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Abstract

Purpose – Proposes a methodology for dealing with the problem of designing a material
microstructure the best suitable for a given goal.

Design/methodology/approach – The chosen model problem for the design is a two-phase
material, with one phase related to plasticity and another to damage. The design problem is set in
terms of shape optimization of the interface between two phases. The solution procedure proposed
herein is compatible with the multi-scale interpretation of the inelastic mechanisms characterizing the
chosen two-phase material and it is thus capable of providing the optimal form of the material
microstructure. The original approach based upon a simultaneous/sequential solution procedure for
the coupled mechanics-optimization problem is proposed.

Findings – Several numerical examples show a very satisfying performance of the proposed
methodology. The latter can easily be adapted to other choices of design variables.

Originality/value – Confirms that one can thus achieve the optimal design of the nonlinear behavior
of a given two-phase material with respect to the goal specified by a cost function, by computing the
optimal form of the shape interface between the phases.
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1. Introduction
Ever increasing demands to achieve more economical design of a given material result
in the need to exploit and analyze its inelastic non-linear behavior. The latter can be
formally placed under control by micro-macro models (Ibrahimbegovic and Markovic,
2003), where one goes down to micro-scale in order to obtain a more reliable
interpretation of the mechanisms governing the inelastic behavior. This kind of
approach opens not only numerous possibilities to obtain a better description of the
inelastic behavior of a material than the classical phenomenological models, but also
allows one to consider very fine details of the material microstructure and design the
one which is the most suitable for a given goal. A number of possibilities can be easily
imagined in that respect, from designing a material which will reduce as much as
possible the damage in the given zone, thus increasing the durability of the structure,
all the way to designing a material which will maximize the damage in a given zone,
where it is important to concentrate energy dissipation in a structure.

The design procedure is called upon to guide and accomplish this task. The desired
goal is set in terms of the objective cost function (Kleiber et al., 1997), dependent upon
the design variables, which can be either geometric or mechanic parameters of the
material and its microstructure. The former case, which is of main interest for the work
described herein, is more demanding in terms of the solution procedure requirements.
Therefore, a novel approach is sought herein with respect to the classical methods
(Tortorelli and Michaleris, 1994; Tsay and Arora, 1990) where one separates the
optimization problem from the mechanics problem and reduces the communication
between the two to the sensitivity computations. The solution procedure for coupled
optimization-mechanics problem relies on the method of Lagrange multipliers to bring
the two problem ingredients on the same level, which allows much greater flexibility in
subsequent solution steps. Another important contribution regarding the solution
procedure concerns the phase interface shape representation, which allows a very
efficient computation. The details of the solution procedure are presented for the
chosen model problem of two-phase material, with one phase as plasticity and another
phase as damage. However, the proposed procedure can easily be adapted to other
cases of practical interest.

The outline of the paper is as follows. In the next section we briefly review the
micro-macro representation of the chosen model problem of two-phase material.
A number of practical materials, such as porous metals or concrete, belong to
this category. In Section 3 we present the solution procedure for the coupled
optimization-mechanics problem. In Section 4 we describe the details of the
microstructure representation and the interface shape parameterization. Several
numerical examples are presented in Section 5 in order to illustrate a very satisfying
performance of the proposed approach. Concluding remarks are stated in Section 6. We
also supply an Appendix to explain the details of the proposed approach more clearly
in the simple 1D setting.

2. Model problem: micro-macro model of two-phase material
To fix the ideas on multi-scale modeling of inelastic behavior of materials proposed
herein, we consider a model problem presented in Figure 1, which is very much
representative of standard three-point bending tests, very often used for brittle
materials. When trying to interpret the test results in the range of inelastic analysis
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and identify more easily the dissipative mechanisms, this would lead us to take into
account the details of the material microstructure, and to carry out micro-macro
inelastic analysis.

2.1 Micro-macro modeling approach at coupled scales
In targeting the most general application domain, we consider the problem in
multiscale analysis of inelastic behavior for the case where the scales remain strongly
coupled, imposing the constant communication between the scales. More precisely, in
order to more easily identify a particular failure mechanism and its evolution, one is
constantly obliged to go down to micro-scale before advancing the computations at the
macro scale. The micro-scale can be as small as 1mm for metals or as large as 1 cm for
concrete, so that “micro-scale” terminology should only be interpreted in the relative
sense as being much smaller than the macroscale characterizing the structural
dimension.

It can happen, such as for large aggregate concrete material, that the ratio between
macroscale and micro-scale is not big enough in order to justify the classical scale
separation hypothesis, which would allow the computation at the micro-scale to be
carried out in advance. Two-scale finite element model can be constructed for this kind
of problem as shown in Figure 1, where the finite element representation is provided
for each scale. Without loss of generality we assume that all the internal variables are
defined only at the micro-scale. The latter implies that the state variables can be
written as: displacements at the macroscale, uM, displacements at the micro-scale, um

and the internal variables governing the evolution of inelastic dissipation at the
micro-scale, collectively denoted as v. The particular model problem we consider
herein pertains to a two-phase material, with the first phase or the matrix represented
by a plasticity model and the second phase, represented by a damage model. The set of
internal variables therefore consists of plastic strain 1p, hardening variable for plastic
phase j p, damage compliance D and damage hardening variable j d. In order to specify
the evolution equations of these internal variables we choose the deviatoric plasticity
model of the matrix and a simple damage criterion proportional to the spherical stress
for the second phase, with a vanishing value of fracture stress in the case when we
model inclusions (Ibrahimbegovic et al., 2003). The irreversible nature of the evolution
of these internal variables obliges us to carry out an incremental solution procedure,
by using one-step time-integration scheme. For a typical time step of one such
scheme between ti and tiþ1 we can write the central problem of multiscale analysis as
follows:

Figure 1.
Micro-macro model of the

three-point bending test
with macroscale finite

element mesh composed of
a number of micro-scale
finite elements with the

exact finite element
representation of the

material microstructure
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Central problem of multiscale analysis

Given the state variables at time ti;

ui ¼ uM
i ; um

i

� �
; vi ¼ ð1p; jp; D; jdÞ and Dt ¼ tiþ1 2 ti :

Find the corresponding values at time tiþ1;

uiþ1 ¼ uM
iþ1;u

m
iþ1

� �
; viþ1;

such that the weak form of equilibrium equation is satisfied at both scales

G uM
iþ1; um

iþ1; viþ1; w
� �

¼ 0

and internal variables evolutions are supplied over time step

viþ1 ¼ vi þ Dt½ _giþ1 ›F=›viþ1�;

ð1Þ

Fbeing the yield/damage criterion, g the plastic/damage multiplier (Ibrahimbegovic
et al., 2003) and w the weighting function.

In the above definition we refer to our recent works (Ibrahimbegovic and Markovic,
2003; Markovic et al., n.d.) for different forms of setting up and solving the equilibrium
equations depending upon the chosen scale coupling for either displacement or stress
based interface and different microstructure representations. The crucial point in
solving these equations pertains to intrinsically different nature of state variables and
the displacement field; namely, the weak form features the spatial displacement
derivatives and therefore requires the displacement continuity over the boundaries of
the micro-scale elements

ui ¼ NaðhjÞu
a
i : ð2Þ

This choice results in a large coupled set of equilibrium equations to be solved at the level
of each macroscale element, defined as the corresponding assembly of micro-scale
elements. On the other hand, no derivatives appear on the internal variables and, for that
reason, only independent element-wise values can be used; one typically employs the
Gauss quadrature point values, so that the interpolations can formally be defined as

1 p ¼ dðh2 haÞ1 p
a D ¼ dðh2 haÞDa

j p ¼ dðh2 haÞj p
a jd ¼ dðh2 haÞj d

a

_1 p ¼ dðh2 haÞ _1 p
a

_D ¼ dðh2 haÞ _Da

_j p ¼ dðh2 haÞ _j
p

a
_jd ¼ dðh2 haÞ _j

d

a

_g p ¼ dðh2 haÞ _g p
a _gd ¼ dðh2 haÞ _g d

a ;

ð3Þ
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where d(·) denotes the Dirac delta function and h a are abscissas of the chosen Gauss
quadrature rule. The central problem is thus transformed in a very large set of
independent equations, namely those for internal variable evolution written
independently for each Gauss point of micro-scale elements, along with a smaller set
of equilibrium equations for each micro-scale element. All the micro-scale elements
contributions are assembled and solved for at the level of a single macroscale element,
before solving global set of equilibrium equations, which is obtained by the standard
finite element assembly procedure of macroscale elements contributions.

The iterative analysis of this kind is driven either by imposed displacement
(for displacement based coupling, see Ibrahimbegovic and Markovic, 2003) or imposed
stress (for stress based coupling, see Markovic et al., n.d.). Once this analysis has
converged we can carry on with a next iterative step at the macroscale. Therefore,
the macroscale analysis amounts to formally the same procedure as the standard,
single scale finite element analysis, with the only difference related to the manner in
which we compute the stiffness matrix and residual vector of these elements, which are
available only once the micro-scale computation is carried out. As shown by Markovic
et al. (2004), the micro-macro solution procedure just described is ideally suited for
parallel computations, which allows solving problems with a very large number of
unknowns.

2.2 Microstructure representation: exact versus structured mesh representation
The computational framework presented in the previous section relies on the finite
element representation of the microstructure in order to explain the failure mechanism.
Among a very large number of different possibilities we chose herein a model problem
of two-phase material where a plasticity model can describe the inelastic behavior of
one phase and the inelastic behavior of the other phase can be represented by a damage
model. One can find a number of real materials whose inelastic behavior can be
described by a two-phase model of this kind, from the porous metals with
damage phase with a vanishing value of damage stress representing the voids, to
concrete material where the cement paste behavior is described by a plasticity model
and the aggregate behavior is described by a damage model.

Moreover, for the chosen model problem we select a simple microstructure shown in
Figure 2(a), where the damage phase occupies a region of circular shape surrounded by the
plastic phase spreading to the boundaries of the square cell corresponding to the
representative volume element. A slight modification of this microstructure is also
considered where the damage phase would occupy a domain of the elliptic shape centered
within the square periodic cell, several such cells forming a single macroscale element.

We will first consider the finite element representation of this microstructure, which
is referred to as “exact”, in the sense that the finite element mesh is exactly adjusted to
the domains occupied by each phase, so that every micro-scale finite element
corresponds to a sub-domain occupied by only one phase. Any particular micro-scale
finite element will thus contain a homogeneous domain, so that the computations can
be carried out in completely standard manner.

We can also consider different convenient representations of such a microstructure,
which is constructed by using a structured finite element mesh shown in Figure 2(b),
where each finite element is of a rectangular shape and the same size, and therefore one
micro-scale finite element domain can be shared between both phases. The standard
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computational procedure for each micro-scale finite element can no longer be used
to guarantee the sufficient result accuracy and one has to consider different
enhancements. Three different possibilities exist, such as:

(1) Gauss numerical point (GNP) filtering (Wriggers and Zohdi, 2001);

(2) incompatible mode representation (Ibrahimbegovic and Markovic, 2003); and

(3) stress based representation (Markovic et al., n.d.).

The accuracy of these structured mesh representations can be brought to the level the
exact microstructure representation, only with the last two.

3. Solution procedure of coupled analysis and optimisation
3.1 Lagrange multiplier method basis for coupled solution procedure
The classical optimization procedure, pertaining to the design of engineering
structures, can be extended to the presented class of problems in order to provide the
optimal design of a composite material. The notion of desired, optimal performance is
more precisely specified in mathematics language in terms of the cost or objective
function. This cost function is specified in terms of so-called design variables, which
are used to define either geometric and/or material properties of the structure in its
initial configuration (Kleiber et al., 1997).

Some examples of cost functions for structures involve weight, strength or
amplitude of the stress field. Any of these criteria can be exploited in designing the
optimal behavior of a particular composite material, but one can also devise a number
of new, less frequently used choices for the cost function that would specify better the
desired inelastic behavior of a given material. One such example is related to a very
important issue of material durability, where one would seek the composite material
arrangement that would limit inelastic behavior to a minimum. Another example of
this kind concerns the materials used in vibration isolation system in order to reduce
the structural damage in structures, where one would seek to maximize the damage in
the isolation layers. For either of these cases a very suitable choice for the cost function

Figure 2.
Finite element
representations of the
two-phase material
microstructure
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is the inelastic dissipation. For a two-phase model material we consider herein, the total
dissipation is the sum of the plastic and damage dissipation, which can be expressed
according to (Ibrahimbegovic et al., 2003)

_Dd þ _Dp ¼
1

2
s _Dsþ qd _jd þ s _1p þ qp _jp: ð4Þ

where the first two terms express the damage and the last two the plastic dissipation
at each point with the known values of the internal variables and their evolution.
In equation (4), s is the stress tensor, whereas q d and q p are stress-like variables that
describe hardening effects for damage and plasticity phase, respectively.

The design problem in the classical sense can then be interpreted as the constrained
minimization of cost function j(·) in terms of design variables p, which can be written as
follows:

p ¼ p* ; minGð...Þ¼0 jðp; ·Þ
� �

; ð5Þ

where the constraints pertain to the weak form of the equations governing the
equilibrium at both macro- and micro-scale, as well as the evolution equations of the
internal variables, as specified in the previous section. The cost function can be defined
as minimizing the dissipation (when we want to ensure durability) or minimizing the
negative of dissipation (when we want to ensure concentration of inelastic behavior in
an isolation device) in a given region of the structure throughout the loading time
history, which can be written as

jðp;uðpÞ; vðpÞÞ ¼

Z T

0

Z
V

ð _Dp þ _DdÞdV dt ð6Þ

Rather than adopting the classical formulation of the optimization problem (Kleiber
et al., 1997), we follow the previous work by Ibrahimbegovic and Knopf-Lenoir (2003)
or Ibrahimbegovic et al. (2004) to make use of the Lagrange multiplier technique to
eliminate the constraint in equation (5). In this process we bring the mechanics
equations at the same level as the cost function. In other words, the state variables to
perform mechanics analysis are also brought to the same level as the design variables
and, contrary to the statement in equation (6), the state variables can now be
considered as independent from the design variables. The latter implies that
the solution procedure can be carried out in any chosen order, and it can thus become
quite different from the classical optimization computation.

The coupled analysis and optimization problem of this kind can be formulated by
introducing the Lagrangian functional

mind;u;V maxlLðp; u;V ; lÞ ¼ J ðp; u;V Þ þ Gðp; u;V ; lÞ; ð7Þ

where l is the set of the Lagrange multipliers enforcing different constraints in
micro-macro mechanics model, containing both the local multipliers l v for internal
variables and global ones l eq for displacement field. The second term on the right
hand side in equation (7) takes the same form as the weak form of the governing
equilibrium and evolution equations, with the corresponding Lagrange multiplier
replacing the variations of the state variables.
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The Kuhn-Tucker optimality conditions corresponding to the Lagrangian
functional in equation (7) can be written as follows:

Variation with respect to the Lagrange multipliers returns the corresponding
macroscale and micro-scale equilibrium and internal variable evolution
equations of the problem:

›L

›l
¼ G ¼ 0 ð8Þ

Variation with respect to the internal variables provides a set of equations to
solve at each Gauss point:

›L

›V
¼

›J

›V
þ lV ›G

›V
¼ 0 ð9Þ

Variation with respect to the displacement field features the tangent operator:

›L

›u
¼

›J

›u
þ l eq ›G

›u
¼ 0 ð10Þ

Variation with respect to the design variables will typically couple all the
variables and lead to the most elaborate equation:

›L

›p
¼

›J

›p
þ l

›G

›p
¼ 0 ð11Þ

One can further simplify these equations in view of providing their discrete
approximation. In particular, the choice of discrete approximation of the Lagrange
multipliers is equivalent to the discrete approximations chosen for the variations of
corresponding state variables, which is being replaced by the corresponding Lagrange
multipliers in the Lagrangian functional in equation (7). For example, the inter-element
continuity requirement at the micro-scale is imposed on the Lagrange multipliers for
equilibrium equations with

l
eq
i ¼

X2

b¼1

NbðhiÞl
eq
i;b: ð12Þ

Similarly, the discrete approximations of the Lagrange multipliers for internal
variables are picked up so as to reduce their contributions to Gauss quadrature points
only with

lFp

¼ dðh2 haÞlF
p

a ; lF d

¼ dðh2 haÞlF
d

a ; l1 p

¼ dðh2 haÞl1
p

a

lD ¼ dðh2 haÞlD
a ; lj p

¼ dðh2 haÞlj
p

a ; lj
d

a ¼ dðh2 haÞlj
d

a;n

ð13Þ

The Lagrangian functional in equation (7) can then be written to indicate explicitly all
the independent variables

L ¼ Lðp; 1ðuÞ; 1 p; jp;D; jd; _1 p; _jp; _g p; _D; _jd; _gd ; lÞ: ð14Þ
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This number of the independent variables can further be reduced by taking into
account the finite difference approximations for time derivatives of all the internal
variables, which is in accordance with the backward Euler time integration of the
corresponding evolution equations on internal variables in the central problem in
equation (1)

_1 p
a;n ¼

1 p
a;n 2 1

p
a;n21

tn 2 tn21

_Da;n ¼
Da;n 2 Da;n21

tn 2 tn21

_j
p

a;n ¼
j p
a;n 2 j

p
a;n21

tn 2 tn21

_j
d

a;n ¼
j d
a;n 2 j d

a;n21

tn 2 tn21

ð15Þ

By making use of these finite difference approximations we can reduce the number of
Kuhn-Tucker optimality conditions by four; more precisely, by employing the chain
rule in order to express the variations with respect to internal variable rates with
respect to the variations of the internal variables, the result in equation (9) can be
restated as

›L

›1 p
þ

1

Dtn

›L

› �1 p

� �
d1 p ¼ 0;

›L

›D
þ

1

Dtn

›L

› _Dp

� �
dD ¼ 0

›L

›j p
þ

1

Dtn

›L

› _jp

� �
dj p ¼ 0;

›L

›jd
þ

1

Dtn

›L

› _jd

� �
djd ¼ 0

ð16Þ

Having thus reduced the number of unknowns and their domain of definition to a
minimum needed, the solution procedure can be started. The preferred order we choose
is to first solve for the all internal variable increments at all Gauss points from equation
(16) above to obtain DV d and DV p; this kind of computation also implies solving for
the stress plastic and/or damage admissibility conditions Fp ¼ 0 and Fd ¼ 0: Solving
equation (8) for micro-scale and macroscale displacement incremental fields Du is
carried out next, by using the multiscale solution procedure, as described in the
previous section.

The optimization loop starts by solving from equation (10) for all Lagrange
multipliers Dl eq; DlV d

and DlV p

: The latter reduces to a linear problem, as the
consequence of the choice of the dual formulation in equation (7). The last solution
concerns the new increment of the design variables Dp computed from equation (11).
For clarity, we provide in the Appendix all the details of this solution procedure for a
1D case of the optimal design of composite truss-bar with one part built of plastic and
the rest of damage material.

3.2 Software architecture for coupling of analysis and optimization
The entire solution procedure is naturally divided into two parts. The inner part
consists of solution of the mechanical problem and calculation of the objective
and constraint functions for given values of the design parameters, and the outer
part consists of solving for optimal design variables by using the solution of the
inner problem. The multi-scale solution procedure for the mechanical problem has
been implemented in the finite element environment “FEAP” (Taylor, 2004).
The procedure has been parallelized in such a way that the problems at the
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microscopic level (each corresponding to one macro element) are solved
simultaneously over a heterogeneous network of computers (Markovic et al.,
2004). This speeds up the numerical solution of the mechanical problem enough
that performing optimization on top of it becomes feasible.

Solution of outer part was performed by the optimization program “Inverse”
(Grešovnik, 2000; Rodič and Gresovnik, 1998; Grešovnik, n.d.). This program has
been designed for linking optimization algorithms and other tools through a suitable
interface with numerical analysis environments. It is built around interpreting
language that enables flexible and transparent access to the implemented
functionality for setting up the solution schemes for specific problems. The
concept has been confirmed on a large variety of problems, including many in
the field of metal forming (Grešovnik, 2000; Grešovnik and Rodič, 1999, 2003) where
numerical analyses involve highly non-linear and path dependent material behavior,
large deformation, multi-body contact interaction and consequently large number of
degrees of freedom.

“Inverse” carries out the optimization algorithm that solves the outer problem,
controls the solution of the inner mechanical problem and takes care of connection
between these two parts. Prior to calculation of the objective and constraint
functions, input for mechanical analysis is prepared according to the current values
of design parameters. In the phase interface optimization problem we would like to
solve herein, the latter corresponds to generation of the finite element mesh that is
used for each macro element. The mesh for a single cell or a single macroscale
element is generated first on the basis of a template mesh corresponding to a
circular inclusion, by transforming node co-ordinates as described in detail in the
next section. Subsequently, we assume the periodic microstructure, which allows us
to combine several periodic cells in order to obtain the complete macroscale finite
element mesh. The latter is stored to a file in the prescribed format where it can be
accessed by the FEAP micro-macro analysis. This procedure is graphically
illustrated in Figure 3.

In the optimization phase, the calculation of the response functions includes
solution of the mechanical problems and integration of the relevant quantities,
which is performed in “FEAP”. These results are passed to “Inverse” through
arguments of the analysis procedure, which was prepared in “FEAP” for the
complete calculation of the response functions of the optimization problem.
Although the interfaces with simulation codes usually involve more sophisticated
control over program flow and internal data (Grešovnik, 2000), this kind of
interfacing appeared the quickest way to solve our problem, largely due to
openness and extensibility of “FEAP”. Main advantages of linking “Inverse” with
“FEAP” and using it for optimization are more transparent definition of the
problem, simple and systematic application of modifications to the original
problem, and accessibility of already incorporated utilities. These include different
optimization algorithms, tabulating utilities, automatic recording of algorithmic
progress and other actions, debugging utilities, automatic numerical differentiation,
and an useful bypass utility for avoiding memory heaping problems that may be
difficult to avoid when a stand-alone numerical analysis software is arranged for
iterative execution.
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4. Shape optimisation of microstructure
4.1 Parameterization of the shape of inclusions
In order to reduce the number of design variables, we assume periodic microstructure
of the material, where the material geometry can thus be described at the micro-scale
level of single periodic cell. For the model problem of two-phase material studied
herein, the typical periodic cell microstructure can be defined by three-parameter
representation shown in Figure 4.

By assuming the typical dimension of a period of microstructure or the size of a
“cell” to be equal to d, we can start from the reference shape of the phase interface (or
an inclusion contour) as a circle of radius rinðfÞ ¼ r0 ¼ d=2: At a given set of design
parameters p the contour shape will be defined by

rpðf;pÞ; ð17Þ

where ðr;fÞ are polar co-ordinates with the origin of the co-ordinate system positioned
in the center of a periodic cell and rp denotes the distance of the contour from the origin
(Figure 4).

For the purpose of shape parameterization we will transform some pre-constructed
reference mesh corresponding to the reference shape of inclusions according to
parameter values. At any value of parameters p all nodes of the reference mesh will be
mapped by a parameter dependent map defined over the domain of the periodic cell in

Figure 3.
Instances of the finite

element mesh at different
values of design

parameters
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such a way that the contour of the reference inclusion shape is mapped into the contour
defined by equation (17), the boundary of a periodic cell is invariant and other points
are mapped C0 continuously with respect to co-ordinates:

xiðpÞ ¼ ~F xð0Þ
i ;p

� �
; ð18Þ

where i is a node index and xð0Þ
i are the reference coordinates of the node. We will

conveniently define the map in polar coordinates:

ðriðpÞ;fiðpÞÞ ¼ F rð0Þi ;fð0Þ
i ;p

� �
: ð19Þ

In particular, we define F as

Fðr;f;pÞ ¼

r
rpðf;pÞ

rinðfÞ
;f

� �
; r , rinðfÞ

rextðfÞ2 ðrextðfÞ2 rÞ
rextðfÞ2 rpðf;pÞ

rextðfÞ2 rinðfÞ
;f

� �
; r $ rinðfÞ

8>>>><
>>>>:

; ð20Þ

where rinðfÞ defines the initial boundary of the inclusion,

rinðfÞ ¼ r0 ¼ d=2; ð21Þ

and rextðfÞ defines the border of a periodic cell:

Figure 4.
A three-parameter
description of the
geometry of the phase
interface or an inclusion in
a periodic cell (note that
the angle a is chosen as
negative for more clear
representation)
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rextðfÞ ¼

d

2 cosðfÞ
; 0 # f ,

p

4
_

3p

4
# f ,

5p

4
_

7p

4
# f , 2p

d

2 sinðfÞ
;
p

4
# f ,

3p

4
_

5p

4
# f ,

7p

4

periodic ð0; 2pÞ;f , 0 _ f $ 2p

8>>>>>><
>>>>>>:

ð22Þ

By equation (19), mesh nodes of the reference mesh are moved in radial direction.
Within the inclusion domain points are contracted or stretched from the cell center
towards new inclusion boundary defined by rpðf;pÞ; while in the matrix domain
points are stretched from the cell boundary towards inclusion boundary (Figure 4).
rpðf;pÞ is defined for ½0 # f # 2p� and we require that it satisfies the following
conditions:

0 , rpðf;pÞ , rextðfÞ ;p

rpð0;pÞ ¼ rpð2p;pÞ

›rp

›f
ð0;pÞ ¼

›rp

›f
ð2p;pÞ ;p

ð23Þ

In the examples presented in the following section we will restrict parameterization to
elliptical shapes of inclusions. This is achieved by a three-parameter function

rpðf; a; b;aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

cos2ðf2 aÞ

a 2
þ

sin2ðf2 aÞ

b 2

vuuut ; ð24Þ

which defines an ellipse with half-axes lengths a and b and orientation specified by
angle a between the main axis and the x coordinate axis (Figure 4). In order to satisfy
the first condition in (22), we ought to impose the restrictions on parameter values

0 , jaj , d=2 ^ 0 , jbj , d=2 ð25Þ

The second and third conditions in equation (23) are already satisfied by the chosen
parameterization. The choice of elliptical parameterization for our study was made for
several practical reasons. Possible shapes of inclusions defined in this way are simple
and corresponding structures would be easy to manufacture. At the same time the
variability of achievable shapes is sufficient to significantly affect the microscopic
stress state and thus the overall structural response, and therefore ensure quite a
significant role for optimization. Small number of design parameters allows of a better
insight into the optimization process. The number of design parameters has also a
critical impact on the computational cost and provides a means of filtering off high
frequency oscillations in the designed shapes. This is favorable for many shape
optimization applications where, in the presence of discretization and round-off errors,
some means of regularization must be introduced in order to eliminate the tendency
towards erroneous oscillatory solutions (Bängtsson et al., 2003).
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Parameterization defined by equation (24) is not unique in the sense that different
sets of parameters result in the same curve. We can see, for example, that

rpðf; a; b;aþ kpÞ ; rpðf; a; b;aÞ ; k [ {ZI þ < ZI 2};

rpðf; b; a;aþ p=2Þ ; rpðf; a; b;aÞ;

rpðf;2a; b;aÞ ; rpðf; a; b;aþ pÞ

ð26Þ

Unless some regularization is applied, this will inevitably lead to non-uniqueness of
optimal solutions. A possible solution to this problem is to restrict the admitted set of
design parameters to some set S , R3 in such a way that any pair of distinct parameter
vectors within the admitted domain defines distinct shape of the inclusion, i.e.

;p1 [ R3; ;p2 [ R3; p1 [ S ^ p2 [ S ^ p1 – p1 ) ’f [ ½0; 2pÞ;

rpðf;p1Þ – rpðf;p2Þ:
ð27Þ

A possible choice for S is

S ¼ {ða; b;aÞ; 0 , a , d=2 ^ 0 # b , a ^ 0 # a , p}: ð28Þ

In practice we do not need to bother about multiple solutions that essentially represent
the same shapes. If the optimization algorithm converges to a solution that does not
satisfy equation (28), we can simply transform parameter values by using identities like
equation (26) in order to obtain the basic form of the solution. One can even argue that
this is a better approach than to explicitly impose constraints on parameters. This can
be illustrated on the hypothetical situation described below:

Let the minimized function f ðpÞ be of the form

f ðpÞ ¼ f sða; bÞ þ f aðaÞ; ð29Þ

where f s is a continuous and bounded function on R2 and f a is continuous and
bounded function on R; periodic with a period 2p. Let in addition f s attain a unique
local minimum at ða* ; b* Þ; f a a strict local minimum at a* and a strict local maximum
at aþ; 0 , aþ , a* , 2p; and let a* and aþ also be global extremes of f a:
ða* ; b* ;a* Þ is then a global minimum of f. Function f a is illustrated in Figure 5. Let us
restrict the set of admissible design parameters to

S ¼ {ða; b;aÞ; 0 # a , 2p}; ð30Þ

Figure 5.
A function fa(a) as
described in equation (29)
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such that ða* ; b* ;a* Þ [ S: We can see that for any point a 1 , aþ domain S does not
contain any descent path connecting the points ða* ; b* ;a1Þ and ða* ; b* ;a* Þ: This
means that if we use a descent interior point minimization algorithm with a starting
point ða* ; b* ;a 1Þ; it will not likely converge to ða* ; b* ;a* Þ: In the given situation the
algorithm would converge to ða* ; b* ; 0Þ: If we do not constraint the admissible range of
parameters, there will exist a descent path connecting ða* ; b* ;a 1Þ and
ða* ; b* ;a* 2 2pÞ, and the algorithm will converge to ða* ; b* ;a* 2 2pÞ, with the
same value of the minimized function f as at ða* ; b* ;a* Þ.

In our case, periodicity of f(p) in p3 ¼ a follows from the fact that points ða; b;aÞ
and ða; b;aþ 2pÞ of the design space represent identical designs for any a, b and a,
but the assumption (29) does not generally hold. A more elaborated derivation would
show that much less restrictive conditions for the minimized function and a starting
guess can be defined entailing similar arguments for not restricting the parameter
range in order to achieve unique parameterization.

4.2 Derivatives of the initial position of nodes with respect to shape parameters
By taking into account the transform function (20), the derivatives with respect to
parameters can be written as follows:

›Fðr;f;pÞ

›pi

¼
›ðFr;FfÞ

›pi

¼

r

rinðfÞ

›rpðf;pÞ

›pi

; 0

� �
; r , rinðfÞ

rextðfÞ2 r

rextðfÞ2 rinðfÞ

›rpðf;pÞ

›pi

; 0

� �
; r $ rinðfÞ

8>>>><
>>>>:

ð31Þ

In equation (31), ðr;fÞ refer to polar coordinates of nodes in the referential mesh.
If rpðf;pÞ is defined by (23), then its derivatives with respect to parameters
(the half-axes of the ellipse and the angle between the first half-axis and the x direction)
are as follows:

›rpðf;pÞ

›p1
¼

›rpðf; a; b;aÞ

›a

¼
cos ðf2 aÞ2

a 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

cos ðf2 aÞ2

a 2
þ

sin ðf2 aÞ2

b 2

vuuut
3 ð32Þ

›rpðf;pÞ

›p2
¼

›rpðf; a; b;aÞ

›b

¼
sin ðf2 aÞ2

b 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

cos ðf2 aÞ2

a 2
þ

sin ðf2 aÞ2

b 2

vuuut
3 ð33Þ
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›rpðf;pÞ

›p1
¼

›rpðf; a; b;aÞ

›a

¼
cos ða2 fÞsin ða2 fÞ

a2
2

cos ða2 fÞsin ða2 fÞ

b 2

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

cos ðf2 aÞ2

a 2
þ

sin ðf2 aÞ2

b 2

vuuut
3

ð34Þ

At each design iteration we reconstruct the mesh for subsequent mechanics analysis
by applying the transform in equation (20) to all nodes of the given reference mesh,
which implies that all the nodal co-ordinates in the mesh are readily available. Another
possible approach is to just use the parametric definition of the boundary between the
inclusion and the matrix and generate the mesh upon this boundary. In order to
calculate the derivatives of the nodal positions with respect to the shape parameters,
we must first transform the positions of nodes produced by the mesh generation
procedure to the referential co-ordinates in which the transform F is defined[1]. For this
we must construct the inverse map F2 1 defined in such a way that
F21ðFðr;f;pÞ;pÞ ¼ ðr;fÞ: For the shape defined by transform in equation (20) we
have

F21ð~r; ~f;pÞ ¼

~r
rinðfÞ

rpðf;pÞ
;f

� �
; ~r , rpðf;pÞ

~rðrextðfÞ2 rinðfÞÞ þ rextðfÞrinðfÞ

2rextðfÞrpðf;pÞ

rextðfÞ2 rpðf;pÞ
;f

0
BB@

1
CCA; ~r $ rpðf;pÞ

8>>>>>>>><
>>>>>>>>:

; ð35Þ

4.2.1 Transformation to Cartesian coordinates. Since the calculation will be performed
in Cartesian coordinates, we need to transform F and its derivatives. The polar and
Cartesian coordinates are related by

x ¼ r cos ðfÞ; y ¼ r sin ðfÞ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ y 2

p
;f ¼

arctg y=x; x . 0

pþ arctg y=x; x , 0

p

2
; x ¼ 0 ^ y . 0

3p

2
; x ¼ 0 ^ y , 0

0; x ¼ y ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

ð36Þ

4.3 Imposing geometric constraints by intermediate transforms
By application of transforms like equation (20) a bad input mesh for finite element
calculation can be obtained. Geometrically infeasible situation occurs when parts of
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the inclusion boundary exceeds the cell boundary. Unfavorable mesh can be produced
even if the geometric layout is physically permissible, because the transform can
distort individual elements in such a way that angles between adjacent element edges
are larger than p radians (Figure 6).

Two corrective mechanisms were used in order to prevent excessive mesh distortion,
both of which utilize additional intermediate maps. The first correction is performed by
application of an intermediate map directly to shape parameters in order to keep them in
a given range where mesh distortion is not so severe. The second correction is performed
by additionally transforming the co-ordinates of the inclusion boundary in such a way
that it cannot exceed the boundary of the cell. In the case where the first correction would
not prevent the inclusion boundary of extending out of the cell, the second correction
would produce non-elliptical shapes, thus modifying the intended set of attainable
shapes. The role of the second correction is twofold: first it prevents the breakdown of the
optimization algorithm when infeasible guesses are generated, and second it can
produce instructive results worth of further analysis when the optimal point lies in the
extreme portions of parameter space where the correction becomes effective.

The corrections are performed by transforming the parameters or co-ordinates by
monotonous functions with a limited range. For example, lower and upper bound on an
individual parameter are enforced by setting

pið~piÞ ¼ f 1ð~p1; lmin; lmax; dÞ; ð37Þ

where ~pi is an optimization parameter, pi is the transformed value of this parameter
actually used in the shape transform formulae, fl is the family of functions used for
enforcing the bounds on parameter range, and constant parameters of the family lmin,
lmax and d specify the lower, the upper bound and the transition interval, respectively.
f 1ð~pi; . . .Þ must be monotonously increasing function of ~pi; with

f 1ðpi; lmin; lmax; dÞ [ ½lmin; lmax� ð38Þ

Since the optimization algorithm operates with parameters ~p rather than p, we must
apply the chain rule in order to calculate the derivatives of the initial co-ordinates of
mesh nodes with respect to the parameters. Instead of Fðr;f;pÞ; the actual co-ordinate
transform is

Figure 6.
Undesired distortion of a

mesh element by the shape
transform
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~Fðr;f; ~pÞ ¼ Fðr;f;pð ~pÞÞ: ð39Þ

Considering equations (31) and (37), we have:

d ~Fðr;f;pð ~pÞÞ

d~pi

¼
› ~Fðr;f;pÞ

›pi

df 1ð~pi; limin; limax; diÞ

d~pi

: ð40Þ

Geometrically feasible bounds on the co-ordinates of the transformed mesh were
achieved by enforcing suitable bounds on the inclusion boundary rpðf;pÞ: As in
equation (37), this was accomplished by application of an additional function with a
limited range to the inclusion boundary determined by equation (24). We will write

�rpðf;pð ~pÞÞ ¼ f 1ðrpðf;pð ~pÞÞ; rpminðfÞ; rpmaxðfÞ; dðfÞÞ: ð41Þ

Accordingly, we must replace rpðf;pÞ with ~rpðf; ~pÞ in the formulae (20), (31) and (35),
and ›rpðf;pÞ=›pi with ›�rpðf; ~pÞ=›~pi: The last derivative is obtained as

›�rpðf;pð ~pÞÞ

› ~p i

¼
›�rpðf;pð ~pÞÞ

›rp

›rp

›pi

dpi

› ~pi

¼
›f 1ðrpðf;pÞ;rpminðfÞ;rpmaxðfÞ;dpðfÞÞ

›rp






f;~p

›rp

›pi






f;~p

df 1ð~pi; limin; limax;diÞ

d~pi

:

ð42Þ

The same family of functions was used for imposing bounds on �rp as for imposing
limits on parameter range, and

pð ~pÞ ¼ ðp1ð~p1Þ; p2ð~p2Þ; . . .Þ;

i.e. each transformed pi depends only on one corresponding parameter ~pi: We allow the
parameters of the family to be dependent on f. In this way, we can for example set
the upper bound for inclusion boundary to be a square slightly smaller than the
periodic cell, i.e. defined by a formula similar to equation (22), except with a smaller d.

4.4 Transforms used for limiting parameter range and inclusion boundary
As mentioned before, functions fl must be monotonously increasing functions of the
first argument for any parameter of the family. It must be continuously differential
with respect to the first argument. Furthermore, we design functions in such a way that

min þ d , x , max 2 d ) f 1ðx;min;max; dÞ ¼ x: ð43Þ

The functions are conveniently defined by gluing together monotonous segments that
are adequately bound and satisfy the continuity conditions at the endpoints.
The following form with continuous second derivatives has been chosen in the
particular case:
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f 1ðx;min;max; dÞ ¼

min; x # min 2 d

min þ fc1ðx 2 ðmin 2 dÞ; dÞ; min 2 d , x # min

min þ fc2ðx 2 ðmin þ dÞ; dÞ; min , x , min þ d

x; min þ d # x # max 2 d

max 2 fc2ððmax 2 dÞ2 x; dÞ; max 2 d , x , max

max 2 fc1ððmax þ dÞ2 x; dÞ; max # x , max þ d

max; max þ d # x

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð44Þ

The corresponding derivative and inverse formulas are

df 1ðx;min;max; dÞ

dx
¼

0; x # min 2 d

derfc1ðx 2 ðmin 2 dÞ; dÞ; min 2 d , x # min

derfc2ðx 2 ðmin þ dÞ; dÞ; min , x , min þ d

1; min þ d # x # max 2 d

derfc2ððmax 2 dÞ2 x; dÞ; max 2 d , x , max

derfc1ððmax þ dÞ2 x; dÞ; max # x , max þ d

0; max þ d # x

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð45Þ

and

f21
1 ðy;min;max;dÞ¼

min2d;y#min

min2dþ invfc1ðy2min;dÞ; min,y#minþd=6

minþdþ invfc2ðy2min;dÞ; minþd=6,y,minþd

y; minþd#y#max2d

max2d2 invfc2ðmax2y;dÞ; max2d,y,max2d=6

maxþd2 invfc1ðmax2y;dÞ; max2d=6#y,max

maxþd; max#y

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

; ð46Þ

where the family of inverse functions f21
l is defined by the formula

f21
1 ðf ðx;min;max; dÞ;min;max; dÞ ¼ x: ð47Þ

The functions f1, its first and second derivatives and its inverse are shown in Figure 7.
Auxiliary functions used in the definition of fl are defined as follows:
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fc1ðx; dÞ ¼
x 3

6d 2
;

fc2ðx; dÞ ¼ d þ x 2
x 3

6d 2

derfc1ðx; dÞ ¼
dfc1ðx; dÞ

dx
¼

x 2

2d 2

derfc2ðx; dÞ ¼
dfc2ðx; dÞ

dx
¼ 1 2

x 2

2d 2

invfc1ðy; dÞ ¼
ffiffiffiffiffiffiffiffiffiffi
6d 2y

3
p

invfc21ðy; dÞ ¼ x; fc2ðx; dÞ ¼ y ^ x [ ½2d; 0�

ð48Þ

The value of invfc21 is obtained by application of the analytical formula for zeros of a
third order polynomial and choosing the real solution that lies in the appropriate
interval ½2d; 0�: There is always exactly one such value for the interval y [ ½d=6; d�
where invfc2 is evaluated, since fc2 is strictly monotonous on ½2d; 0� with derivative
lying in ½1=2; 1�:

Figure 7.
The function used for
limiting parameter range
with its first and second
derivative and inverse
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5. Numerical examples
Several numerical examples are chosen and solved in order to demonstrate the
applicability of the proposed design approach. While application to design of a material
with far more complex microstructure can be foreseen for many practical situations, the
main goal of the presented numerical experiments was to validate the solution scheme
for the chosen model material with two-phase microstructure. In particular, feasibility of
combining multi-scale numerical models, featuring elasto-plastic and damage material
phases at the smaller scales, with efficient gradient-based techniques for constrained
optimization was investigated. We also wanted to draw some attention to problems
previously experienced in the area of material forming (Grešovnik, 2000; Grešovnik and
Rodič, 2003), such as the presence of substantial noise in the numerical response that can
badly affect the performance of classical optimization algorithms.

A structural element under a given loading (prescribed displacements) was
considered, as depicted in Figure 8. The element is composed of a matrix containing
periodically distributed inclusions of a different material. The material properties of
the matrix are described by the von Mises elasto-plastic model, using the following
yield function, Fp,

Fpðs; qpÞ ¼ kDevðsÞk2

ffiffiffi
2

3

r
ðsy þ qpÞ; ð49Þ

where DevðsÞ ¼ s2 1=3 TrðsÞI is the deviatoric part of the stress s, TrðsÞ is its trace
and I the 3 £ 3 identity matrix. In equation (49) sy represents the initial yield stress and
q p the plastic hardening function, defined as

qpðjpÞ ¼ ðsp12 syÞð1 2 e2b pj p

Þ; ð50Þ

where j p is the hardening variable, s p
1 the plastic saturation stress and b p the plastic

saturation exponent. In our analyses the matrix material parameters take the following
values: sy ¼ 1:0 108; sp

1 ¼ 5:0 108; bp ¼ 1; 000:
On the other hand, the behavior of inclusions is described by the damage model

introduced in Ibrahimbegovic et al. (2003) and very similar to the classical plasticity
model described above. It is based on the fracture criterion function, Fd,

Fdðs; qdÞ ¼ TrðsÞ2 ðsf þ qdÞ; ð51Þ

where sf represents the initial fracture stress and q d the damage hardening function,
defined as

Figure 8.
Studied heterogeneous
structure with periodic

microstructure
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qdðjdÞ ¼ ðs d
1 2 sf Þð1 2 e2b dj d

Þ; ð52Þ

with j d being the damage hardening variable and sd
1; b d are damage saturation stress

and damage saturation exponent, respectively. In our analyses the inclusion material
parameters take the following values: sf ¼ 0:33 £ 108; sd

1 ¼ 0:66 £ 108; bd ¼ 10: The
corresponding linear and isotropic elastic properties of each phase are K p ¼ 1:0 £ 1010

(matrix bulk modulus), Gp ¼ 1:0 £ 1010 (matrix shear coefficient), K d ¼ 1:2 £ 1010

(inclusion bulk modulus) and Gd ¼ 1:5 £ 1010 (inclusion shear coefficient).
We optimized the shape of inclusions with respect to different criteria regarding the

overall response of the element. Elliptical shapes of inclusions were considered using
the parameterization described in Section 4. The numerical model was described in
Section 2 and the solution scheme in Sections 3 and 4.

Preliminary testing of the method was performed on problems with trivial solutions
that can be guessed in advance. Namely, when the objective function pertains to
maximizing the plastic dissipation, the optimal design which follows is the one where
the inclusion size shrinks to zero and the matrix material occupies the whole domain.
On the contrary, when we look for the design at which the work of external forces is
maximal, the optimal solution implies that the inclusion material would occupy the
whole space.

Figure 9 shows the solutions obtained for both of these cases represented by the
finite element mesh of the periodic cell. The applied parameterization is not capable of
representing these extreme situations and the algorithm therefore converges to the
representative designs with minimum and maximum inclusion volumes, respectively.
The half-axes of the inclusion were not formally constrained in this case. Instead, the a
priori constraints were imposed on the inclusion boundary by application of additional
transforms on the boundary radius rpðf;pÞ as described in the previous section
(see equation (41)). More precisely, rpminðfÞ defining the boundary of the smallest
possible inclusion was chosen as a circle with a very small radius and rpmaxðfÞ was
chosen to be a square with the side a bit smaller than width the periodic cell. The latter
was chosen intentionally in order to make the effect of the transform visually more
apparent.

The problem of excessive mesh distortion for each of these two designs is clearly
visible in Figure 9(b). In spite of such drastic situation regarding the finite element

Figure 9.
Finite element mesh of the
periodic cell at the
solutions: (a) when
maximizing total plastic
dissipation; and (b) when
maximizing work of
external forces

EC
22,5/6

626



mesh distortion, no problems were experienced with convergence of the optimization
procedure to the expected result. However, one should take into account that the results
obtained by the finite element analysis are rather sensitive to mesh distortion and
therefore a control on the mesh grading and mesh regularity should be incorporated
accordingly when applying the approach described herein. More precisely, with the
proposed solution scheme and flexible software architecture, it is easy to calculate and
manipulate numerical indicators of mesh regularity within the optimization procedure.
Such indicators can either be used just to provide information on when the results
should no longer be too much trusted, or to actively control the optimization procedure,
e.g. by using the penalty terms, in order to always force the design problem solution
and subsequent mesh distortion within the range which can be considered as
acceptable with respect to the mechanics simulation results remaining of sufficient
accuracy. In the presented examples, we used the Pian-Sumihara elements (Pian and
Sumihara, 1984) in the microscopic finite element model, which are known to be rather
insensitive to shape irregularity.

Different approaches can be imagined to deal with situations where excessive mesh
distortion would prevent the determination of optimal solution providing the
equivalent accuracy of result that is otherwise possible with respect to the accuracy of
the numerical simulation of mechanics problem. Although a more detailed exploration
is beyond the scope of the present work, we would like to mention two possibilities that
we deem convenient for practical applications. The first possibility is to apply
automatic mesh generation in order to generate the mesh for the micro level, and thus
apply the shape transform described in the previous section only to the geometrical
definition of the inclusion boundary. Positions of the internal mesh nodes would be in
this case produced without explicit application of the shape transforms. However, we
would still need to consider the explicit definition of the transforms to provide the
consistent sensitivity fields over the interior of the matrix or inclusion material in the
case of sensitivity analysis. In this case, the positions of generated mesh nodes should
be mapped to the reference domain by the inverse transform in order to calculate
derivative terms. The only additional implementation difficulty that we are able to
foresee is in interfacing and manipulation of the geometry definition of the boundary
and related automatic mesh generation. Sufficient tools to implement such an approach
are already available in any commercial simulation environment. One must, however,
anticipate that such an approach would reduce the efficiency of the optimization
procedure because of the addition of non-smoothness to the numerically calculated
relation between the design parameters and the objective and constraint functions.
Transforming the same reference mesh over several analyses, and re-meshing only (a
very few times) when the mesh becomes too distorted, should be able to alleviate these
problems. According to our experience, such approach is well suited already at least for
the chosen example problems. In all demonstrated cases, a single re-meshing is
sufficient mesh quality, and furthermore even manual intervention would be quite
adequate.

Another possibility to deal with the problem of mesh distortion is to use a fixed
regular mesh over the complete domain of the periodic cell. In this case, material
composition and representation of the interface between the matrix and inclusion
material would be dealt with at the level of an individual element rather than
on the element interface level. This kind of structured mesh representation of
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the microstructure, as proposed in Ibrahimbegovic and Markovic (2003), would provide
an important advantage of mesh regularity and prevent any possibility of mesh
distortion and resulting ill-conditioning problem. However, the number of design
variables would increase considerably with respect to the exact finite element
representation employed herein, since any micro-scale element would become a potential
candidate for harboring an interface between two phases and the corresponding design
variables describing it. In the present case with a regular, elliptic shape of phase
interface, which can be described with only three design variables, the structured mesh
approach is very unlikely to be more efficient. However, when considering the best shape
representation of the phase interface in a more general case with a multi-phase
composite material, the latter approach should not be discarded a priori.

The two above mentioned example problems of interface shape optimization were
first solved by the Nelder-Mead simplex method. Rather than a single point, this
method maintains a set of nþ1 points where the objective function is evaluated
through iterations, where n is the number of parameters. An instance of the solution
path in the parameter space is shown in Figures 10 and 11, for the example with
solution shown in Figure 9(b). Convergence of the value of the objective function and
distance from the optimum is shown in Figure 12.

Figure 10.
Solution path of the
Nelder-Mead simplex
method in the space of
shape parameters. Edges
and apices of the
subsequent simplexes are
shown, together with their
centers (red points)
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Figure 12.
Convergence of the
simplex method: (a)

distance from the
optimum; and (b) value of

the objective function

Figure 11.
Solution path defined by

centers of simplexes shown
in the previous figure.

Projection to the sub-space
of ellipse half-axes is shown

on the right-hand side
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These calculations typically converged with the precision of 1023 taking in between 50
and 100 iterations (which corresponds to about 100-200 evaluations of the objective
function). Different starting points were set in order to check that the algorithm
converges to the same point. For the two example problems, the solution was not
unique in terms of the optimal angle of the “elliptical” inclusion, since all angles
resulted in the same symmetric shape due to the imposed parameter transform. In
terms of the finite element mesh, various solutions agreed almost exactly.
Non-uniqueness in terms of calculated optimal parameters is very unlikely to be
observed in complex cases.

Typical computation times for a single analysis run, carried out in parallel on eight
2.4 GHz Pentium 4 Linux workstations, ranged between 5 and 8 min. Bookkeeping time
of the optimization algorithm is negligible for the proposed solution scheme; therefore,
the main opportunity for improving the efficiency was seen in reduction of the number
of required analyses by application of a more efficient optimization algorithm. The
sequential quadratic programming (SQP, Fletcher, 1996; Lawrence and Tits, 1996) was
the method of choice for its known performance in solving non-linear constrained
problems. Our main concerns related to the application of this method were related to
potentially noisy calculated response, especially because we calculated the derivatives
of the objective and constraint functions numerically by the forward difference method.
We therefore investigated behavior of the calculated response in this respect by
preliminary parametric studies.

Some results of these studies are shown in Figures 13-18. We examined angular
dependency of the calculated response with fixed size of half-axes of the ellipse
(Figures 13 and 14). These tests indicated that the total response of the loaded
structure significantly depends on the orientation of the inclusions, rather than mainly
on the inclusion volume.

Further computations are made to get some indication on the level of noise in
computed response, which is obtained by tabulating the response in the parameter
space. The goal is to find out at what range of parameter change the contribution of

Figure 13.
Dependence of minus total
plastic dissipation on the
inclination angle of the
inclusion. Half-axes were
fixed at a ¼ 0.3 and
b ¼ 0.6
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numerical noise is qualified as being considerable with respect to the local trend in the
response. This information was crucial for the choice of step for numerical
differentiation for objective function derivative computation. Since little can be
concluded in advance, the chosen approach is simply to tabulate the response along
individual parameters over different interval lengths, with sufficient number of points
along each interval to be able to visualize the effect of noise and distinguish it from the
general trend.

Because of well-scaled design parameters, tabulating along directions such that all
parameters change equally should give as useful first indications as tabulating along
individual parameters. For better efficiency, we also replaced several uniform
samplings on increasingly shorter lines by a sampling with intervals of geometrically
increasing length. For the first indication of the effect of numerical noise, we performed
the tabulation of calculated response starting at parameters p1 ¼ ½0:3; 0:6; 0:1�T and
ending at p2 ¼ ½0:29; 0:61; 0:11�T: We sampled in 30 points, by a rather conservative
factor of interval length growth of 1.2. This implies the length of the first sampling
interval being about 0.1 percent and the length of the last sampling interval being
about 17 percent of the whole interval. Sampling by factors of interval growth of two or
more is usually adequate for this task and much more efficient, but a bit less
comfortable for visualization. Figure 15 shows the variation of minus plastic
dissipation along a given direction between the two points. No effect of random noise

Figure 14.
Dependence on the

inclination angle of the
inclusion of the derivative

of minus plastic
dissipation with respect to:
(a) the larger half-axis; and

(b) the inclination angle

Shape
optimization

631



Figure 15.
Variation of minus plastic
dissipation along the
straight line between the
points p1¼ [0.3,0.6,0.1]T

and p2¼ [0.29,0.61,0.11]T in
the space of shape
parameters a, b and a
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Figure 16.
Numerical derivative of

minus plastic dissipation
with respect to the first
half-axis sampled in the

same points as the results
shown in earlier
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patterns can be perceived on the plots, indicating that it should be appropriate to use
numerically calculated derivatives in the optimization procedure.

We have fixed the length of the interval for numeric differentiation at 0.001 for all
three parameters and verified the suitability of this choice by tabulating the numerical
derivatives obtained by forward differentiation. Results are shown in Figures 16 and
17 for derivatives with respect to the first axis and the inclination angle, respectively.
Sampling was performed in the same way as described above for the results in
Figure 15. Results for derivatives with respect to the second half-axis are similar as
those for the first half-axis shown in Figure 16. We can see that the amplitude of what
appears to be the contribution of non-smooth response is less than 1/10 of the difference
in the derivative with respect to the first axis between the points p1 and p2. This is
encouraging, especially if we take into account that the variation of the first parameter
is opposite to the variation of the second one, effectively compensating the terms
dependent just on the size of the inclusion.

Differentiation with respect to the inclination angle is more critical, obviously
because the sensitivity with respect to this parameter is about two orders of
magnitudes smaller (see Figure 17) than the sensitivity with respect with the first two
parameters. We have therefore chosen to increase the step length for numerical
differentiation with respect to this parameter to 0.01.

We applied the so-called feasible sequential quadratic programming, a variant of the
SQP algorithm developed by Tits et al. (Panier and Tits, 1993; Lawrence and Tits, 1996;

Figure 17.
Numerical derivative of
minus plastic dissipation
with respect to the
inclination angle

Figure 18.
Convergence of the
objective function for the
problem whose solution is
shown in Figure 9(b)
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Bonnans et al., 1992; Lawrence et al., 1995), with forward difference numerical
differentiation to solve a series of problems with different objectives and constraints.
For unconstraint problems the method is reduced to the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) non-linear minimization algorithm with line search
(Fletcher, 1996; Dennis and Schnabel, 1996). It was applied to the same problem
whose solution by the simplex method was described above, i.e. maximization of the
work of external forces (Figure 9(b)). The solution of this problem was typically
obtained in three to four iterations (Figure 12), which took less than 50 numerical
analysis runs in total. Four analyses were run for each point of the parameter space to
calculate the objective function and its gradient.

In the considered example with simple geometry and loading, various measures of
overall performance such as work of external forces or plastic dissipation exhibit
monotonous dependency on the volumetric ratio of the two phases and therefore size of
inclusions, at any fixed shape and orientation of inclusions. Designs of microstructure
obtained by minimization or maximization of such measures will correspond to
designs with maximal or minimal volume of one phase, such as those shown in figure.
We regard here only those geometric layouts that are elements of the design space
defined by a chosen parameterization, and the solutions with minimal or maximal
volume of a given space do not necessarily coincide with layouts where one phase
vanishes. It is interesting to consider problems where we look for minimum of a given
criterion, while a set of feasible designs is constrained with another criteria. We deal
with such examples below. The choice of criteria was not motivated by any particular
application, and the primary purpose of the examples is to examine the proposed
solution scheme.

We first look for the design that results in maximal plastic dissipation, with a
prescribed upper limit on the accumulated damage. For chosen materials, both
damage and plastic dissipation grow with the size of inclusion and are relatively
more sensitive to size than orientation. We can expect that the constraint will be
active in the optimum while exact orientation and half-axes will be adjusted
according to local dependency of both damage and plastic dissipation, thus hard to
be guessed or determined by manual parametric studies. A priori bounds on the
half-axes were imposed implicitly by transformation of parameters (equations (37),
(38), (44) and (48)). Lower bound of 0.15 and upper limit of 0.9 were imposed for
both half-axes. We also wanted to avoid excessively elongated, oblong inclusion
shapes and therefore, we applied additional parameter transform of this type that
constrained achievable ratios between half-axes to at most 2.5. It turned that both
explicit constraint on the allowed amount of damage and the imposed bound on
half-axes ratio determined the optimal shape, which is shown in Figure 19.
Optimal parameters were ½0:254; 0:95; 3:205�T; which corresponds to geometric
parameters a < 0:634; b < 0:254 and a < 1:635: These values were, in addition to
the bound imposing transform, obtained by swapping half-axes and rotating by
p=2 clockwise, in order to provide a unique notation.

The FSQP algorithm converged to this solution in up to ten iterations from different
starting points, with 15-20 evaluations of the objective and constraint functions and
their gradients. Since gradients were calculated numerically, each evaluation took five
complete numerical analyses of the structure and the actual computational cost was up
to 80 analyses. In this case, the optimum obtained in subsequent experiments was
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unique within the prescribed tolerance. Figure 20 shows an instance of the convergence
path of the method, while variation of the distance from the optimum and values of the
objective and constraint function is shown in Figure 21.

In Figures 22 and 23 the results for the same solution procedure are represented, but
this time all evaluations are shown, including those performed in the line searches.

Two other problems were considered: maximization of plastic dissipation with
constraint on maximum volume (Figure 24(a)) and minimization of plastic dissipation
with constraint on the minimum work of external forces (Figure 24(b)). Similar
performance of the solution scheme could be observed as in the previous case.

6. Conclusion
The methodology for solving the coupled problems in nonlinear mechanics and
optimal design of a heterogeneous material was developed and illustrated on a simple
example of a model material with two phases, one with behavior described by
plasticity and another by damage. We discussed in detail the shape optimization

Figure 20.
Solution path of the FSQP
method to the solution
from figure

Figure 19.
Shape of inclusions that
maximizes plastic
dissipation at the
constraint imposed on the
damage
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problem for the internal interface between two phases. The desired optimization goal is
defined in terms of the objective and constraint functions, which are related to the
micro-scale response of the material under consideration. Furthermore, we considered
a periodic microstructure of the material, where each periodic cell consists of a plastic
matrix phase into which a single inclusion represented by a damage model is

Figure 21.
Course of: (a) distance

from the optimum; (b) the
objective function; and (c)

the constraint through
iterations shown in the

figure
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incorporated. Such geometric layout is in accordance with practicability of production
for artificial materials.

We chose elliptical shapes of inclusions. With such a choice, as well as the
periodicity of the microstructure and the exact finite element representation of each
sub-domain occupied by a single phase within each cell, we manage to reduce
drastically the number of design variables to only three. In other words, at each
iterative stage of the shape design procedure, we can recover the position of all
nodes in the mesh of micro-scale elements from the given current values of the
half-axes and the inclination angle of the elliptic interface. Several important
benefits are related to chosen interface parameterization. First, the form of the
shape transform and number of design parameters restrict the range of achievable
shapes, which can be useful for avoiding too complex shapes and regularizing
the shape optimization problem. Since the shape transform is defined continuously
over the whole domain of the periodic cell, derivatives of the nodal positions are
readily available and can be used as input for sensitivity analysis. Finally, the
finite element mesh depends smoothly on the design parameters and therefore,
the calculated response is less noisy.

We were therefore able to ensure the superior performance of the gradient-based
sequential programming optimization algorithm over the non-gradient simplex
method, even without using analytic result for sensitivity analysis of the multi-scale
model, but only numerical differentiation to compute the gradients. The calculated
response was smooth enough to achieve stable convergence of the gradient-based
optimization algorithm. On the other hand, the level of noise was high enough that the
choice of the right step size for numerical differentiation turned critical. These findings
indicate that further effort in the implementation of the sensitivity analysis of the
mechanical model would be worthy.

One can imagine a number of possible applications of the presented approach,
anywhere from designing the material microstructure which will reduce as much as
possible the damage in a given zone, thus increasing the durability of the structure, to
designing the material microstructure which will maximize the damage in a given

Figure 22.
Solution path from figure,
with all evaluation points
shown
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Figure 23.
Course of: (a) distance

from the optimum; (b) the
objective function; and (c)

the constraint through
evaluations shown in the

figure
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zone, where it is important to concentrate energy dissipation in a structure. The chosen
design goals in engineering applications would not only depend on the purpose for
which a particular structural element would be used but also on the way how this
element is integrated in the whole structure, its interaction with other parts of the
structure or external media, and the range of possible loading conditions. The latter
may gives rise to additional complexities, such as taking into account multiple loading
conditions or simultaneous optimization of internal phase boundary and external
shape of the element. We envisage that the solution scheme could be extended in a
straightforward way to comply with such requirements. Minor extensions would be
needed and also be possible in order to allow for non-periodic microstructure with
continuous variation of its shape over macroscopic domain.

One of the most crucial components of the presented approach is
parameterization of the interface between the material phases. In the case of a
single inclusion incorporated in the surrounded matrix material, the applied
parameterization can easily be extended to cover more complex shapes. This may
require more robust approach for dealing with mesh distortion, in particular
automatic generation of mesh upon the mesh independent definition of the inclusion
boundary. Beside the technical difficulties this would inevitably lead to more noisy
response functions, and one should consider application of more optimization
techniques that are more robust in the presence of noise. In order to allow even
more general microstructure of the representative volume, some other technique of
defining the interface boundary should be considered, such as the level set method
(Wang et al., 2003). Such situation would arise, e.g. when one should account for
multiple inclusions of irregular shapes and without defined location within the
representative volume. In this case, use of a fixed regular mesh over the complete
domain of the micro problem may be worth of consideration, such that material
composition and representation of the interface between the matrix and inclusion
material would be dealt with at the level of an individual element rather than on the
element interface level (Ibrahimbegovic and Markovic, 2003). As the final challenge
for the future work in this domain, we see the optimal design of the
non-deterministic material structure, where only some probabilistic parameters of
the phase distribution can be adjusted.

Figure 24.
Optimal shapes of
inclusions calculated for:
(a) maximization of plastic
dissipation with constraint
on maximum volume; and
(b) minimization of plastic
dissipation with constraint
on the minimum work of
external forces
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Note

1. Note that F defines a spatial map of the whole periodic cell consistently with the transform of
the boundary between the two phases.
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Appendix. Coupled non-linear mechanics-optimisation problem in 1D setting
In order to clarify the ideas presented in the main body of the paper, we provide in this Appendix
a more detailed presentation of the coupled nonlinear mechanics-optimization problem in a
simple 1D setting. In order to have the same ingredients as in the original problem, we chose the
simplest possible case where one macroscale truss-bar element consists of two micro-scale bar
elements, one with constitutive behaviour described by plastic and another by damage model
(see Figure A1).

The behavior of the plastic component is described by the classical hardening plasticity
model (Ibrahimbegovic et al., 2003) with three fundamental ingredients of the additive
decomposition of strain, strain energy function and the yield criterion

Figure A1.
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1 ¼ 1 e þ 1 p

Cpð1; 1 p; j pÞ ¼
1

2
ð12 1 pÞEð12 1 pÞ þ

1

2
K pðj pÞ2

Fpðs; qpÞ ¼ jsj2 ðsy 2 qpÞ # 0

ðA1Þ

The remaining equations of the model on constitutive relations for stress and evolution
equations for internal variables can be obtained from standard thermodynamics developments
and principle of maximum plastic dissipation with

s ¼
›Cp

›1
¼ Eð12 1 pÞ; qp ¼ 2

›Cp

›j p
¼ 2K pj p

_1 p ¼ _g p ›F
p

›s
¼ _g p sgn ðs pÞ; _j p ¼ _g p ›F

p

›qp
¼ _g p

ðA2Þ

Similarly, the fundamental ingredients of damage model are the choice of compliance in order to
describe the damage, the strain energy and the damage criterion:

x d ¼
1

2
sDs

cdð1;D; j dÞ ¼ s12 x d þ
1

2
K dðj dÞ2

Fdðs; qdÞ ¼ jsj2 ðsf 2 qdÞ # 0

ðA3Þ

The remaining ingredients of constitutive and evolution equations are again obtained from
thermodynamics and the principle of maximum damage dissipation:

s ¼
›Cd

›1
¼ D211; qd ¼ 2

›Cd

›j d
¼ 2K dj d

_Ds ¼ _g d ›Fd

›s
¼ _g d sgn ðs dÞ; _j d ¼ _g d ›Fd

›qd
¼ _g d

ðA4Þ

The equilibrium equations in the present case, with macroscale displacement field already
known given as 0 and �u (Figure A1), reduce to a set of equilibrium equations with unknown
displacements at the micro-scale. For the mesh consisting of the elements with exact
microstructure representation, where the first element covers the domain Vd and the second
element covers the domain Vp, the only unknown displacement at the micro-scale is the
displacement at the interface, u (Figure A1). The weak form of the equilibrium equations at the
micro-scale can then be written as

Guðu;V ; wÞ ¼

Z
Vp

dw

dx
sðu; 1 p; j p; �uÞ dx þ

Z
Vd

dw

dx
sðu;D; j dÞ dx ¼ 0; ðA5Þ

where

V ¼ ð1 p; j p;D; j d; _1 p; _j p; _D; _j d; _g p; _g dÞ ðA6Þ
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There is a single design variable describing the interface position d between the plastic and the
damage bars. The coupled non-linear mechanical-optimisation problem of this kind can then be
rewritten as

mind;u;V maxl Lðd; u;V ;lÞ; Lðd; u;V ; lÞ ¼ J ðd; u;V Þ þ Gðd; u;V ;lÞ; ðA7Þ

where

la ¼ {l eq; lFp

; lFd

; l1 p

; lj p

; lD; lj d

} ðA8Þ

are the Lagrange multipliers enforcing the constraints imposed by different mechanical
equations.

For clarity we can also write an explicit form of the last term in equation (A7) for the chosen
model problem given as

Gðd; u;V ;lÞ ¼

R
Vp

›l eq

›x
sðd; u; 1 p; j p; _l pÞ dx þ

Z
Vd

›l eq

›x
sðd; u;D; j d; _g dÞ dx

½Fpðs; qpÞ· _g p�lFp

½ _1 p 2 _g psgn ðs pÞ�l1 p

½ _j p 2 _g p�lj p

½Fdðs; qdÞ· _g d�lFd

½ _Ds2 _g dsgn ðs dÞ�lD

½ _j d 2 _g d�lj d

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

: ðA9Þ

We note that only the first of these equations is global in the sense that it concerns the whole
domain V ¼ Vp <Vd whereas the others are local equations which concern only a given
quadrature point.

The only ingredient which remains to specify is the cost function, corresponding to the first
term in equation (A7). An explicit form of the cost function in equation (A7) above can be written
in accordance with a given goal; one possible choice advocated in this paper is related to the
dissipation, which can be written for damage D d and plastic component D p as

D dðd; u;D; j d; _g dÞ ¼
1

2
s _Dsþ qd _j d ; D pðd; u; 1 p; j p; _g pÞ ¼ s _1 p þ qp _j p ðA10Þ

Such a choice would clearly involve all the variables and would allow for any preference in the
solution procedure. An analytic solution of this problem can be provided in several cases
(Melnyk, 2004), which is very useful for testing various phases of software development.

In a more general case where the analytic solution is not available, one has to compute the
solution numerically. One can start by first solving the equilibrium equation and computing the
evolution of the internal variables, which can be written as

0 ¼
›L

›l
¼ G ) ðu; 1 p; j p; _g p;D; j d; _g dÞ ðA11Þ

We indicated in equation (A11) that this first step allows us to compute all the values of the
mechanical state variables. The next step is the computation of the Lagrange multipliers
according to

0 ¼
›L

›V
¼

›J

›V
þ lV ›G

›V
; 0 ¼

›L

›u
¼

›J

›u
þ l eq ›G

›u
: ðA12Þ
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The latter defines a linear problem as the consequence of the dual formulation we adopted herein.
Moreover, the solution is already well prepared by the previous computational stage in equation
(A11), where, for example, the last equation would simply call for the tangent matrix K to obtain

Kl eq ¼ 2
›J

›u
; K ¼ 2

›G

›u
ðA13Þ

Having computed the solution for the Lagrange multipliers we can then proceed to computing
the values of the design variables according to

0 ¼
›L

›d
¼

›J

›d
þ l

›G

›d
ðA14Þ

For example, for a given choice of the cost function ½J 2 J 0�
2; we can write an explicit form

(Melnyk, 2004) of this equation as
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By computing the value of d we complete one computational cycle. Similarly, one can complete as
many cycles as needed in order to obtain the solution for any particular choice of the cost
function.
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