic inclusions of a harder material
incorporated in a softer matrix. The task is to
optimize the shape and orientation of these
inclusions by taking into account criteria that
incorporate the deflection of the specimen, work
of external forces and energy dissipation.
Computation of the response of the structure has
been performed by a two scale finite element
model with strongly coupled scales [22]. This
allows for more accurate computation in the case
where the scale effect is expressed, i.e. where the
size of the structure would affect the
macroscopic response.

a)

b)

b

a

α
x

y

d

Figure 7: a) Studied structure under loading and
b) three parametric description of the shape of
inclusions within microscopic periodic cells.

Finite element analysis of the problem has been
implemented in FEAP and parallelized on top of
the parallel interface adopted in PLATON – a
Problem Solving Environment (PSE) for
distributed numerical optimisation. The problem
was then solved on a cluster of Linux
workstations. Optimization was performed by
the Nelder-Mead simplex and the sequential
quadratic programming method [23] (Figure 8).

a)

0

1

2

1

2

-3

-2

-1

0

1

α

0

1

2a

1

2b

 b)

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

2

4

6

8

α

0.2
0.4

0.6
0.8a

0.2
0.4

0.6
0.8b

Figure 8: Convergence of a) simplex and b) SQP algorithm in the parameter space.

5 Algorithm design

In many practical cases, computational
complexity of the numerical model and
substantial noise in numerical results are primary
difficulties that seriously aggravate employment
of classical optimization techniques [25]. An
algorithm based on successive local
approximations of the response functions with
restricted step approach has been constructed in
order to overcome these difficulties. A rough
outline of the algorithm is as follows:

1. Choose the center point x0 (initial guess) and

the trust region parameter r.
2. Sample response functions in a chosen

number of points contained in the sampling
region ri ,xΩ centered around xi.

3. Build approximations of the objective and
constraint functions.

4. Solve the problem with approximated
objective and constraint functions, subjected
in addition to step length constraints defined
by r. Set a new xi to the solution of this
problem.

5. Update r according to algorithm progress
and with respect to agreement of samples in
the last iterate with approximations in
previous iterates.

6. If not converged, repeat the procedure from
step 2, otherwise post-process the collected
data and finish with xi as problem solution.

The goal is to spend as few function evaluations
as possible for converging to the solution of the
optimization problem with the requested
accuracy, as well as to ensure stability in

presence of noise. It is crucial that sampling is
performed economically. Usually less samples
are calculated in each iteration than the minimum
needed for the approximation, and are therefore
combined with samples acquired in previous
iterations. Different techniques are employed to
choose sampling points in a way that ensures
maximal accuracy of approximations.

Updating the trust region parameter r is the a
subtle part of the algorithm. This parameter
determines the constraint on step size as well as
the size of the sampling region. In general,
reducing r means smaller potential advance in
each iteration (because step restriction is tighter),
but also better agreement of approximations with
sampled functions provided that the sampled
functions are smooth enough. Far from the
solution, we attempt to keep r large in order to
enable faster progress, but not too large because
in this case local approximation becomes too
inaccurate over the trust region. Near the
solution we should allow quick reduction of r
over iterations in order to ensure rapid local
convergence.

5.1 Optimization library

Further research is focused on more systematic
development of efficient optimization algorithms
applicable for larger number of design
parameters and complex response with
substantial level of noise. An optimization
library intended for development, testing,
comparison and application of such algorithms is
being developed. The library will provide a
modular collection of building blocks for
algorithm development (sampling,
approximation building, regularization
techniques, linear algebra routines, algorithms

for solving mathematical programming sub-
problems, parallel job management, etc.) and
extensible set of test cases with performance
monitoring facilities.

At the current stage, internal standards for data
structures and common function prototypes have
been set up in such a way that linkage with
external libraries and software is simplified,
while other serviceability aspects are kept in
mind such as efficiency, thread safety,
extensibility, etc. A basic toolbox is provided, on
basis of which a framework of the test suite and
a prototype algorithm were built. Future plans
include definition of interface standards for
parallel algorithms, extension of the toolbox and
construction of implementations of some basic
classes of optimization algorithms, and
elaboration of documentation after which a
public release of the library will be prepared.
This will hopefully create a basis for long term
development of efficient algorithms with active
exchange of research results and testing
procedures with broader community in the
relevant research field. The library will also be
included in the optimization shell "Inverse". This
will enable prompt application of the designed
algorithms to practical problems, with possibility
of combining with additional tools such as shape
parameterization utilities.

Acknowledgment

This work was performed by financial assistance
of the European Commission, in the scope of the
COST 526 action, and the Slovenian Ministry of
education, science and sport under the contract
No. Z2-3200-1533-02

References

[1] Gavrus A, Massoni E and Chenot J L.
Computer Aided Rheology for Nonlinear Large
strain Thermo-viscoplastic Behaviour
Formulated as an Inverse Problem. Proc. of
Inverse Problems in Engineering Mechanics
1994, Paris.
[2] Rodic T, Gresovnik I and Owen D R J.
Application of Error Minimization concept to
Estimation of Hardening Parameters in the
Tension Test. Proc. of COMPLAS 95,
Barcelona, 779-786.
[3] Maniatty A M. and Chen M F. Shape
Optimization for Steady Forming Processes.
Proc. of COMPLAS 95, Barcelona, 719-730.

[4] Fourment L, Balan T and Chenot J L.
Optimal design for non steady-state metal
forming processes- II Application of shape
optimization in forging. Int. J. Num. Meth. in
Engng, vol. 39, n° 1: 51-66.
[5] Wright E and Grandhi R V. Integrated
Process and Shape Design in Metal Forming
With Finite Element Sensitivity Analysis. Design
Optimisation: Int. Journ. of Product & Process
Improvement, 1999, Vol.1, No. 1: 55-78.
[6] Optimisation Shell Inverse, electronic
document at http://www.c3m.si/inverse/ ,
maintained by the Centre for Computational
Continuum Mechanics, Ljubljana.
[7] Gresovnik I and Rodic T. Optimisation
System Utilising a General Purpose Finite
Element System. Proc. of WCSMO-2, Zakopane,
1997, Vol. 1, 61-66.
[8] Rodic T and Gresovnik. I. A computer
system for solving inverse and optimisation
problems. Eng. Comput., 1998, vol. 15, no. 7:
893-907.
[9] Gresovnik I. A General Purpose
Computational Shell for Solving Inverse and
Optimisation Problems - Applications to Metal
Forming Processes. Ph.D. thesis, University of
Wales Swansea, 2000. Available on the Internet
at http://www.c3m.si/inverse/doc/phd/index.html
[10] I. Gresovnik., T. Sustar, T. Rodic.
Parallelization of an optimization shell. In Proc.
of The 3rd World congress of structural and
multidisciplinary optimization. Buffalo, NY,
May 17-21, 1999. pp. 221-223.
[11] Gresovnik I. Quick Introduction to
Optimization Shell Inverse. Electronic document
at http://www.c3m.si/inverse/doc/other/ .
[12] O. C. Zienkiewicz, R. Taylor. The Finite
Element Method, Vol. 1, 2 (fourth edition).
McGraw-Hill, London, 1991.
[13] Marsh D. Applied Geometry for Computer
Graphics and CAD. Springer, 1999.
[14] Kegl M. Shape optimal design of structures:
an efficient shape representation concept. Int. J.
Num. Meth Eng., 2000, Vol. 49: 1571-1588.
[15] I. Gresovnik, T. Rodic, D. Jelovsek. Simple
two stage transforms designed for optimisation
of shape in forming processes. In Proceedings of
The 4th ESAFORM Conference on Material
Forming, Liege, Belgium, April 23-25, 2001.
[16] I. Gresovnik, T. Rodic, Practical
considerations regarding optimisation of shape in
forming processes, In Proceedings of The 5th
International ESAFORM Conference on
Material Forming, Akadeimia Góeniczo-
Hutnicza Kraków, 2002.

[17] I. Gresovnik. Spline Interpolation with
Sensitivities. Internal report, C3M, 2003.
[18] T. Rodic, D. Cukjati and I. Gresovnik.
Optimal design of preform geometry and
tribological conditions in can forming. Accepted
for publication in Engineering Computations.
[19] S. Stupkiewicz, J. Korelc, M. Dutko, T.
Rodic. Shape sensitivity analysis of large
deformation frictional contact problems.
Computer Methods in Applied Mechanics and
Engineering, vol 191/33 pp 3555-3.
[20] A. Ibrahimbegovic, I. Gresovnik, D.
Markovic, S. Melnyk and T. Rodic Shape
optimization of two-phase material with
microstructure. Accepted for publication in
Engineering Computations.
[21] I. Gresovnik, D. Markovic, T. Rodic, A.
Ibrahimbegovic. Optimization of Inclusion
Shape in Inhomogeneous Structural Elements.
Proceedings of NATO-ARW advanced
workshop on Multi-physics and Multi-scale
Computer Models in Non-linear Analysis and
Optimal Design of Engineering Structures Under
Extreme Conditions, Bled, Slovenia, June 13 -
17, 2004.
[22] A. Ibrahimbegovic and D. Markovic: Strong
coupling methods in multi-phase and multi-scale
modeling of inelastic behavior of heterogeneous
structures. Comput. Methods Appl. Mech.
Engrg., Vol. 192, pp. 3089-3170, 2003.
[23] C. T. Lawrence,J. L. Zhou, A. L. Tits.
User's Guide for CFSQP Version 2.5. Institute
for Systems Research, University of Maryland,
Technical Report TR-94-16r1, 1997.
[24] Van Keulen F, Toropov V V. Multipoint
Approximations for Structural Optimization
Problems with Noisy Response Functions.
Electronic document at http://www-
tm.wbmt.tudelft.nl/~wbtmavk/issmo/paper/mam
_nois2.htm.
[25] I. Gresovnik, S. Hartman and T. Rodic.
Development of Optimization Methodology for
Reduction of Defect Risk at Blow Forming.
Accepted for publication at the 6th World
Congress on Structural and Multidisciplinary
Optimization, Rio, 2005.
[26] I. Grešovnik, ” Ioptlib home”, electronic
document at http://www.c3m.si/igor/ioptlib/

