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Abstract 

An optimization environment is presented that 
has been designed for application in forming 
technology and in other engineering fields. A 
number of difficulties that can be encountered 
when dealing with realistic industrial problems 
call for a multidisciplinary solution approach. An 
optimization shell has therefore been developed 
with an open and extensible architecture that 
enables harmonized operation of a variety of 
tools specialised for different tasks, which is 
necessary for efficient solution of optimization 
problems. The concept is demonstrated on 
selected examples: optimization of tool shape in 
sheet forming, optimal pre-stressing of cold 
forging dies, and optimal design of material with 
periodic microstructure.  
Computational complexity of the numerical 
models and substantial noise in numerical results 
are common difficulties that aggravate 
employment of classical optimization techniques 
An algorithm based on successive local 
approximations of the response functions with 
restricted step approach has been constructed in 
order to overcome these difficulties. Current 
work is focused on the design of an optimization 
library in order to promote systematic 
development of such algorithms. 

1 Introduction 

Intensive application of automatic optimisation 
to the design of forming technologies has not 
been often reported until recently. The 
complexity of the forming processes from the 
physical modelling and numerical point of view 
often aggravate successful utilization of 
optimization techniques, which would result in 
observable economic benefits. In spite of this, 
there is a strong potential for optimisation in 
forming industry due to high production volumes 
and a number of practical problems that have not 
yet been adequately solved. Earlier work in this 
area focused predominantly on inverse 
identification of model parameters [1],[2], 
making an important contribution to 

understanding of material response and contact 
conditions. Other works addressed a limited 
number of fundamental issues related to 
optimization [3]-[5]. This enabled automatic 
optimization of process parameters such as tool 
or pre-form shape, loading path, lubrication, pre-
stressing conditions, tool materials, etc., in order 
to achieve objectives such as precise tolerances, 
better performance of the products, targeted 
structural changes in material, durability of tools, 
reliability and low cost of the process. 
 
When solving realistic industrial examples, a 
number of problems are encountered, which can 
only be overcome by close collaboration 
between numerical analysts and industrial 
designers and require application of up-to-date 
expertise in different engineering fields. 
 
The first prerequisite is a good knowledge of 
material behaviour. This is seldom satisfactory, 
therefore preliminary research supported by 
numerical tools is required to derive adequate 
material models and to obtain trusted values of 
model parameters. 
 
Boundary conditions must be determined 
precisely enough to allow accurate simulation of 
the process. Heat transfer and friction between 
the bodies in contact must be estimated. These 
phenomena are hard to investigate because 
complex microscopic phenomena play a crucial 
role and it is not always possible to perform 
meaningful in-situ measurements. Numerical 
support to the design of forming technology 
often requires adaptation of traditional 
manufacturing procedures, since these do not 
ensure enough uniform processing conditions. 
 
When simulating forming processes, highly non-
linear, path dependent material behaviour with 
coupled thermal, mechanical and other 
phenomena is dealt with, large deformations are 
involved and sometimes multi-scale simulation 
approach must be adopted. This together with 
complex geometry leads to large-scale numerical 
models where parallel solution schemes may be 
considered. 
 



When the above mentioned issues are adequately 
solved, numerical simulation can be employed to 
support the design of the forming process or 
formed part. This requires knowledge of the 
process at a technologist’s level and eventually 
of the broader aspects such as the state of the 
market, production capacities, cost breakdowns, 
etc. This is necessary to define the objectives and 
constraints for optimisation procedures in such a 
way that results will suggest advantageous 
changes in the design while not conflicting with 
technological limitations. 
 
Mastering the described requirements is usually 
achieved in a step by step manner for a certain 
class of applications. In the scope of this work, a 
software framework is being designed for 
supporting the application of automatic 
optimisation in forming technology. The 
framework is flexible enough to be applicable to 
a large variety of problems. It supports 
multidisciplinary development and systematic 
updating of solution methodologies for classes of 
similar problems. 
 
In the subsequent sections, a rough outline of the 
framework is given first, followed by analysis of 
some individual features and brief description of 
selected application areas. 

2 Optimization Environment 

Rather than building a large, complex 
homogeneous system that could alone deal with 
complete problems, the adopted approach was to 
connect and harmonise smaller specialised units. 
By having in mind such a modular system, an 
optimisation shell [6]-[10] has been developed 
whose primary aim is to control the execution of 
external analysis programmes within the 
optimisation loop. 
 
Early experience with practical problems 
identified the need for high flexibility with 
respect to problem definition and combination of 
solution utilities. The shell was therefore built 
around a powerful interpreter designed for 
driving numerical applications (Figure 1). An 
shell interface library for accessing the 
interpreter and other shell functionality enables 
easy integration of diverse software tools. These 

are driven in an integrated scheme with 
centralised data access and synchronised 
execution flow ([9],[10]). Beside for the solution 
of practical optimization problems, the system is 
also intended to serve as development and 
testing environment. 
 
The optimization shell connects optimization 
algorithms with the evaluation of the objective 
and constraint functions at a given set of design 
parameters, which typically involves a finite 
element numerical analysis [12] of the process. 
Interpretation of a specific analysis block of code 
in the command file is performed each time the 
evaluation is required by an algorithm. The user 
defines the evaluation of the objective and 
constraint functions within this code block. 
Execution of the numerical analysis is controlled 
by interface functions attached to the interpreter, 
as well as data exchange between the shell and 
the numerical analysis environment. Exchange of 
the current values of design parameters and 
simulation results between the optimisation 
algorithm and the numerical analysis is enabled 
through pre-defined shell variables. Intermediate 
functions take care of this, which enables 
straightforward linking of optimization 
algorithms from their original libraries [9]. 
 
Current development of modules incorporated in 
the optimization shell is focused on general 
utilities that are closely related to optimization. 
The simulation and sensitivity analysis tools 
have been mainly developed separately from the 
optimization shell and integrated in the pre-
application stage. An interfacing methodology 
has been elaborated for the finite element 
simulation systems, which enables the shell to 
have a full control over execution of the finite 
element analysis and access to its data. Such 
approach proved suitable for setting up 
optimization schemes, while possible 
applications exist beyond that. The scheme can 
be applied to add flexibility to the simulation 
environment itself, even when used as stand-
alone, e.g. to enable user interference during the 
analysis or to enable easy switching between 
available solvers, to facilitate evaluation of user-
defined quantities expressed as integral over the 
time or spatial domains, etc. 
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Figure 1: Functional scheme of the optimization system. 
 

2.1 Incorporation and Usage of 
Algorithms 

One of the crucial demands for the optimisation 
system is the possibility of providing a number 
of different optimisation algorithms and other 
utilities. It is also desirable that algorithms are 
implemented and accessed in a unified way. It 
should be easy to switch between different 
algorithms even without any particular 
knowledge of their function. 
 
Incorporation of new algorithms into the shell is 
straightforward. Each algorithm is represented in 
the shell by the corresponding interpreter 
function, which the user calls to perform the 
algorithm. In order to define such a function, a 
corresponding C function must be implemented, 
linked with the shell code and installed to the 
interpreter system under a given name. The type 
of such a function is prescribed. Its only 
argument is a pointer to the structure that 
represents the shell interpreter, through which all 
data regarding the state of the environment can is 
accessible. The algorithm must be called within 
the body of this C function. 
 
The user of the shell will define input and output 
data of the algorithms through arguments of the 
corresponding interpreter function. These data 

must be extracted within the corresponding C 
function that calls the algorithm by using the 
appropriate shell interface library functions. All 
of these functions conveniently take as argument 
the pointer to the structure that represents the 
interpreter. During the interpretation of the 
command file, this structure contains all the 
necessary data for extracting arguments as have 
been passed by the user, and the corresponding 
shell interface library functions take care of 
extraction and necessary conversions. 
Incorporation of new algorithms into the shell 
does therefore not require any particular 
knowledge of the shell structure. 
 
Algorithm output is treated in a similar manner 
than its input, except that the corresponding 
arguments that the user passes to the relevant 
interpreter function usually specify names of 
interpreter variables that will store the output 
data. Again, the shell interface library functions 
are called to obtain the storage locations 
corresponding to these variable names, and to 
copy the output data to these locations. Since 
algorithm implementations usually come with 
their own format of input and output parameters, 
some simple data conversions between the data 
types known to the algorithm and the shell 
supported data types are necessary. 
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Figure 2: Organization of shell modules. Arrows show dependencies. 
 
 
Shell functionality with the incorporated 
algorithms and other utilities is arranged in a 
hierarchical structure. A cutout of this structure 
is shown in Figure 2, with indicated relations 
between different modules. A more elaborate 
discussion of the shell structure and function can 
be found in chapter 4 of [9]. 

3 Direct Shape 
Parameterization Approach 

Many problems in forming are related to the 
shape of the tools or work piece. Include 
geometric design in automatic process, one must 
be able to represent these shapes continuously in 
terms of a finite number of design parameters, in 
a form suitable for numerical simulation. A 
number of practical approaches to this task 
employ concepts of parametric design developed 
for computer graphics and CAD [13], a practical 
example of which can be found in [14]. 
 
A different approach has been developed in order 
to meet the requirements imposed by practical 
problems in metal forming. These are related to 
the efficiency when used with large scale 
problems, ability to adopt the existent 
preliminary design produced by technologists as 
a starting guess in optimization, sufficient 
generality with respect to geometrical layouts for 
which the approach is applicable. Furthermore, 
the approach should be well suited for 
combination with the sensitivity calculation in 
order to enable efficient optimization techniques, 
and should work both with fixed topology of the 
finite element mesh and automatically generated 
mesh. 

 
In light of the above stated goals, a direct 
parameterization technique has been constructed 
where the geometry of objects considered in 
numerical simulation is defined by parameter 
dependent maps [16]. A framework for the 
parameterization is based on two-stage 
transforms from the reference to physical domain 
and is sketched in Figure 3. 
 
The part of the object that is parameterized is 
mapped to the reference domain where the co-
ordinates of material points are deemed 
independent of shape parameters. In order to 
obtain different initial boundary shapes of the 
object, a parameter dependent transform is 
applied to the reference co-ordinates of material 
points consisting the object, such that 
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where 
 

( ) ( )( )pgfpF ,,,, ηξηξ = . 

 
( )0x  denotes initial co-ordinates of a material 

pint, ξ  and η  are its reference co-ordinates, p  
are shape parameters and F is the composed map 
applied to obtain physical co-ordinates from the 
reference ones. 
 
The reference geometrical layout is obtained by 
mapping a chosen initial design from the 
physical to reference system by applying the 
inverse map, ( )( ) ( )( )( )pxfgpxF ,, 01101

ii

−−− = , at 

some initial parameters that are chosen to 
produce that design. This can comprise the finite 
element mesh of the parameterized domain in the 



case of fixed mesh topology, or just the 
boundary definition in the case that automatic 
mesh generation is applied. Derivatives of the 
initial co-ordinates of material points are 
obtained by differentiating F with respect to the 
shape parameters, where the chain rule is 
applied: 
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The term initial co-ordinates is used here for 
non-deformed configuration in the physical 
space, at any values of the shape parameters. In 
the case of fixed mesh topology, the reference 
co-ordinates ( ηξ , ) are calculated in advance for 
all nodes of the mesh. When automatic mesh 
generation is applied, they must be obtained for 
each node of the generated mesh by application 

of 1−F  to its physical co-ordinates. 
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Figure 3: Representation of the shape parameterization approach. 
 
 
 
 
The basic property of the applied shape 
transform is that its second stage f is independent 
of shape parameters and is designed in such a 
way that g acts on a simple domain. f and g can 
therefore be explored independently and the 
above described prototype parameterization 
algorithm can be used. The second stage f was 
fixed for 2D and 3D case, for 2D being 
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The points 1r  through 4r  define the 

parameterized region in the physical space. The 
inverse 1−f  can be calculated analytically in 2D, 
while a modified Newton algorithm is used for 
calculation of inverse in 3D. 
 
f is considered only on a domain in the reference 
space above the unit interval in 2D or unit square 
in 3D (Figure 3); points outside this region are 
not mapped within the domain affected by the 
parameterization. In certain cases, f is not unique 

on the considered domain. The problem is 
treated by restriction of this domain in such a 
way that f is unique on the restricted domain. 
This is achieved by a-priori restricting the range 
of values of the first stage transform by 
composition of an additional function 
(monotonous by limited range) upon the last co-
ordinate of the image of g. 
 
Since f is considered only on a domain above the 
unit interval in 2D (or unit square in 3D), the 
parameter dependent part of F is conveniently 
defined (in 2D) as a stretch according to some 
parameter dependent function s, i.e.  
 

( ) ( )( )ηξξηξ ⋅= ppg ,,,, s , 

 
where s is a parametric family of curves defined 
over a unit interval (2D case) or surfaces defined 
over a unit square. This is a convenient feature 
because inversion of g involves merely direct 
calculation of s, and the complexity of 
calculation is reduced to calculation, 
differentiation and inversion of f and to 
calculation and differentiation of s. Different 
ways of defining s were considered. In 2D case, 



cubic splines, Bezier curves, linear combination 
of gauss-like curves and the diffuse 
approximation of a set of values were 
considered. Bezier surfaces and linear 
combination of Gauss-like surfaces were 
considered in the 3D case. 
 
The appropriate algorithms for evaluation of s 
and its parametric derivatives were developed in 
a separate module with the application interface 
that enables seamless integration in the routines 
for manipulating the complete transform. This is 
demonstrated e.g. in the technical specification 
of application interface for spline calculation 
[17]. 
 

3.1 Example Applications of Shape 
parameterization 

The first example of application of shape 
parameterization is in can forming. Market 
demands encourage can manufacturers to 
produce cans in variety of attractive shapes. For 

this purpose, additional forming stages are 
introduced in the production process. During the 
shaping stage, a cylindrical metal sheet is formed 
by a tool placed inside the sheet and expanded 
outwards in radial direction (Figure 4).  
 
Non-uniform expansion of the sheet causes its 
thinning and can eventually lead to tearing of the 
material. The spring-back effect is responsible to 
considerable changes in can shape after 
unloading where tools are drawn back, because 
of which the final can shape is not directly 
related to tool shape. 
 
The tool shape was optimized with the intention 
of compensating for the spring-back effect in 
view of achieving the desired shape of the can 
within given tolerance and at the same time 
minimizing the peak effective stress within the 
can after forming. Other objectives such as 
maximizing the volume of the can were also 
considered.  
 

           
Figure 4: Stages of the can shaping. Contour of the tool and the blank is shown a) before, b) during and c) 
after the tool expansion. The produced can shape is shown on the right hand side. 
 
 
Figure 5 shows the resulting shape obtained by 
maximization of volume, with prescribed 
constraint on admissible shapes and maximal 
effective stress attained during forming. The 
sequential quadratic method was used for solving 
the problem. Derivatives of the objective and 
constraint functions were obtained by direct 
differentiation of the finite element model [19]. 
In further work, improvement of the shaping 
process by optimization of kinematics of tool 
segments and tribological conditions has been 
considered [18]. 
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Figure 5: Final can shape with indicated upper 
and lower admissible shape constraints. 
 
Another typical application is optimal pre-
stressing of cold forging tools (Figure 6) [9].  
 
Cold forging dies are subjected to high 
operational loads which often lead to fatigue 
failure. To reduce growth of fatigue cracks the 



dies are used in a pre-stressed condition. This is 
achieved by putting the die in a stress ring. The 
stress field must be such that plastic cycling and 
tensile stress concentrations during loading are 
minimized at critical locations. This can be 
achieved by optimizing the geometry of the 

interface between the stress ring and die insert in 
such a way that the resulting pressure field at the 
interface induces the desirable stress field inside 
the die (Figure 6 b). 
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Figure 6: a) Cold forging tools with critical locations where cracks tend to occur. b) Optimal pressure 
around the interface between the die and stress ring. 
 
 

4 Optimization of Internal 
Structure of Inhomogeneous 
Material 

The problem of optimal design of material 
structure has been addressed. The example 
includes optimization of shape of inclusions in a 
periodic microstructure [20],[21] with respect to 
given criteria concerning the overall response of 
a specimen under a prescribed loading (Figure 
7). A specimen supported at its bottom ends is 
loaded by a vertical force acting in the middle of 
its topper surface. The specimen consists of 
periodic inclusions of a harder material 
incorporated in a softer matrix. The task is to 
optimize the shape and orientation of these 
inclusions by taking into account criteria that 
incorporate the deflection of the specimen, work 
of external forces and energy dissipation. 
Computation of the response of the structure has 
been performed by a two scale finite element 
model with strongly coupled scales [22]. This 
allows for more accurate computation in the case 
where the scale effect is expressed, i.e. where the 
size of the structure would affect the 
macroscopic response. 
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Figure 7: a) Studied structure under loading and 
b) three parametric description of the shape of 
inclusions within microscopic periodic cells. 
 
Finite element analysis of the problem has been 
implemented in FEAP and parallelized on top of 
the parallel interface adopted in PLATON – a 
Problem Solving Environment (PSE) for 
distributed numerical optimisation. The problem 
was then solved on a cluster of Linux 
workstations. Optimization was performed by 
the Nelder-Mead simplex and the sequential 
quadratic programming method [23] (Figure 8). 
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Figure 8: Convergence of a) simplex and b) SQP algorithm in the parameter space. 
 
 

5 Algorithm design 

In many practical cases, computational 
complexity of the numerical model and 
substantial noise in numerical results are primary 
difficulties that seriously aggravate employment 
of classical optimization techniques [25]. An 
algorithm based on successive local 
approximations of the response functions with 
restricted step approach has been constructed in 
order to overcome these difficulties. A rough 
outline of the algorithm is as follows: 
 
1. Choose the center point x0 (initial guess) and 

the trust region parameter r. 
2. Sample response functions in a chosen 

number of points contained in the sampling 
region ri ,xΩ  centered around xi. 

3. Build approximations of the objective and 
constraint functions. 

4. Solve the problem with approximated 
objective and constraint functions, subjected 
in addition to step length constraints defined 
by r. Set a new xi to the solution of this 
problem. 

5. Update r according to algorithm progress 
and with respect to agreement of samples in 
the last iterate with approximations in 
previous iterates. 

6. If not converged, repeat the procedure from 
step  2, otherwise post-process the collected 
data and finish with xi as problem solution. 

 
The goal is to spend as few function evaluations 
as possible for converging to the solution of the 
optimization problem with the requested 
accuracy, as well as to ensure stability in 

presence of noise. It is crucial that sampling is 
performed economically. Usually less samples 
are calculated in each iteration than the minimum 
needed for the approximation, and are therefore 
combined with samples acquired in previous 
iterations. Different techniques are employed to 
choose sampling points in a way that ensures 
maximal accuracy of approximations. 
 
Updating the trust region parameter r is the a 
subtle part of the algorithm. This parameter 
determines the constraint on step size as well as 
the size of the sampling region. In general, 
reducing r means smaller potential advance in 
each iteration (because step restriction is tighter), 
but also better agreement of approximations with 
sampled functions provided that the sampled 
functions are smooth enough. Far from the 
solution, we attempt to keep r large in order to 
enable faster progress, but not too large because 
in this case local approximation becomes too 
inaccurate over the trust region. Near the 
solution we should allow quick reduction of r 
over iterations in order to ensure rapid local 
convergence. 

5.1 Optimization library 

Further research is focused on more systematic 
development of efficient optimization algorithms 
applicable for larger number of design 
parameters and complex response with 
substantial level of noise. An optimization 
library intended for development, testing, 
comparison and application of such algorithms is 
being developed. The library will provide a 
modular collection of building blocks for 
algorithm development (sampling, 
approximation building, regularization 
techniques, linear algebra routines, algorithms 



for solving mathematical programming sub-
problems, parallel job management, etc.) and 
extensible set of test cases with performance 
monitoring facilities. 
 
At the current stage, internal standards for data 
structures and common function prototypes have 
been set up in such a way that linkage with 
external libraries and software is simplified, 
while other serviceability aspects are kept in 
mind such as efficiency, thread safety, 
extensibility, etc. A basic toolbox is provided, on 
basis of which a framework of the test suite and 
a prototype algorithm were built. Future plans 
include definition of interface standards for 
parallel algorithms, extension of the toolbox and 
construction of implementations of some basic 
classes of optimization algorithms, and 
elaboration of documentation after which a 
public release of the library will be prepared. 
This will hopefully create a basis for long term 
development of efficient algorithms with active 
exchange of research results and testing 
procedures with broader community in the 
relevant research field. The library will also be 
included in the optimization shell "Inverse". This 
will enable prompt application of the designed 
algorithms to practical problems, with possibility 
of combining with additional tools such as shape 
parameterization utilities. 
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